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Simulation of time-dependent positron behavior in neon gas
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The positron-annihilation spectra and decay rate in neon gas have been simulated via the
Boltzmann time-dependent equation in the presence of electric and magnetic fields at room tempera-
ture using the positron-atom interaction model of McEachran, Ryman, and Stauffer [J. Phys. B 3,
551 (1978}]. The electric and magnetic fields are varied over the ranges 0—10 V cm ' and 0—10 kCJ,

respectively. Equilibrium is reached at about 18000 ns after the initial introduction of a positron
swarm when there are no electric and magnetic fields present. The equilibrium value of the annihi-
lation decay rate is 6.97 at zero electric and magnetic fields. The time for attaining equilibrium de-

creases with the increase in electric field. Its values are 6000, 3600, and 2400 ns for E =2, 5, and 10
V cm, respectively. The effect of magnetic field is to delay the approach to the equilibrium of the
positron distribution.

I. INTRODUCTION

When a positron is emitted from a source, its energy is
generally in the (0.1—0.5)-MeV range. These high-energy
positrons are moderated in the gas to less than 100 eV in
about 1 ns. These positrons lose energy by colliding with
the atoms of the gas. At first, positrons lose energy
quickly, mainly by inelastic and ionizing collisions. When
their energy is less than the positronium formation thresh-
old, they are slowed down by elastic collisions from the
energies near the inelastic threshold to thermal energies of
0.025 eV. After a sufficiently long time, greater than the
slowing-down time, positrons are believed to approach
equilibrium with a constant decay rate, also known as
equilibrium annihilation rate. This annihilation decay
rate provides a test of models of positron-atom interaction
and this is the parameter which can be measured experi-
mentally as well. The annihilation decay rate can be cal-
culated theoretically when the velocity distribution of pos-
itrons is known. This velocity distribution can be deter-
mined by solving the time-dependent Boltzmann equa-
tion' with appropriate boundary conditions or by using a
Monte Carlo approach. Here we have used the
Boltzmann time-dependent equation to analyze the tran-
sient behavior of the positrons in neon gas. The velocity
distribution of positrons is also influenced by the tempera-
ture of the gas and applied external electric and magnetic

fields. So, an annihilation decay rate calculated under the
influence of these fields will provide additional data with
which to test the accuracy of the different models of
positron-atom interaction.

The equilibrium annihilation decay of positrons in neon
gas was investigated earlier, theoretically by Srivastava
and Grover' and Schrader and Svetic, and experimentally
by Coleman et al. , Mao and Paul, and Canter and Roel-
lig. The time-dependent annihilation of positrons in
neon, argon, krypton, and xenon has been studied by Cam-
peanu, and in helium by Campeanu and Humberston.

In this paper we shall present the detailed study of the
time-dependent annihilation decay rate in neon gas and
also the effects of electric and magnetic fields on it using
the model of McEachran et al.

II. METHOD OF STUDY

After entering the gas assembly positrons lose energy
very quickly and then enter the energy region below the
positronium formation threshold (E,h ——14.7 eV for Ne).
In this region positrons lose energy by elastic collisions
with the gas atoms and undergo annihilation. Here the
velocity distribution of positrons in a gas at temperature
T, and subjected to cross electric field (E) and magnetic
field (H), is given by the Boltzmann equation, '2
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with the following boundary conditions:
y(0, t) =y( oo, t) =0 for all t, where u and y (u, t) are posi-
tron velocity and its distribution function, respectively,
a =eE/m is the acceleration of the positron, e and m are

the charge and mass of the positron, k is the Boltzmann
constant, cu =eH /mc is the cyclotron frequency, c is the
velocity of light, v, (u) and v (u) are the positron-
annihilation and scattering rates, respectively, and
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p =m /M, is the ratio of positron mass m and the gas-
atom mass M.

After Eq. (1) is solved to yield the positron distribution
function at any time t, the average annihilation rate at
time t can be obtained from

f y (u, t)v, (u)dy
X(t)=

y v, tdv
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and it is this quantity which is compared with the experi-
mentally observed annihilation rate.

We define a dimensionless annihilation decay rate
Z ff( t) = A ( t ) /'trr ocn, where ro e l——mc is the classical
electron radius. We shall take the gas density n to be one
amagat (one amagat =2.687X10' atoms/cm ).

The time-dependent average energy (in units of kTo, To
is room temperature 300 K) is obtained from

1 f v y(u, t)du
E(t)=— (3)

y v, tdv

Thus, we see that the annihilation decay rate (A, ) and the
average energy (s) can be obtained, provided the positron
velocity distribution function is known. This function can
be obtained by solving the Boltzmann equation (1). To do
this, it is essential that v, (u) and v (v) be known. We
have taken v, (v) and v (v) from the recent calculations of
McEachran et a/. These quantities have a complicated
dependence on velocity, so the Boltzmann equation cannot
be solved analytically. We have solved it numerically by
use of the Crank-Nicolson technique' " and have ob-
tained the distribution function by performing extensive
computer calculations.

In order to start the solution of Eq. (1), we need to as-
sume a form for the initial positron distribution function.
Campeanu and Hamperston assumed the following forms
for initial velocity distributions:

(1) y(u, t =0)=v, uniform distribution in momentum
space.

(2) y (u, t =0)= u, uniform distribution in energy.
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FIG. 1. Variation of the distribution function with velocity
(in units of V 300k/m, where k is the Boltzmann constant and
m is the mass of the positron) at different times marked on the
curves (13 800, 16200, and 18000 ns). The electric and magnet-
ic fields are zero. The dotted curve d is the Maxwellian velocity
distribution curve.

They concluded that both forms lead to the same equili-
brium distribution, so we have taken y (u, 0) =u .

Equation (1) has been solved for time (0—24) && 10 s.
Different time intervals —ht = 100, 200, and 400 ns—have
been tried, but all lead to a similar result. The time inter-
val At =200 ns provides the best convergence to and sta-
bility for the distribution function, so in our calculations
we have used this time interval. The electric and magnet-
ic fields are varied over the ranges 0—10 Vcm ' and
0—10 kG, respectively. We have confined ourselves to
such low electric and magnetic fields as the positron
behavior in neon gas is quite sensitive in this region. '

III. RESULTS AND DISCUSSION
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Figure 1 shows the variation of the distribution func-
tion y (u, t) with velocity at different times (t = 13 800,
16200, and 18000 ns). The electric and magnetic fields
are kept at zero. The dotted curve represents the Maxwel-

FIG. 2. Variation of annihilation decay rate [Z,tt(t)] with
times at various electric fields E=O, 2, 5, and 10 Vcm
respectively.



35 SIMULATION OF TIME-DEPENDENT POSITRON BEHAVIOR. . . 3311

lian velocity distribution function. From curve a we ob-
serve that the velocity distribution function increases with
velocity, acquires a maximum, and then decreases. The
other curves are also shaped like this. But as the time is
increased, the shape of the curve tends to the Maxwellian
shape (curve d). At t =18000 ns, the shape of the distri-
bution function approaches Maxwellian, and, hence,
equilibrium.

Figure 2 shows the dependence of the annihilation de-
cay rate Z,rr(t) on time at various electric fields. The
electric field values considered are 0, 2, 5, and 10 V cm
respectively. At zero electric field, Z,rr(t) first increases
and then acquires thermal equilibrium. When higher elec-
tric fields are applied, Z, r(rt) goes through a minimum,
then increases and acquires equilibrium. The minima
occur at t=1200, 600, and 400 ns for E=2, 5, and 10
V cm ', respectively. The minimum in the decay rate (or
maximum in lifetime) occurs at lower times as we increase
the electric fields. The times for attaining thermal equili-
brium also decrease with the increase in electric fields.
These times are =18000, 6000, 3600, and 2400 ns for
E=0, 2, 5, and 10 Vcm ', respectively. The equilibrium
value of Z,rr(t) at zero electric and magnetic fields comes
out to be 6.97. We have also computed the annihilation
decay rate of positrons by the perturbation-iteration tech-
nique' for zero electric and magnetic fields at T=300 K.
The value of Z,f~, by this technique, comes out to be 6.99.
The agreement between the values found by the two dif-
ferent methods proves the accuracy of the results and
computer codes. The experimental and theoretical equili-
brium values of Z,ff from different workers have been
shown in Table I. Our result is also in good agreement
with theoretical calculations of other workers. The
theoretical values are rather higher than the experimental
ones. The explanation of the cause of this has been ela-
borated on by McEachran et al.

Variation of the annihilation decay rate Z,rr(t) with
times at various combined electric and magnetic fields is
presented in Fig. 3. The values of the electric and mag-
netic fields are marked on the curves. We observe (curves
b and d) that the magnetic field delays the approach to
thermal equilibrium. In curve b, when there is no mag-
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netic field, equilibrium is acquired at t =6000 ns; howev-
er, when the magnetic field is applied, the time of ap-
proach to thermal equilibrium is t = 14000 ns (curve d).
Thus, electric and magnetic fields have opposite effects on
the lifetime of positrons. Another important observation
of the magnetic effect is that the minimum which occurs
in the presence of electric fields disappears when the mag-
netic field is applied. We are unable to explain this
phenomenon at this juncture. However, this is an interest-
ing observation of the present calculations and should be
studied experimentally. ' Figure 4 shows the dependence
of equilibrium annihilation decay rate Z,q

on electric
fields. For fields ) 8 V cm ', Z,q becomes almost in-
dependent of electric field. At lower fields, there is a fall
in Z,q, but at higher fields a gradual increase, though
very small, is present.

The average energy, E (t~ oo ), of the positrons at zero
electric and magnetic fields is also computed using Eq.
(3), which comes out to be 0.042 eV, whereas the calculat-
ed equilibrium value is 0.039 eV. The agreement between
the two values is again found to be quite good.
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FICs. 3. Variation of annihilation decay rate [Z,ff(t)] with
time at various electric and magnetic fields, as marked (E,H) on
the curves: the first value is that of the electric field in Vcm
and the second is that of the magnetic field in kG.

TABLE I. Comparison of experimental and theoretical
values of Z,ff (tab oo)=Z, q~ at E =H =0 and T=300 K.

7.0—
T =300 4

Dt = 200 ns

Experiment
Coleman et al. '
Mao and Paul
Canter and Roellig'

Theory
Srivastava and Cxrover
Schrader and Svetic'
Campeanu
Our previous workg
Present work

'Reference 5.
Reference 6.

'Reference 7.
Reference 1.

'Reference 4.
Reference 8.

gReference 12.

5.99+0.06
6.02+0. 16
5.96+0.15

7.15
7.0+0.3
6.85
6.99
6.97
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FIG. 4. Variation of equilibrium decay rate (Z,q) with elec-

tric fields at room temperature 300 K.
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IV. CONCLUSIONS

The occurrence of minima in the annihilation decay
rate (Fig. 3) has been attributed to the presence of a
"shoulder" in the positron-lifetime spectra. If this is so,
then it should be possible to verify this by performing the
experiment under the external electric and magnetic fields,
as our calculations suggest. The values obtained for vari-
ous quantities are based on the model of McEachran
et al. however, if some other models were tried, the re-

suits are expected to be different. The accuracy of any
model can be judged by performing an experiment and
measuring the values, as suggested by this paper.
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