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Stopping powers from velocity distributions derived from Compton profiles
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In the framework of the kinetic theory of stopping it is possible to relate the stopping power of a
substance to the velocity distribution of the scatterers, which can be obtained from the Compton
profile. This relation is explored, and is used to determine values of the mean excitation energy for
Al solid and vapor and gaseous Ar, He, N2, and CH4. The mean excitation energy is determined as
the value which within the kinetic theory gives the best fit to measured or calculated stopping cross
sections.

I. INTRODUCTION E
R(Ep)= J S '(E)dE . (3)

The energy deposited per unit path length by a swift,
massive charged projectile traversing a medium,
—dE/dx, the stopping power of the medium, is generally
understood in terms of Bethe's' theory of stopping. This
theory includes a material constant, the mean excitation
energy I, which is frequently extracted from experimental
measurements. In practice this problem is not simple.

The mean excitation energy is defined' in terms of the
set of excitation energies of the system c„and their corre-
sponding oscillator strengths f„as

lnI = dc inc. d c.
d d
GE, de

where the integration is over all discrete and continuum
states. Thus, if the experimental dipole oscillator strength
distribution were known accurately, I could be determined
directly. This has been done for some cases, but the
method demands extensive spectroscopic information.

According to Bethe's formula, which is asymptotically
correct at large but nonrelativistic projectile energies, E~,
the stopping power of a medium should depend on I as

yE 4m'~ln
dx MpI

where M~ is the mass of the projectile and m is the mass
of the electron. Thus, I can be determined ' by measur-
ing the stopping power at large Ez (to minimize shell
corrections). Unfortunately, at large incident energies the
1n(4E&) term dominates —lnI, so great precision must be
used in the measurements. In addition, the stopping
varies only slowly with I, as lnI, so other effects such as
relativisitic corrections, inner-shell corrections, and devia-
tions from the first Born approximation (e.g., Barkas and
Bloch corrections) must also be considered.

The mean excitation energy has also been obtained util-
izing a different range of incident projectile energies (e.g.,
approximately 10—30-MeV protons) via the range func-
tion R(E), which measures the projectile penetration
depth. The range as a function of projectile incident ener-
gy is an integrated stopping power, S(E),

The range difference t for projectiles in the appropriate
energy range is thus

E
t=R(E2) —R(Ei)=j S '(E)dE .

I

(4)

One may then use I as a parameter to fit range data. The
latter methods are thus both based on measuring stopping
properties.

Recently the kinetic theory of scattering has provided
a transformation formula for obtaining the stopping
characteristics of scatterers with internal motion from
that of the scatterers at rest. This formulation depends on
I and on the velocity distribution of the scat terers.
Another quite independent quantity, the Compton profile
(CP), also depends on the velocity distribution of scatter-
ers. This distribution can be extracted from an experi-
mental CP and used in conjunction with the kinetic theory
to produce stopping powers as a function of incident par-
ticle energy. Such a procedure requires the use of a mean
excitation energy, which may be varied parametrically to
obtain agreement with an experimental stopping curve
and thus provide an experimentally based value of I. In
contrast to most other methods of determining I, the
present procedure makes use of the whole nonrelativistic
energy range. This paper will outline the procedure, dis-
cuss its applicability, and report some test calculations
and results based on it.

II. THEORY AND CALCULATIONS

A. Stopping power

The stopping power is conventionally related to the
stopping cross section by the number density of target
atoms (n)

1 dE =S(v)
fl JX

and then to the stopping number I.(v) by

4~e4Z', Z,
S(v)=, 1-(v),

mU
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where Z& is the projectile charge and, for neutral targets,
Zz is the target atomic number and where U is the veloci-
ty of the projectile in the laboratory frame. The transfor-
mation equation provided by the kinetic theory relates
the stopping number for stationary target electrons Lo to
that [L(v)] when the target electrons have an isotropic
velocity distribution p(vz),

L(v)=~ f p(U2)U2duq

V+ V2 2

X Lo U' 1+
2

U

2

dv
U

(7)

2&i U

Lo, k(U) =ln e(U —a, ),
Ik

where B(U —ak ) is the Heaviside step function and

ak ——QIk /2m

(8)

(9)

leads to the conventional expression for the shell correc-
tions to the stopping power. We will thus here, as in the
previous applications ' of the kinetic theory, use Eq. (8)
for Lo k.

B. Compton profile

If, rather than scattering swift, massive, charged parti-
cles from an electron distribution, one uses photons as the
projectiles, one obtains a CP instead of a stopping
power. " Such a profile measures the line shape of the
shifted and broadened result of energy and momentum
transfer from the photon to the electrons.

From an (in principle) anisotropic momentum density

In our usual implementation ' of the transformation we
assume that such an equation applies shell by shell to sta-
tionary atomic targets. Each shell is described by its elec-
tron velocity distribution pk(U) and its orbital mean exci-
tation energy Ik. Appropriate choice of Lo then leads to
scattering consistent with the first Born approximation
(Bethe scattering, S(U) ~Z)) or to higher-order deviations
[Barkas, S ( U) oc Z ), and Bloch, S ( v) ~ Z ), corrections].
Each of these terms consists of a conventional leading
term and its so-called shell corrections. The total stop-
ping number is then just the sum of orbital contributions.

At low energies, in the region of the stopping max-
imum, the stopping is primarily accomplished by valence
electrons, and its calculation is very sensitive to a proper,
shell-by-shell description of the scatterers. ' As one
moves through the transition region to higher energies,
the orbital details become less important, and the whole-
atom or single-I description becomes more realistic. At
yet higher energies, relativistic corrections need be made.
We will confine our discussion to the projectile-energy re-
gion where relativistic corrections can be neglected.

In the present application we will consider Bethe
scattering of protons. According to the derivation of Eq.
(6) Lo ), (U) must be the leading term in the Bethe stopping
number for shell k when U »vz. Here U2 refers to the in-
itial velocity of the target electron in the laboratory frame.
It has been shown by Sigmund' that using

p(p), one can obtain an isotropic distribution by angular
averaging

po(p)= f p(p)dp .
1

(10)

dJo(q)—2 =p(q)q, (13)

which is just the momentum (velocity) distribution needed
for the integration over U2 in Eq. (7), provided it can be
obtained shellwise.

Thus, one may in principle derive a stopping-power
curve directly from the experimental CP, provided the
mean excitation energy is known, or conversely, determine
I if both L (v) and the CP are known experimentally.

It should be noted that although the above formulation
deals only with isotropic velocity distributions, the formu-
lation certainly can be made for anisotropic cases. ' The
precursor of Eq. (7) does contain directional dependence,
and it should thus be possible to observe anisotropies in
stopping-power curves which arise from anisotropic velo-
city distributions in samples such as molecular solids.

C. Calculation

In order to implement the scheme described above, it is
necessary to have orbital Compton profiles. These are not
measurable, but experimental valence CP's, and are fre-
quently used. ' They are obtained by subtracting a
Hartree-Fock (HF) core from an experimental profile.
Such a decomposition rests on the commonly accepted be-
lief that the atomic-core CP is well represented by HF or-
bitals. Consistent with this assumption, we thus represent
our systems as a sum of the appropriate HF core and
valence profiles. The core is itself a sum of the appropri-
ate orbital profiles, so

Jo(q) =g Jo(q)+ Jo '(q) . (14)

It should be noted that the valence orbitals (in the cases
considered here all those with highest principle quantum
number) are treated together to produce a valence CP and
thus a valence momentum distribution. This is treated as
a single entity when the orbital stopping numbers and
cross sections are calculated.

The mean excitation energy associated' with the
valence electrons is obtained from the total mean excita-
tion energy (I) and the core orbital mean excitation ener-
gies (Ik ) using

The radial, or isotropic, Compton profile is then defined
as

Jo(q) =2~ f ppo(p)dp . (1 1)
q

In the case of atomic targets where the charge distribution
is radially symmetric, po(p) =p(p)/4m. . We define the ra-
dially symmetric charge distribution of solids as obtained
from isotropic CP's through the same relation. Thus

Jo(q) =
2 f p(p)dp (12)

q

and
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ln(I„g) = 1
core

Z2lnI —g rok lnIk
oval k

(15)

8Z
Jo(q) — poq +O(q ),

3

and at small,

Jo(q)-Jo(0) —2q p +O(q )

(16)

(17)

values of q for the proper values of the fitting coefficients.
Here p, is a constant related to the s orbitals of the tar-
get. ' A more detailed study of the fitting of Compton
profiles with a hydrogenic Lorentzian basis has been made
by Thakker et al. ' and shown to be quite satisfactory for
producing the lower moments of the momentum. Other
workers have also used Gaussian' and polynomial
bases. As a test case a theoretical CP of atomic Al, ob-
tained in conjunction with previous stopping-power calcu-
lations, ' was fit. A satisfactory fit was found to a set of
six Lorentzian functions with k; =0.1, 0.3, 0.6, 1.0, 2.0,
3.0, 5.0, and this sequence was used in all further fits. Us-
ing twenty points distributed over the profile, a fit was ob-
tained with a root-mean-square error of 8.57&10 . As
expected, the percentage errors were much larger in the
wings of the profile than at the peak. It is expected that
use of better fitting schemes' will not alter the values of I

Here the Icok ) are the orbital weight factors, which also
with the orbital II, are obtained from Inokuti et al. '

The effect on the stopping power of treating the valence
orbitals as a common distribution is negligible. For exam-
ple, our normal treatment of atomic aluminum' uses
I=123.67 eV, with orbital values of I3,——9.01 eV and

I3& ——4.85 eV. Combining the 3s and 3p orbitals accord-
ing to Eq. (15) gives a valence mean excitation energy of
7.14 eV. If we compare the stopping curve for atomic Al
calculated in the normal way ' to that calculated using
I„&——7.14 eV, there is no difference to three decimal fig-
ures above U=3 a.u. The error rises rather rapidly to
0.2% at U=1 a.u. Thus, the common treatment of the
valence orbitals introduces no significant error into the
calculation.

In each of the cases reported below, an experimental
valence CP was fit to a set of functions by a linear least-
squares procedure using Gaussian elimination. Several
forms of trial function were used, and Lorentzians
[f;(q)=(k; +q ) ') were ultimately chosen. These func-
tions have the desirable property of representing the prop-
er' limiting behavior of Jo(q) at large,

that we infer from this method. The fit obtained for the
theoretical CP is better than those typically obtained to
experimental CP's (see Table I), as a theoretical CP pro-
vides more fitting points with higher numerical precision,
a finer grid, and no scatter.

The derivative of the fitted valence function was gen-
erated analytically on an exponential grid, and the stop-
ping power calculated directly from Eqs. (6) and (7) using
methods described elsewhere. ' ' The total stopping is
then the shellwise sum of core (HF) and valence contribu-
tions.

III. RESULTS AND DISCUSSION

The scheme considered above relates the Compton pro-
file, through the scatterer velocity distribution, to the
stopping power and thus to the mean excitation energy.
Thus the interrelation of the three quantities Jo(q), S(U),
and I can be explored. We restrict our discussion to pro-
ton stopping.

A. Phase effects

A problem of current interest is the origin of sample
phase effects in stopping powers. Within the frame-
work of the kinetic theory these differences must be due
to either changes in the velocity distribution of the
scatterers or in the mean excitation energy of the target.
Since the CP depends on p(U) but not on I, phase differ-
ences in Jo(q) indicate that there are differences in the
velocity distribution of scatterers. By using the CP for
the solid and gaseous phase, we can thus separate out the
phase differences in S(v) due to differences in the velocity
distributions (but do not determine their importance in
determining the stopping power). The CP for solid Al has
been determined and can be compared with a theoretical
CP generated from atomic wave functions, ' which should
approximate the vapor well. The profiles are indeed quite
different, with the vapor being approximately 25% higher
at the peak. The profile derivatives, shown in Fig. 1, are
also disparate, and reflect the difference between bandlike
and orbital- (atomic-) like valence electrons.

Table II reports the stopping cross section calculated at
several projectile velocities based on the theoretical (vapor)
and experimental (solid) CP's and for several values of I.
It is clear that use of the rather different distributions has
only a minor effect in the stopping, and it is differences in
mean excitation energy that are responsible for the
changes in S(U).

TABLE I. Characteristics of the Compton-profile fit.

System

Experimental
CP from Ref.

Al (atom)

21

Al (solid)

25 35

He

35

Ar

35

CH4

46

Number of
experimental points
fitted

20 20 18 23 23 22

rms error
in fit ()&10 )

0.857 3.802 0.229 1.185 1.690 2.105
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FIG. 1. Compton-profile derivatives as a function of momen-
tum for Al. Curves for solid (Ref. 25), and theoretical ("gas")
samples (Ref. 21) are given.

In this regard, there is a question as to the origin of the
unexpected significant phase differences in low-energy
stopping powers of the van der Waals solids N2 (Ref. 26)
and CO. We speculate that the phase differences arise
from changes in the valence mean excitation energy on
condensation, and not primarily from changes in the velo-
city distribution of the targets.

B. Determination of I
Another possibility is to extract a target mean excita-

tion energy by comparison of experimental stopping
curves to those obtained from experimental Compton pro-
files as described in Sec. IIC. In this method we treat I
as a parameter in the calculation of S(U) from Jo(q), and
look for the I that gives the best agreement with the mea-
sured S(v) curves. We report here several cases: alumini-
um in its solid and vapor state and gaseous helium, argon,
molecular nitrogen, and methane.

Although the experimental stopping power of alumini-
um vapor has not been reported, theoretical atomic calcu-
lations should serve quite well. In Fig. 2 we present
generalized-oscillator-strength (GOS) calculations of the
stopping power of Al, and we compare this to results de-

rived from theoretical atomic CP's (Ref. 21) and to the re-
sults obtained from the kinetic theory, both with I=123.6
eV. The agreement between the GOS stopping points
and the curve for the generally accepted atomic value of
I=123.6 eV is quite good. This is not unexpected, as al-
though the CHAOS stopping power and atomic CP calcula-
tions are not directly related, they are both computed for
an isolated atom. The fact that the CP-derived points fall
on the directly calculated S(U) curve also shows that there
are no serious errors introduced by the fitting procedure.

A more stringent test is with solid Al. In Fig. 3 we
present experimental stopping curves for solid Al (Ref.
29) and compare them to curves derived from experimen-
tal CP's, using various values of I. Before experimental
stopping curves can be compared to calculated results, the
Barkas correction needs to be subtracted out. This is the
major deviation from the first Born approximation at the
energies under consideration, and removal of the Barkas
term reduces the experimental curve to (nearly) Bethe
stopping. The experimental points in Fig. 3 have thus had
an estimate of the Barkas correction, calculated according
to Ritchie and Brandt with b=1.4, removed. The ex-
perimental points clearly agree best with the CP-derived
curve with I= 163 eV.

In Table III we present various previously reported
values of the mean excitation energy of aluminium. Al-
though there are no experiments on aluminium vapor, it is
generally agreed that the calculated values for single
atoms should represent the vapor state in lieu of experi-
mental measurements, and that the appropriate mean ex-
citation energy should be approximately 124 eV. This is
in excellent agreement with the results found here. For
the solid, we are very close to the generally accepted mean
excitation energy of 166 eV. It should be noted that at-
tempts to fine tune this procedure are probably not
worthwhile, due to the inherent uncertainty of the experi-
mental data (1—4%), the correctness of the Barkas term,
and the imprecision of the comparison of experimental
points with the theoretical curves.

The CP-derived stopping curves for argon at several

TABLE II ~ Proton stopping cross sections for aluminium, S(v), derived from theoretical (Ref. 11)
and experimental (Ref. 25) Compton profiles.

Mean excitation
energy (eV)

Projectile
velocity (a.u. )

S(v) (10 ' eVcm /atom)
From theoretical From experimental

J(q) vapor J (q) solid

123.6 5
10
15
20

9.873
4.224
2.397
1.565

9.996
4.726
2.552
1.585

143.0 5

10
15
20

9.173
4.061
2.322
1.520

9.281
4.508
2.463
1.540

163.0 5

10
15
20

8.542
3.914
2.253
1.480

8.638
4.311
2.383
1.499
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TABLE III. Values of the mean excitation energy, I, for
aluminium.

E
O

OJ

E lP-
CJ

EQ
Ifl

O

5

CO

10 20
L

30 40
V (Q.U. )

FIG. 2. Stopping cross sections for Al vapor. Values from
the GOS (Ref. 27) calculation (0) are compared to values ob-
tained from theoretical atomic Compton profiles (Ref. 21) ()
and from the kinetic theory (Ref. 7) (solid curve). I=123.6 eV.

I (eV)

121.0
122.8, 118.3

123.7
124

132.0
142.2

145—150

163
166

167

Ref.

31
27
28
32
31
27

33

34, 14
32

calculation
calculation
calculation
recommended gas value
calculation
calculated value
at E~=10 MeV
calculated value
for solid
fit to solid data
recommended value
for solid Al
experimenta. l value
for solid Al

values of I are presented in Fig. 4 along with some
Barkas-corrected experimental points. There is
some spread in the experimental data. It appears that the
Brolley and Ribe data is most consistent with I=154
eV, while the Andersen and Ziegler data agrees better
with I=175 eV. This is on the lower edge of the general-
ly accepted range for I of 174 to 194 eV (Refs.
2,32,39—41) but is still in reasonable agreement. A simi-
lar situation is presented for helium in Fig. 5. Here CP-
derived stopping curves for several I's are compared to
Barkas-corrected experimental points. ' ' ' The
scatter of the data here is greater than for Ar, but again
the data suggest a mean excitation energy in the range
42—62 eV, in reasonable agreement with accepted
values ' ' ' (-42 eV). There are some problems at
lower energies (v & 7 a.u. or Ez & 1.2 MeV) where the ex-
perimental points seem to deviate upwards from the cal-
culated curves.

Similar studies were carried on the molecular gases N2
and CH4, using experimental isotropic Compton-profile
data. In Fig. 6 we present the CP-derived curves for Nz
along with several Barkas-corrected experimental stop-
ping measurements. ' ' The shapes of the curves
are in good agreement with experimental measurements
and the data agree very well with the I=65-eV curve.
This is, however, about 20 eV lower than the commonly
accepted value ' ' ' of about 82 eV for N2.

The analogous data for CH4 is presented in Fig. 7. The
experimental isotropic CP (Ref. 46) is again used to pro-
duce calculated curves at several values of I, which are
compared to experimental measurements. ' ' As in the
case of N2, the shape of the calculated curves is good, and
the I=31-eV curve agrees almost perfectly with the ex-
perimental data. Again, however, we find an I which is
too low compared to the commonly accepted value for
CH4 of about 41 eV.

8-
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IP l5
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FIG. 3. Measured stopping cross sections for solid Al (Ref.
29) with Barkas corrections subtracted (~ ) and calculated from
experimental isotropic Compton profiles (Ref. 25) using various
values of I.

FIG. 4. Experimental stopping cross sections for Ar from
Swint et al. (0), Brolley and Ribe (Q), Andersen and Ziegler
(~ ), ' and Baumgart et a1. (~), with Barkas corrections sub-
tracted, and calculated from the experimental Compton profile
using various values of I.
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tion of an experimental I, naturally arise in the kinetic
theory ' and need not be explicitly considered, but it is
important to take account of the Barkas correction. This
is particularly important at lower energies, and for heavier
nuclei. .

When the kinetic theory is used in conjunction with ex-
perimental measurements, it can be used to help explain
the origin of certain sample phase changes in the stopping
power. It is clear from our results that changes in the
scatterer velocity distribution cannot be responsible for
large changes in $(U); only changes in I can affect them
significantly.

Although the relationship between Jo(q) and S(U) can
be exploited to determine a value for I, the scheme does
not lend itself to fine tuning (adjustment of I on the order
of eVs) due to the scatter of experimental data and prob-

lems in comparison of calculated curves to experimental
data. The calculations do show, however, that values of I
may be obtained from measurable Compton profiles with
accuracy of 10% and that this can be done utilizing the
convenient 0.5—6-MeV proton energy range rather than
higher energies with their attendant accuracy problems.
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