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Statistics and dimension of chaos in differential delay systems
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The chaotic solution of dissipative scalar-delay-differential equations with a nonlinear feedback
periodic with respect to its argument is shown to behave as a Gaussian-Markovian process in a large
time scale. The short time scale is shown to be defined by the correlation time of the delayed feed-
back. The dimension of the chaotic attractor is shown to be approximately equal to the number of
short times that are contained inside the delay.

I. INTRODUCTION

Systems driven by delayed nonlinear feedback occur in
various domains: optics, economy, species competition,
biology, etc. Here we will consider scalar dissipative sys-
tems that obey an equation of the form

dx
dt

+x =kf(x(t rid )), —

where kf is the nonlinear delayed feedback with delay
time re and strength k. In Eq. (1) the time is scaled to
the decay time of the system. Such equations describe
infinite-dimensional systems in the phase space in the
sense that the initial conditions must be specified on the
whole interval (0,&It ),

The chaotic regime of these deterministic systems has
been studied by Farmer in the case of the model of blood
production due to Mackey and Glass and by Le Berre
et al. in a ring cavity optical system. , These investiga-
tions were performed by using the ergodic parameters, i.e.,
Lyapunov exponents, entropy, and fractal dimension. It
has been found that the dimension of the attractors is fi-
nite and increases linearly with the delay. ' Nevertheless,
the temporal behavior of the solution is reminiscent of
random noise, which suggested to us to use the tools of
the classical theory of random signals to study this deter-
ministic chaos.

The time scales which characterize the dynamics of
x (t) can indeed be deduced from the correlation functions
of both x (t) and f(x (t)). Intuitively the number of times
the smallest characteristic time is contained in the delay

corresponds to the "effective" number of degrees of
freedom, which gives an estimate of the dimension of the
attractor. We show in this paper that this conjecture is
verified in a case of periodic feedback. Therefore it seems
possible to link the deterministic approach with the sta-
tistical one via the attractor dimension.

The chaotic solutions of Eq. (1) are investigated for
large k with two periodic feedbacks; one was chosen for
pedagogical reasons and the other corresponds to an opti-
cal device. In both cases the solution was shown to
display a Gaussian character for large k, and we believe
that this property should be generic for any chaotic solu-
tions of Eq. (1) with periodic feedback, and even with
functions f (x) oscillating over a wide range in x.

For large k, the feedback kf(x(t)) oscillates so fast
that it behaves as a driving random force. Then on a time
scale larger than the oscillation time of f(x(t)), x(t)
displays a Gaussian-Markovian behavior as if it were a
solution of a Langevin equation. This result was already
derived by Ikeda and Akirnoto from numerical computa-
tions in the case of the optical device. The order of mag-
nitude of this oscillation time, 5, corresponds to the corre-
lation time of f(x(t)) and characterizes the memory of
the driving force. It is shown to be proportional to k
and is the smallest time scale in the system. Of course,
this characteristic time appears in the temporal evolution
of x (t) which exhibits small oscillations of mean duration
6. Surprisingly it does not appear in- the correlation func-
tion I „(t)of x (t). This function I „exhibits two regimes:
It is quadratic near the origin on a time scale t, =k
and further decays exponentially as e ~

' ~. This exponen-
tial decay for t &t, is the signature of a Markovian pro-
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f(x) = 1 —R sin(x), (2b)

where R is a parameter. In this case x(t) is proportional
to the transmitted intensity through the optical hybrid de-
vice in which chaos was observed for the first time in op-
tical bistability systems. Analytical calculations are more
easily performed with the sine function. Moreover, the
latter function is differentiable allowing one to compute
the Lyapunov exponents by standard methods. An esti-
mate of the dimension d of the attractor of the chaotic
motion may be obtained from the Lyapunov exponents
spectrum

J
d =j+ gA, ;(

~ AJ+i ~
)

i=1
(3)

where j is the largest integer for which A, i+ +AJ &0.
%'e have chosen to work with the Lyapunov dimension

because with the other methods already used to calculate
fractals dimensions, the computation time becomes prohi-
bitive for high dimensions. Moreover, d is approximate-
ly of the order of twice the number of positive or zero
Lyapunov exponents; this number is obviously an impor-
tant characteristic of a chaotic solution. This number can
be obtained easily and accurately even if the convergence
of the Lyapunov exponents is difficult to reach.

Using the sine function, d is found to have a double in-
terpretation. It is first approximately equal to the number
of times the fluctuation time 5, exhibited by the statistical
study, is contained in the delay. Another formulation is
also given: d is shown to be proportional to the variance
of x (r), or else to the energy of the fluctuations during a
time delay. This result could be more accessible from an
experimental point of view.

Let us make a last remark. The adiabatic approxima-
tion of Eq. (1),

x„=f(x„ i), (4)

which is often considered valid for large r~, ' will be
shown to obey very different probability distributions.
Therefore the processes described by the differential equa-

cess. The time scale t, corresponds to the mean duration
of large fluctuations of x(t). Therefore the correlation
function of x (t} alone gives rise to an incomplete descrip-
tion of the system and is sensitive to the large fluctuations
of the temporal evolution only.

Another important result is the disappearance of the
correlation of x (t) with x (r+rR ) in the limit of large k.
For smaller k, when the process is no longer Gaussian on
any time scale, the coupling between x (t} and x(t+rii )

appears in I „(t) via successive bumps located at
+R ~ 2+8 ~

All these results are derived analytically and supported
by numerical simulations for the two following delayed
feedbacks. The first one (A) is

I

f (x)=Dec(x), (2a)

where Dec means the decimal part of x. This function is
appropriate to illustrate the properties of the chaotic solu-
tions which lead to a Gaussian probability distribution for
large k. The second case (B) is

In this section we focus on the one-dimensional variable
x(t) which will be considered as a sample of an ergodic
process. It is assumed that for'any differentiable function
x, the time average (x ) =lim[(1/T) I dr X(t)] con-

0
verges. Then it defines a probability measure invariant
under time evolution and ergodic, which will be used to
study the probability distribution of the variable x. Let us
notice that any average for deterministic chaos is defined
by the specific dynamic of the system itself, in contrast to
random signals where chaos is created by an external
noise.

In the first part of this section we consider the non-
linear function f(x)=Dec(x), because it evolves with
discontinuities; for lar'ge k the function f(x(t)) jumps
very often and practically loses its memory at each
jump. This memory loss is the key of the dynamical
behavior of x(t), and allows a statistical investigation.
We obtain qualitative expressions for all the quantities
which are required to characterize the statistical proper-
ties of the chaotic solution {variance, memory time of
Dec[x(t)], . . . , ). In Sec. IIB the dynamic behavior of
x(t) is analyzed when driven by a sine function. The
properties which make possible the loss of memory are
displayed. Finally, in Sec. IIC the probability distribu-
tions of the difference equations are investigated for the
two cases of functions A and B.

A. Statistics of x for the Dec function

The time-independent solutions of Eqs. 1—4 with the
Dec function are x, =n/(k —1), where n is an integer.
They lose their linear stability when k & 1 and

r~ ——(k —1) '~ arccos(1/k)

so, for k larger than a few units, the condition

rR »m/2k

(5)

ensures that the solution exhibits a fully developed chaos
and will be supposed to be always realized.

For t much larger than 1 and rii, the solution of Eq. (1)
can be written as

t+w~
y (t+rz ) = I du e "Dec[ky(t —u)] . (7)

We would like to justify the large-rz behavior of solu-
tions of Eq. (7): as the delay rii increases and if k is
large enough, the solution of Eq. (7) tends to a well-
defined random function with properties independent of

tion and by the difference equation [Eq. (4)], not only
differ by the nature of the instabilities, the number of di-
mension, as already pointed out, but also by their statisti-
cal properties.

The paper begins with the study of the probability dis-
tributions in the chaotic regime for both functions A and
B (Sec. II). In this section are also calculated the proba-
bility distributions for the difference equation solutions.
The behavior of the correlation functions of x(t) and
f(x(t)) are studied in Sec. III. Finally, the dependence of
the dimension upon the parameters is described in Sec. IV.

II. PROBABILITY DISTRIBUTION
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for generic initial data. Putting any function y into
the argument of the nonlinear integral transform on the
right-hand side of Eq. (7), one gets a new function y:

LL

y(t)= J du e "f(ky(t —u)) . (7')

y(r+&R)= g e "Y„(r)
n=0

with

Y„(t)= I du Dec[ky(t —u)] .
'n

Assuming the independence of the Y„and equality of
the 5„(hypothesis Hl), a slight modification of the proof
of the central-limit theorem" shows that for large k the
process is Gaussian. This modification is required be-
cause the contributions in Eq. (6) are weighted by the ex-
ponential and do not have the same variance. It is
presented in Appendix A where it is also shown that both
5 and o~, the variance of y (-t), are proportional to k

cry =a/k (10)

Equation (7) imposes that y(t) and y(t +rz) are the same
function y, i.e., that they take the same value at the same
time t. But as v.z increases, this condition relates practi-
cally values of y(t) at more and more distant times. Ac-
cordingly, if y(t) has a random behavior, this constraint
that y(t) and y(t) represent exactly the same function at
different times becomes less and less stringent because
there is less and less correlation between values of y at
more and more distant times. There is also a less detailed
condition imposed by Eq. (7), and Eq. (7'), i.e., that y and

y represents the same stationary random process: in other
terms, any correlation function computed with y and y
should be the same, which may be mathematically
translated as a condition that Eq. (7') should define a
fixed point in the space of stationary random functions.
It is conceivable, however, that this fixed point Ls not
unique, depending (among other things) on the initial
data. %'e hope to come back to this point in future publi-
cations.

For k ~ ao, the functional map y(t) ~Dec[ky (t)]
transforms a smooth positive function into a function
with very fast variations between 0 and 1: the succession
of "sawteeth" in Fig. (lb) illustrates this behavior of
Dec[ ky (t)] and the dashed area in Fig. (lc) of the
sawteeth weighted by e " represents y (t +rz ). Because
of these fast and steep oscillations the values of
Dec[ky(t)] are correlated almost only on a time interval
of the order of the time required for y (t) to change by an
amount =1/k. The mean value 6 of this correlation time
can be estimated =2/k since the area of the first
sawtooth contributes to y (t) by an amount 5/2 that corre-
sponds also to the difference [y (t) y(t —5)].—More pre-
cisely let the time domain be divided in intervals
5„=[t„,t„+L] corresponding to the widths of the
sawteeth. For large k, 6„are much smaller than unity
and Eq. (7) can be written as a sum of a large number of
almost independent contributions

(b)

Dorky(t) j

0 t
e u Dec Lky(t-u)j

i' a'u, ")-RsLn ky(t-u)]i'

FIG. 1. The integral solution of Eq.(1) can be understood
with this diagram. (a)—(c) illustrate Eq. (7). In (a) y(t) is drawn
with increments equal to 1/k. (b) shows the corresponding evo-
lution of Dec[ky(ti] which jumps from 1 to 0 at times t; de-
fined in (a). Finally, the integrand in Eq. (7) is the function
drawn in (c), so the dashed area is equal to y(t+~z). With
similar arguments„ the dashed area in (d) represents y(t+~&)
defined by Eq. (17).

0.042 1

k 2k
(12)

5=P/k .

The magnitude of a and p are obtained via integrals in-
volving the correlation function and the probability distri-
bution of Dec(ky). If these functions are supposed to be
constant, respectively, on (0,5) and (0, 1) (hypotheses H2
and H3), we obtain a,L,

-0.07 and p,L, =1.7. Equation (11)
thus confirms the heuristic argument given above to esti-
mate 5.

These conclusions are checked by numerical simula-
tions. In Figs. 2, the probability distribution of y evolves
from non-Gaussian shapes for small value of k [Figs. 2(a)
and 2(b)] to a Gaussian for k) 5 [Figs. 2(c) and 2(d)].
The quantity R o~, variance of the process x(t)=ky(t),
is plotted in Fig. 3 as a function of k. For 5(k &20, 0-„
is found to follow the relation
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P(x) "

T 'f
/ ~ ~
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P(x)
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Let us now predict the values of k for which the proba-
bility distribution is Gaussian. The solution y(t) is a sum
of an infinite number of contributions e Y„but only a
finite number ri,~~ of them contribute to the sum in Eq.
(g) because of the exponential. The sum can be truncated
at n,,~~ such that

t„=6n,g =3, (14)

P(x) ' P(x) " corresponding to e =0.05. Taking into account Eq.
(13), one can consider y (t) as a sum of

n,tt=5k (15)

0.6 O.Q

FIG. 2. ProbabiIity distributions for the soIution y of Eq. (7},
with (a) k=2, ~z ——10; (b) k=3, ~& ——10; (c) k =5y ~g 10 (d)
k =10, ~g ——1.

(5)„„~0.6/k . (13)

The numerical results in Figs. 3 and 4 confirm the predic-
tion that the variance [Eq. (10)] and the decay time [Eq.
(11)] are proportional to 1/k. The numerical coefficients
a and P are both noticeably smaller than the predicted
ones. %'e attribute this discrepancy to the roughness of
hypotheses Hl and H2: Fig. 4(b) shows that I &(u) is not
constant for 0 &u &5. Hypothesis H3 is more realistic:
for the k) 5, the probability distribution of Dec(ky) is
rather uniform between 0 and 1.

60—

with the limit a/k for large k with a=0.042, in agree-
ment with Eq. (10). In Fig. 4(a) the inverse width of the
correlation function I /(u) =(Dec[ky(u)]Dec[ky(0)]) is
plotted, as a function of k. The numerical width 5 [de-
fined as I /(5) = 1/e], tends asymptotically to

independent contributions. The resulting probability dis-
tribution is known to be the Student law with (n, tt 1)—
degrees of freedom. For n,tt=25 or k) 5, the Student
distribution is very close to a Gaussian. This is in agree-
ment with the distributions shown in Figs. 2, where y(t)
is Gaussian for

k«5. (16)

What happens for smaller values of k? The characteristic
function of y, q&~(u), defined in Appendix A [Eq. (Al)],
contains first a quadratic term —,

'
U o~, and a corrective

term of order 5U cr~ (cf. Appendix A), which affects the
Gaussian function y~(U) for large values of the argument
U. Then the Fourier transform of y„(U), which is the
probability distribution for y, will be disturbed in the
center of the Gaussian when k decreases from 5, as shown
in Figs. 2(a) and 2(b).

In conclusion, the time evolution of y(t) [the solution
of Eq. (7)] is well understood in the light of the expansion
in Eqs. (8) and (9), illustrated by Fig 1(e), which displays
naturally the Gaussian character of the process. It fol-
lows that any differential equation of type (1) with a
periodic (or simply oscillating) feedback f(x) would also
have a Gaussian solution for large k. This conjecture will
be verified with the smooth sine-function feedback [Eq.
(2b)] in Sec. IIB. On the contrary, it will be proved in
Sec. II C that the statistics of the difference equation solu-
tions associated with both Dec and sine functions do not
exhibit any Gaussian character. Therefore, the combina-
tion of the differential term and the oscillating properties
of f (ky) for large k seems to be required for delayed sca-
lar systems in order to have Gaussian solutions.

40—
B. Sine function

Let us consider the solution of Eq. (1) with the sine
function (B):

20-
'+ ~

y (t +rR ) = I du e "I 1 —R sin[ky(t —u)] J, (17)

I

20 40
I

60
l

80

where y(t) is related to x (t) in Eq. (11) by the scaling
y =x/k. The condition for y(t) to be in the fully
developed chaotic regime is derived in Appendix C. For
k much larger than 2~, it is

FIG. 3. Variance of X=kF as a function of the parameters:
curve a, k o~ with respect to k for the Dec function; (b) k oy
with respect to kR for the sine-function feedback. The three
distinct notations correspond to R =0.95 (plus), R =0.667
(cross), and R =0.4 (dot).

~z ««m /4kB .

In this chaotic regime sin(ky) oscillates much more quick-
ly than y for large k as in the case of the Dec function.
Then the previous analysis may be transposed to the sine
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inly (t)
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0
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I
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80

0
I I I i I I I I

0.05 0.1

FIG. 4. Correlation time of the feedback (Dec function). The correlation function in (b) is exponentially decreasing, with a charac-
teristic decay time 6. 5 ' is reported in (a) with respect to k.

function as shown in Fig. 1(c). When y(t) increases until
y(t)+2m/k, the function 1 —R sin[ky(t)] oscillates once
between 1 —R and 1+R. It loses its memory on a time
scale 5 which is here the time interval for such an oscilla-
tion. With the same hypotheses as H2 and H3 above, 5 is
found to be proportional to 1/kR. For this coarse estima-
tion, the constant of proportionality is =2~V 2 (Appendix
A). This qualitative analysis shows that the solution of
Eq. (1) with the sine function tends also to be Gaussian for
large k. This is confirmed by numerical simulations, as
shown in Fig 5. A precise description of the statistical
properties of y(t) for function B will be investigated in
the next section.

C. Difference equation solutions distributions

y j~ = 1+R [f'(y i—) =0]. Assuming that the iterates of the
critical points are not asymptotically periodic, P '(y) can
be derived by iteration of Eq. (18). It is supposed that
P (z;) is sufficiently smooth so that g(, )P (z;)=1/m,
and one gets

Pf(y)= 1—
2 —1/2

y —1 1

R mR
(21)

In the vicinity of yi+—, Pi =ai(y —y&+) 'i which is in-

tegrable, and induces two new singularities at y2 f(y i )——
of amplitude az. It can be shown that the amplitudes aJ.

of the successive iterates of y &
fall off roughly at the rate

exp( —jA, /2) where I, is the Lyapunov exponent of the

We now derive the probability distributions for the
solution I y„ I of the difference equations relative to func-
tions (A) and (8) [Eqs. 2(a) and 2(b)]. Let P(y) be
the probability distribution of Iy„j. The mapping
y„+i=f(y„) implies the same probability distribution of
the set Iy„+&] and therefore the self-consistent relation"

P(x) P(x) "

P(y)= g, P(z;) .1

(z; =f '(y) J

(18)
2 4 6 8 10

For function A, f'=k, Eq. (18) leads to the constant den-

sity

P(x) P(x)

P "(y)= 1 for 0 (y ( I, (19)

P (y)=—1
R

y —1

R
$z, =f i(y) J

(20)

This function has two critical points

in agreement with Fig 6(a) obtained from 4)&10 itera-
tions of the difference equation with function A, listed in
100 bins.

For function B, the relation (18) becomes
2 —1/2 X

20 30 40 50 80 100 120

FIG. 5. Probability distributions for the solution X of Eq. (1)
with sine feedback, R =

3 . (a) k =5, « ——10; (b)

k = 10, « ——10; (c) k =36, « =3; (d) k = 100, « ——5.
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r '(„) ' (o)

0
I I I I I & I

50
I I I

&00

0 10 20 30

FIG. 6. Probability distribution for the solutions Ix„I of Eq. (4). (a) With Dec function, k=41V 3. The distribution is obtained

from 4)&10 iterations and 10 bins. (b) For the sine function, k =20, R =—,, the distribution results from 6X10 iterations and

resolving the result into 400 bins.

map, as it was already shown in the case of the logistic
map. '

At a coarse level of resolution, the distribution behaves
like a U curve, P(y)=[1—(y —1) /R ] ', with few
secondary peaks. This is confirmed by the simulations in
Fig. 6(b} obtained from 6X 10 iterations and resolving the
result into 400 bins (see Ref. 12 for a discussion about the
continuity of the asymptotic density). In conclusion, the
probability distribution of the f x„J, successive iterates of
the difference equation Eq. (4), is radically different from
the distribution of x, solution of Eq. (1), in both the func-
tion A and B cases.

III. CORRELATION FUNCTIONS
AND TWO-DIMENSIONAL STATISTICS

A. Gaussian process on time scale much larger than 5

Let us first examine the statistics of the increments

by(8}=y(t+rtt ) y(t+vz —8)— (22)

The probability distribution for the sine case was shown
to behave as a Gaussian for large k. By using the expan-
sion of Eq. (8), the increment y (ti ) —y(t2) is shown to be
Gaussian only for ti —t2 »5. Therefore one can define
large time scales, i.e., large compared to 5, and small time
scales. The behavior of the correlation function for large
time scales is studied in Sec. III A in the sine case. Some
information can be obtained on the, short-time dynamics
because the deterministic nature of the chaotic solution al-
lows us to derive the MacLaurin expansion of the correla-
tion functions of both x(t) and f(x(t)). Two "short"
time scales are thus displayed, which correspond to small
and large fluctuation times in the dynamical behavior of
y(t) (Sec. III 8). Finally, the correlation of y(t) and
y(t+~~) is investigated in Sec. III C and compared with
the correlation of the difference equation solutions.

fourth-order correlation function ([y(t|)]"[y(t2)] ) for
the sine case by Ikeda and Akimoto. Therefore, on a
time scale larger than 255, the process y(t) will be com-
pletely described by the first-order correlation function

I y(8) = (y(t)y(t+ 8)), (23)

From Eq. (17) we have

o~yCy(8)= J I e " "Iy(u' —u' —8)du du' (25)

with

r~(u) =R I (sin[ky(0)]sin[ky(u)]) —(sin(ky) ) J . (26)

It will be shown that the above correlation functions are
independent of the delay ~k for large k.

For a Ciaussian process with variance o.„all the mean
values can be derived (see Appendix C). We obtain suc-
cessively

which will now be investigated.
In this section, we shall mostly be concerned with the

sine feedback (B) for which analytical calculations
are tractable. Qualitative relations were given in Sec.
II for cr~ and 5. A more precise analysis would re-
quire the knowledge of the correlation functions

(f(y(t|))f(y(t2)) ), which have been mughly described in
Sec. II. The difficulty in such deterministic chaos is that
an investigation of orie-time statistics requires the
knowledge of the two-time statistics. In principle the
problem could be completely solved if y(t) were a Gauss-
ian process. In the present case y(t) is not Gaussian on
the short time scale 5 that complicates the problem great-
ly. This difficulty can, however, be overcome. We first
derive the autocorrelation of y(t) for 8 smaller than rjt.
Let us define the scaled correlation

(24)

when y(t) is Gaussian. We show in Appendix B that
by(8) is not Gaussian for 8 of order 5, but tends to be
Gaussian for large 8, i.e., 0) 256. This result was already
derived from numerical computations of the second- and

(y ) =1—R (sin(ky) ),
or equivalently

k 2o.2/2
(y) =1—Re ~ sin(k(y)) —+I as k &&1,

(27)

(28)
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and (o«),h ——0.67R/k . (32)

k2(y2( {g)If(II)=(R'/2)e '[(e ' ' " —1

I f(u)=g5(u),
where 5(x) is the Dirac distribution, Eq. (25) becomes

o C (8)=(11/2)e

(30)

(31)

and exhibits the Gaussian Markovian character of the
process for 5«8&7 g and for large kR. Figure 7 exhib-
its the (numerical) curves of I «(8) both for Gaussian and
non-Gaussian cases. The exponential behavior appears
clearly for 8) 1, i.e., the dissipation time.

To go further we need the value of the variance. How-
ever, the exact derivation of o« is very difficult, because it
implies knowledge of Cf(u) on a range of order 5. We
propose three ways to bypass this difficulty. They antici-
pate results which wiH be obtained further and are given

, in Appendix C.
The first method uses the expansion of I f(u) valid for

small u, and it leads to

c„(t)!

0.5—

—cos(2k(y))(e « ' —1)] .

(29)

Equation (29) is either valid for u =0 [one-dimensional
(1D) variable], or u )255.

Equation (29) shows that sin(ky) has a correlation time
much smaller than y, as expected from the qualitative
analysis of Sec. II. If I f(u) is approximated by

The two other methods start from Eq. (29) with two dis-
tinct expressions for C«(8). They give, respectively,
o« ——0.7R/k and o« =0.9R/k.

The numerical variance is shown in Fig. 3(b). It is
found to obey the follomI'ng law

(o«)„„=0.5R /k+ 3/k (33)

B. Short time scales

The MacLaurin expansion of the even function C«(8) is

C«(8):1+C«' (0)8 /2+C«(0)8 /4!+ (34)

The (n+m)th-order derivation of 1«(8)=o«C«(8) [Eq.
(23)] may be expressed in terms of the cross-correlation of
the nth and mth-order derivatives of y (t),

dn+m
I;(8)= &y("}(r)y™(r+8)& .

Therefore C« '(0) appears in the auto correlation of the
expression

in the whole range of Gaussian statistics. In Fig. 3(b), the
variance of x =ky is plotted as a function of kR for
5 & k & 100 and three values of R.

In conclusion, the numerical results confirm the quali-
tative predictions in Eq. (10). Moreover, they agree with
the theoretical variance in Eq. (32) with a discrepancy of
30%. A discussion on the different methods used to cal-
culate oz is given in Appendix C. The above derivation is
a typical example of the interconnection of 1D and 2D
statistics in problem of deterministic chaos, since to calcu-
late the variance, the expansion of I «(u) is needed.
Nevertheless, for clarity this derivation has been given in
Sec. III C.

0
I I I I I I I I ~ ~~ I

5 10 l5

[y(t) —1]+ y(t)= —R sin[ky(t —r~)],
dt

which gives

o«[C«(0) —C« '(0)]=R (sin (ky)) .

(36)

(37)

0.5—

0 2 4

The right-hand side of Eq. (37) is I f(0), which was de-
rived in Eq. (29). For large k, I f(0)~R /2. Therefore
C«' '(0)~ —R /2o«and

C«(8)=1 (R /2cr«)8 /2 near 8—=0. (38)

Equation (38) shows that for small 8, C«(8) is a quadratic
function of 0, evolving with a characteristic time

r, =2o«/R =(2/kR)'i (39)

0.5—

0
r e ! ! I I I I I I I I 7 I I

10 15

FICr. 7. Normalized correlation function of y(ti [Eq. (24}]
for the sine feedback A = 3. (a) k=10, ~~ ——10; (b) k=20,
~g ——5; (c) k=36, rg ——3.

The range of 0 for such a behavior can be estimated to be
of order t, /2 which corresponds to C«(8) having de-
creased from 1 to 0.75.

The calculated correlation functions C«(8) are shown in
Fig. 7 for R = —, and k=10,20, 36. For the last two
values, the process is Gaussian and a quadratic behavior
of C«(8) is predicted for 8&0.2 and 0.15, respectively.
This is in agreement with Figs. 7(b) and 7(c). Let us no-
tice that in the case of Fig. 7(a), even if the process is not
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Gaussian, this quadratic behavior is observed for times
t&t, [Eq. (39)].

In Sec. II A, we have analyzed the process y (t) in terms
of the three time scales 5, l, rz. While the present analysis
of Cy(8) does not display the short time 5, it exhibits a
new time t„proportional to k ' . Note that t, is larger
than 5 [Eq. (11)]. A glance at the temporal evolution of
y(t) can help to understand this result: the solution of
y(t) evolves with very small fluctuations on a short time
scale, superimposed' to larger fluctuations which are on a
time scale t, . The fastest fluctuations have so small an
amplitude that they have no signature on Cy(8). We shall
see in Sec. IV that, in fact they have a fundamental role in
the dynamical definition of the deterministic chaos.

A more precise estimation of 5 may be obtained by the
expansion of I f(8) in the vicinity of 8=0. I f(8) appears
in the autocorrelation of boths sides of Eq. (36),

rf(e) =o,'[c,(8)—C,"'(e)] . (40)

A MacLaurin expansion of C„(8) and C' '(8) near 8=()
gives

0.5-

rF(t)

0.5-

[„(t)()

0.5-

0

rF(t) ((

0.5-

0.2 0.4
f I I

t
0.6 0.8

I I I I I 4 I

t

o I f(8)= [1—C„' '(0)]
—[c"'(o)—c"'(o)]e'/2
—[c„"'(o)—c,"'(o)]e'/4!+ ~ ~ ~ (40')

I I I

t

FIG. 8. Normalized correlation function If(u)/lf(()) [Eq.
(26)] for the sine feedback, R = 3. (a) k=6, rz ——8.7, (b)

k =36, ~~ ——5; (c) k =60, ~~ ——5; (d) k = 100, ~~ ——5.

I'f(8) 2
=1—2

2
kR0 1 kRO

2 +3 2

4

(41)

In Eq. (41) the memory time is 2/kR; it is nothing but the
time width of an oscillation of sin[ky(t)],

The derivatives C» (0) are calculated by successive
derivations of Eq. (36) (see Appendix D). In the limit of
large k, Eq. (40) becomes

back, the correlation I/ must exhibit a quadratic (or
quartic, etc.) expansion near the origin [Eq. (41)]. In the
case of the nondifferentiable feedback function A, the
correlation behaves as e ! '!~s which is not differentiable
at the origin: see Fig. 4(b), and compare with Fig. 8.

Let us now investigate the long-time-scale correlations.

C. Correlation at ~g
5=2/kR, (42)

kR) 15 . (43)

This relation is indeed equivalent to the condition
3/5&25 stated in Sec. Il. It agrees with the probability
distribution shown in Figs. 5(c) and 5(d) and with other
simulations obtained with R =0.4 and 0.95 that are not
presented here.

Secondly, the expansion of If(8) near u =0 used in
Appendix C to estimate the variance leads to a law of
variation [Eq. (32)] of o.

y with kR which agrees rather
well with the numerical law [Eq. (33)].

Third, the width of If(u) also agrees with the simula-
tion. In Fig 8, the correlation functions I f(u) are shown
for k increasing from 6 to 100. The curves are bell-
shaped near u =0, with a half-width defined at
I f(u) = 1 /e of order 2/kR in agreement with Eq. (42).
Let us point out that for any similar differentiable feed-

which was introduced to display the Gaussian character
of y(t) (see Fig. 1). Let us now discuss different conse-
quences of Eqs. (41) and (42).

First, the value of 5 in Eq. (42) allows us to predict that
y(t) is Gaussian for

The behavior of the correlation function for y(t) has
been described for small 8 and also for 5 «8 «rz. after
a short quadratic decrease on a time scale of order
t„C„(8)decays exponentially as e ! !. %%at happens
for 8= hatt'? The quantity Cy(~z ) is derived from
y(t +rz ) defined in Eq. (17),

o»C»(rz)= —R J du e "(y(t)sin[ky(t —u)]) . (44)

The integrand in Eq. (44) can be calculated from the 2D
characteristic function [Eq. (C4) in Appendix C]

( y (t)eiky(t —u) )

i ( exp[i—uy(t)+iky(t —u)])
~ „

En the limit of large kR,
—k~o2/2 00

C»(r~ ) = Rke ' cos(k) f du—e -"C,(u) (46)

or

Cy(r~ ) = —(Rk/2)e ' cosk .

Tins expression shows that the correlation between y (t)
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and y (t+rz ) is independent of ~~ and vanishes for large
k. More precisely, for k =20, 8 = —,', it gives

C»(rz)= —0.01, in agreement with numerical results in
Figs. 7(b) and 7(c). This result is not. surprising if we re-
turn to our qualitative analysis in Sec. II, schematized in
Fig. 1(c) or Eq. (8): y(t) is in fact correlated with

jeff 2 kR individual oscillations of sin[ky(t —rz )]. As
kR increases, the correlation between y (t) and a particu-
lar F„decreases.

For kR smaller than 15, Eq. (47) is no longer valid;
however, it predicts secondary maxima, as observed nu-
merically. The heights of the first maximum are —0.3
and +0.2 for k = 5 and 10 (R = —,

'
), respectively, whereas

Eq. (47) predicts about half of these values, with the
correct sign [cf. Fig. 7(a)]. We can also derive
C»(2m~), C»(3&+), . . . . Successive maxima appear when
the process is no longer Gaussian ( kR & 15).

Let us also point out that the heights of the secondary
maxima of C»(n~~ ) have no relation with the correlation
of the successive iterates of the difference equation [Eq.
(4)]

y„=(1/~r». )((yIy„+; ) —(y; )') .

For example, in the case R =—', , k = 10, we obtain

y„=—0.25, —0. 14,+0.06, —0.02 (n =1,2, 3,4),
while Fig. 7(a) gives C»

(nrem

) = +0.2, +0.2, +0. 1,+0. 1,
( n = 1,2, 3,4). This result illustrates the fact that y (t) and

Iy„) have completely different memory processes; this is
true either for small values of kR ( 15, or for large kR.

In conclusion, the 20 statistical study has displayed the
rather complex temporal behavior of the solution of the
delay-differential equation. Four increasing time scales
have been found when kR ~&1 and rz ~~1,

5=1/a„=2/kR, t, =1/o„=[2/kR]'~, l, rg, (49)

which will be now investigated from a deterministic point
of view.

IV. DIMENSION OF THE CHAOS

It was recently shown that the dimension of the chaos
increases approximately linearly with the delay ~~,

the dimension and the effective response time of the sys-
tem, the fractal part of Eq. (3) will be discarded. There-
fore d will be the maximum number of characteristic ex-
ponents with a positive sum. As already pointed out in
the Introduction, it is practically equal to twice the num-
ber of positive exponents. The law of variation of d/rg is
plotted in Fig. 9 as a function of kR for different R. It
gives rise to the approximate relation

d /rg —0.4kR, (52)

which confirms quite well the conjecture [Eq. (51)].
The dimension can be also expressed in terms of the

normalized variance, o=cr„/'(x ) =o'»/(y ), as

d=k o ~g. (53)

This relation could be fortuitous, but it would be in-
teresting to investigate it further, because cr alt represents
the mean energy of the fluctuations of y(t) (in the sense
of signal theory) during a time v~. If such a relation be-
tween the dimension and the variance could be established
for any periodic feedback, it would be very useful for ex-
perimentalists.

V. PERSPECTIVES

In conclusion, the statistical study of dynamical system
which obeys a differenti'al equation, with a linear dissipa-
tive term and nonlinear periodic delayed force, has
displayed a rich temporal behavior with four increasing
time scales. It also leads to a physical interpretation of
the Lyapunov dimension.

It would be interesting to know how this character is
modified when the dissipation is no longer linear. For ex-
ample, what happens to the solution x(t) which obeys

dx +d V/dx =f(x ( t r~ ) ), —
dt

if V(x) is a double-well potential? Will the chaotic solu-
tions oscillate between two distincts mean values of x
such that

( d V/dx & = (f(x ) & ?

d =g'Tg (50)

in two particular cases of delay-differential equations. '

The same behavior is found in the case of Eq. (1) with the
sine feedback.

The constant y
' can be seen as the effective response

time of the. system so that the dimension would have the
simple interpretation of the effective number of degrees of
freedom within a ~~,- as conjectured in Ref. 4. This con-
jecture implies that y

' should be of the order of the
shortest oscillation time of the dynamics, i.e.,

20-

10-

I

30
I
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I

30
I

40
I

50
I

60 70 kR

d=v.g /5 . (51)

We have num. erically studied the dimension of the
chaotic attractor as a function of k and R and y

' has
been estimated with the help of the I.yapunov dimension.
Since we are concerned only with a connection between

FIG. 9. Lyapunov dimension d of the chaotic attractor [Eq.
(3)] for the sine-function feedback. The ratio d/rz 'is plotted
for the three values of R =0.95, 3, 0.4, (with their respective

notations being the plus, cross, and dot), as a function of the pa-
rameter kR.
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APPENDIX A

We present here a slight modification of the central-
limit theorem for a sum of an infinity of independent ran-
dom variables with decreasing variance.

Let us suppose first (hypothesis Hl), that the widths of
the intervals ( t„,t„+])defined in Eqs. (7) and (8) are con-
stant. In Eq, (8), e " will be then replaced by e
where 5 is the mean value of the intervals.

Let us introduce the characteristic function of

(Al)
I

Since the measure is ergodic, (y ) = ( Y„)= —,'. By taking
into account the independence of the Y„=Y„—(y), the
characteristic function becomes

q)~(v)= Q (exp(iu5e " Y„)) .
n=0

(A2)

Inq (v) = —g —w„( Y„)——w„( Y„)+I 2 —2 1 4 -4
n=0

with

(A3)

For v5 « 1, the expansion of each ( ) in powers of
m =v6e " leads to

( y'„) =
( j j du du'[Dec[ky(t —u)]Dec[ky(t —u')] —(y) )l .

n n
(A4)

This last value is (cf. Hl) of order

f J du du'(Dec[ky(0)]Dec[ky(u' —u)]) ——„'

5 5

(A5)

We suppose now (hypothesis H2) that the correlation
function of Dec ( ky) is constant over the whole interval 5
and vanishes for a time larger than 5, and (hypothesis H3)
that the probability distribution of Dec (ky) is uniform in
(0,1). It results that ([Dec(ky)] ) = dzz = —, , and one

0
gets

(A6)

Define

oy ——(5/2)( Y„)=5/24 .

Then Eq. (A3) becomes

in@ (u)= uo~5—+e " +u 5 gee " +. . .
n=0 0

(A8)

where y= —,'(( Y"„)/3—( Y„) ) may be calculated with
hypotheses H2 and H3. One gets y=3.4&(10 . Equa-
tion (A8) becomes

2 4
v

(p (u)= exp — (T~+ XO 25
2 ' 4

(A9)

and shows that y(t) behaves as a gaussian variable with
variance o.„for large k.

The width of the sawteeth may be evaluated by the fol-
lowing argument. For a small interval 5„ the increment
of y(t) is

y(t+5, ) —y(t)
5

=—5,y(t)+e ' e'Dec[ky(t re —u)]du . —
0

(A10)

For an increment equal to 1/k, one gets

k =([y(t+ ) —y((tt)] )=(() )(tt„+—, ) ——,((),)+(j j [Dec[ky(0)]Dec[ky(u' —u)]dud )) . u (Al 1)

(A12)

The last term in Eq. (Al 1) is equal to (5 )/3 (cf. Hl and
H2), and Eq. (Al 1) becomes

k '=(5')/3

When the increment is equal to 2'/k,
(2'/k) =(5 )o~y+(5 )R /2 (A15)

In the frame of hypotheses like H2 and H3 this leads to
or else

oy ——0.07/k . (A13)
(5 )„.„, ,p-(2+~2/kR) (A16)

For the map A, the width of an oscilla'tion in Fig. 1(c)
may be estimated with the same argument as above. For
large k, (y(t)) —&I, (sin(ky)) —k0, and (sin (ky))~ —, .
An increment of y (t) over a small interval 5, is

APPENDIX B

Let us consider an increment by(8) of the process y(t)
on a time interval 8=m5. From Eqs. (8) and (13) by(8)
can be written as

(A14)

y(t+5, ) —y(t) = 5, [y(t) 1]— —

R»n[ky(t r~ —u)]du-
5t

by(8)= g e 'Y; —g e J Y.
j=m

(B1)
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by(g)=pe 'I;+ g(e ' +" —e ')Y, .
J =m

(B2)

For small values of m, of the order of a few units, we
have

b,y(8)= ge '
Y~ —m6 g e J FJ,

j=m
(B3)

which reduces to the first sum for large k, or small 5.
by(0) is therefore Gaussian for 0=255, since m =25 con-
tributions are required as seen in Sec. II.

APPENDIX C

with F;, Yj defined in Eq. (9). With hypothesis Hl used
in Appendix A, Eq. (Bl) becomes

Let us point out that the expression of I f(u) in Eq. (29)
is valid either for u =0, or u &~6, i.e., on the far edges of
the function. This restriction is especially questionable
for carrying on the calculation of

oy =g/2= I I f(u)du . (C9)

We shall bypass this difficulty by using the three fol-
lowing methods, and comparing their results. The first
method uses the series expansion of I"f(u) valid for small
u [Eq. (41)]. The two other methods suppose that the
Gaussian statistics are valid all the time [Eq. (29)], and
approximate Cy(u) either by e ~"

~ or by 1 —(u/t, )

[Eqs. (31) and (38), respectively].
(a) When I f(u) is given by its expansion in Eq. (41),

with 0 & u & 6, we obtain

The fixed points of Eq. (36) are given by the implicit re-
lation y"—1 = —R sin(ky"). The linear stability
analysis of a small deviation by from y"

y =y"+by exp(A, t)

gives

kRg 1 kROg=R 1— +0 2 3 2

4R
3k

which leads to

4

(C10)

X+ 1 =f'(y") exp( —Xr~ ),
with

f'=df /dy

(Cl)

cos[f'(y") —1]' r"=1/i f'(y")
i

(C2)

The solution y" is stable for small ~z and loses its stabili-
ty at r~' such that Re A, =0 in Eq. (Cl), i.e.,

(oy)'=0. 67R/k . (Cl 1)

(b) For a Markov process with exponential correlation
[Eq. (31)], the constant rl can be calculated exactly. It in-
volves exponential integrals functions. However, we ob-
tain the same result if we approximate the exponentia1 by
Cy(0)=1 —

~
8~ because k oy &&1. Equations (29) and

(C9) lead to

For the sine map, the derivative f' depends on the station-
ary point y". For large k,

~

f'
~

is mostly of order
2kR /m. and the condition for chaos is

k2~2 grI=R f e ' d8
0

or else

(C12)

rtt ~&vr /4kR, or r~ &&5 . (C3) g=R(ko ) (C13)

o+ u )
—i(U+w) (y)

0' u
(C4)

From Eq. (C4) we have

(cos{k[y(t, )+y(t, )]) ) =Re[q r r (k, k)e"" y ], (C5)

Let us now consider the chaotic regime, with ~z of the
order of a few units, and kR ) 15. The correlation of the
driving force f[y (t)]=—R sin[ky(t)], may be calculated
with the help of the 2D characteristic function

Equations (31) and (C13) give

(oy) =R /(2k ), (C14)

or else Eq. (32).
(c) Let us still suppose that y (t) is Gaussian even on the

small time scale 5, and now approximate Cy(u) by its
value near u =0 [Eq. (38)). It gives

g=R f exp( —kRO/2) d8, (C15)

(cosIk[y(t[) —y(t2)]I ) =Re[// r (k, —k)] . (C6) where we can integrate from 0 to + oo because t, ~&5.
Therefore

py, r ——expI ——,'o.y[u +w +2uwCy(u)]I, (C8)

where Cy(u) is the normalized correlation of y defined in
Eq. (24). The correlation of f is therefore given by Eq.
(29).

Equations (C5) and (C6) lead to

RI f(u ) = [ip(k, —k) —cos(2k (y) )pr r (k, k)] . (C7)
1 2

In the Gaussian case, the 2D characteristic function in
Eq. (C4) is

g=&mR/k .

Equations (31) and (C16) give

(oy)'= "R/k .

(C16)

(C17)

The last two derivations in (b) and (c) give, respectively,

(o.
y

)"=0.7R /k,
(oy )'=0.9R /k, (C18)

The second method would have been better because
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C»(u) is correctly described in the whole range 8« t„
large enough to calculate 1l .As a matter of fact, these
two methods overestimate the factor a in Eq. (10). We
conclude that I f(u) is not correctly described by Eq. (29),
for u of order 6. This conclusion is confirmed by Fig 8:
neither Eq. (C12) nor Eq. (C15) take account of the oscil-
lating part of Cf (u) which reduces the area in the calcula-
tion of 11.

Finally, the best way to calculate the variance is to use
the expansion of I ~(u) for small u, which is in powers of
kRu/2, i.e., in powers of (o„u). This is an example of
the strong connection between 1D and 2D statistics. in this
problem.

APPENDIX D

&sin(2ky)) =sin(2k) exp( —2k 0») . (D7)

& y cos(2ky) ) = &y' 2/2 )

=&[R sin(kyR)+(y —1),] ) . (Dl())

We know that y(t) and y(t+~R ) are independent for
large k [Eq. (47)], and this gives

By successive derivations with respect to k, we obtain

&y cos(2ky)) =e [cos(2k) —2ko»sin(2k)], (D8)

which exponentially vanishes for large k. In the same
way &y "cos(mky) ) and &y "sin(mky) ) also vanish. There-
foI e

o»[1 —C» '(0)]~R /2

By derivation of Eq. (36), we obtain successively

yt+yt = RkyRc—os(kyR»

y, +y', =R (ky'R ) sin(kyR ) —Rky'Rcos(kyR ),
(Dl)

(D2)

where the indices t and R refer, respectively, to time t and
t —1g.

Taking into account Eq. (35), we can express the auto-
correlation of Eqs. (40), (Dl), and (D2) for 8=0; it gives

tT»[1 —C» '(0)]=R &sin (ky)), (D3)

o»[C» '(0)—C» '(0)]=(Rk) &y', cos (ky, )), (D4)

—tT [C' '(0) —C'"'(0)]

=R k &y RS111 (kyR ) )
—2(k R ) &y' R sin(kyR )cos( kyR ) )

R +~,',2

or else, with Eqs. (D4) and (D10),

o»[C»' '(0) —C» '(0)]~R k /4 .

Now

Rk Rk2[C(6)(0) C(4)(0)]
&

~ 4)
&

"2)2'+2
with

4

&y )~ +3CT»+3R 0»
8

2
&y') = &y'»+

(Dl 1)

(D12)

(D13)

(D15)

+R'k &y'Rcos (kyR)) .

From Appendix C we know that

&cos(2ky)) =cos(2k) exp( —2k o»),

(D5) Finally,

o»[C» '(0) —C»' '(0)]~——,
' k R

(D6) and Eqs. (D9), (D12), and (D16) lead to Eq. (41).

(D16)
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