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Saddle-point "trapping" of Rydberg electrons in crossed electric
and magnetic dc fields: A time-dependent approach

Charlotte Nessmann and William P. Reinhardt
Department of Chemistry/D5, University of Pennsylvania, Philadelphia, Pennsylvania 19104

%Received 2 June 1986; revised manuscript received 29 December 1986)

The possibility of a microscopic Penning trap [suggested by C. W. Clark, E. Korevaar, and M. G.
Littman, Phys. Rev. Lett. 54, 320 (1985)] formed by the magnetic-field-induced stabilization of
saddle-point motion of an atomic electron moving in the presence of combined internal Coulomb
and externally applied electric and magnetic potentials is investigated using time-dependent
methods. Photoeffect spectra are calculated as the Fourier transform of the dipole correlation func-
tion for propitiously chosen initial conditions, and these indeed show oscillations as predicted by
Clark et al. However, it is shown that maximal trapping occurs for the case in which only the
magnetic field is present (giving the usual Landau confined states for electrons with zero average
mechanical momenta) and that the Stark-Coulomb saddle point simply destabilizes this simpler
motion. Both the relationship of the calculated spectra to the propagation of wave packets in the
combined fields and their relationship to the periodic classical orbits "quantized" by Clark et al. are
discussed. The more difficult problem of predicting what might be observed in a photoeffect spec-
trum of an atomic ground state in the presence of crossed external fields is also discussed from the
time-dependent perspective.

I. INTRODUCTION

The effect of an external dc field on near-threshold
photoionization and photodetachment cross sections has
been a subject of intense interest since the early observa-
tions by Garton and Tomkins of magnetic-field-induced
oscillations in the photoionization of alkali-metal and
alkaline-earth-metal atoms. Subsequent experiments
showed that dc electric fields could also induce oscilla-
tions in photoionization cross sections, and that photode-
tachment of negative ions in a dc magnetic field also gave
rise to new structures near threshold. Theoretical ex-
planations and models have rapidly developed, as well as
quantitative predictive theory for the case of electric field
effects where the hydrogenic problem has been directly
solved, and for alkali-metal atoms the multi-channel
quantum-defect approach of Seaton and Fano has been
beautifully developed and applied by Harmin. The mag-
netic field case is much less well developed from a quanti-
tative theoretical point of view, as the problem of asymp-
totic motion in a combined Coulomb and (quadratic) Zee-
man field is neither separable nor integrable, ' although
substantial regularities are seen in the predicted hydrogen-
ic Zeeman effect below the ionization threshold. "

Work on the problem of combined E and B fields is be-
ginning to appear. ' Quite recently Clark, Korevaar, and
Littrnan, ' referred to as CKL hereafter, have made
theoretical predictions of a new type of threshold effect to
be expected in combined dc electric and magnetic fields.
Specifically, for the case of perpendicular E and B fields
the possibility of a microscopic trapping of a Rydberg
electron in the vicinity of the Stark-Coulomb saddle point
has been proposed, and experiments are under way to
determine whether such a trapping might manifest itself
in photoionization spectra in such crossed fields. ' Bur-
kova et al. ' and Bhattacharya and Rau' have also sug-

gested novel effects coming from combined E and B
fields, but these works consider effects far from the CKL
saddle point. Other experimental investigations in com-
bined E and B fields are also underway. ' '

It is the purpose of the present paper to give an analysis
of the CKL predictions. Using time-dependent wave-
packet techniques, we make predictions of spectral
features to be expected if specific initial states can be
prepared in the laboratory. We will argue (qualitatively)
that any such effects will be greatly lessened in more usual
experimental situations.

The model of CKL is reviewed in Sec. II, where, in par-
ticular, the quadratic approximation of CKL is intro-
duced to describe motion in the saddle-point region. The
fundamentals of the time-dependent method are intro-
duced in Sec. III, and applied to the problem of quantum
dynamics in the Stark-Coulomb saddle-point region' in
the absence of the magnetic field. In this case, assuming
the quadratic approximation of CKL, the time-dependent
Schrodinger equation is exactly soluble for motion of an
initially Gaussian wave-packet whose center follows the
classical dynamics of the system. Such a solution to the
time-dependent Schrodinger equation has been introduced
previously by Heller, whose work we follow, and exten-
sively applied to the case of dissociative molecular dynam-
ics. The immediate result of this B =0 analysis is that,
although there is a one-parameter family of classical
bound states in the continuum (just as in the CKL case),
no sharp spectral features are to be expected. In Sec. IV,
the Heller ansatz is extended to the case of motion in a
quadratic saddle-point potential and a perpendicular B
field. Again, as in the B =0 case, packets whose centers
follow the classical dynamics are found, and it is shown in
the results presented in Sec. V, that the effect of the B
field is not only to determine the precise trajectories of
trapped classical orbits, but also to stabilize the spreading
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of the quantum wave-packets transverse to the B field.
For sufficiently large B fields we begin to see structure
appear in the model photoeffect spectra, thus confirming
the essential expectations of CKL, but for quite specific
initial preparation of the Rydberg electron in the trapping
region. However, it is readily apparent that the largest
trapping occurs in the limit that the B field completely
dominates the Stark-Coulomb potential: that is, the op-
timum trapping is for Landau levels with zero mechanical
momentum. In Sec. VI we use the Wigner-Weyl phase-
space correspondence to compare the leading-order semi-
classical results for the full potential with the results ob-
tained by the quadratic approximation of the potential
mentioned above. Sec VII concludes the paper with a dis-
cussion of the possibility of observing saddle-point effects
in actual photoeffect spectra, and includes a discussion of
the technical theoretical developments needed to carry out
a more quantitative analysis.

II. TRAPPED TRA JECTORIES
AND THE QUASI-PENNINCy TRAP

A. The Clark-Korevaar-Lit tman analysis

V (x,y, z)= —(x +y +z )
'~ Ex, —(2. 1)

where it is assumed that the nucleus is stationary at
x =y =z =0. The potential V (x,0,0) has a local max-
imum at xp E'~ as a func——tion of x, and V (x,y, z)
has a saddle point at x =xo,y =z =0 when considered as
a function of all three Cartesian variables. It is this
electric-field-induced saddle point, far from the nucleus
for small to moderate laboratory fields, which we refer to
as the Stark-Coulomb saddle point. To include the dc
magnetic field (of strength 8 and directed along the z
axis), CKL introduce the Lagrangian

I.= —, (x +y +z ) —V + (yx —xy), (2.2)
2

CKL have found a one-parameter family of periodic
(and thus trapped) orbits near the Stark-Coulomb saddle
point, defined below, in the presence of a magnetic field.
This has led to the suggestion that a "microscopic" analog
of a Penning trap ' might have been found, with the pos-
sibility of a highly localized but long-lived series of elec-
tronic states of a new type. The CKL analysis is basically
classical, with quantum predictions based on a semi-
classical interpretation of the periodic classical orbits. We
briefly review the CKL analysis, including the quadratic
approximation introduced by them. It is this quadratic
approximation of the saddle-point potential which al-
lowed CKL to obtain an analytic expression for the 1:1
periodic orbits and a subsequent expression for the ener-

gy levels. In Secs. III and IV it is this same approxima-
tion which allows us to carry out exact quantum dynam-
ics, and thus to make explicit predictions of spectral ef-
fects.

The motion of a Rydberg electron moving far from an
atomic ionic core but subjected to an external dc electric
field of strength E in the x direction is determined by the
Stark-Coulomb (SC) potential (atomic units,
fi=m, =e = 1 are used hereafter)

where co, is the cyclotron frequency, co, =B/c (note again
that the units are a.u. ). Direct numerical integration of
Lagrange's equations yielded closed orbits around the
Stark-Coulomb saddle point. It is the existence of such
orbits that suggests localized quantum states. CKL note
that the trapped orbits are unstable; a small perturbation
of initial conditions leads to rapid drift from the trapping
region suggesting that the quantum states will be reso-
nances, rather than bound states in the continuum.

To allow an analytic formula for the predicted quan-
tum levels associated with the trapped orbits, CKL fur-
ther simplified the problem by assuming that V could
be replaced by a Taylor expansion about the saddle point
( xp, 0,0):

V~ (x,y, z)=V, +, [z +y —2(x —xp) ], (2.3)
1

2x0
where V, = V (xp, 0,0), and only quadratic terms have
been kept. We refer to this as the quadratic Stark-
Coulomb approximation (QSCA) in what follows. Use of
V~ rather than V in the Lagrangian of Eq. (2.2) al-
lows separation of the motion into harmonic motion in
the z direction (axial) with frequency co, =E ~, and (1:1
harmonic-like) elliptical motion in the xy plane (trans-
verse), with a frequency co, given by solution of the quar-
tic equation

Qp& + (co~ —co~ )M~ —2'~ =0 . (2.4)

CKL verified that the trapped orbits of the QSCA well
approximated those of the full dynamics, and then sug-
gested that the corresponding quantum levels would be
given by the harmonic ansatz

E„„=V, +(n, + I/2)co, +(n, +1/2)co, , (2.5)

n, and n, being the transverse and axial quantum num-
bers. For the fields E=5000 V/cm and B=150 kG,
co, =13.2 cm ' and co, =6.8 cm ', suggesting experimen-
tal observation might be possible, at least in terms of the
moderate energy resolution required.

B. Questions raised by the
classical-semiclassical analysis

If we uncritically assume the presence of quantum
states localized in the vicinity of the Stark-Coulomb sad-
dle point, their observability depends on the width of the
resonances and on their effect on the particular photoef-
fect transition amplitude probed in a particular experi-
ment. If the widths of the resonances are large compared
to their spacing, no structure will be evident. This argues
strongly for a theoretical analysis which gives the widths
as well as the spacings of the resonances. Such a theory is
reviewed for the B =0 case in Sec. III, and extended to
the B&0 case in Sec. IV, with the conclusion that it is
indeed important to worry about widths of the resonant
states.

If observation of the quasi-Penning resonances is to
take place a second question is what is the effect of the
resonances on the amplitude

& or,-i ID I &b-.d) (2.6)

where
~
Pb„„„d) is the initial bound state, D an appropriate

transition operator, and
~ Pr, „,~) the final (unbound) state.



35 SADDLE-POINT "TRAPPING" OF RYDBERG ELECTRONS. . . 3271

In most experimenta1 situations, the nonstationary state
D

~ pb, „„d) is highly localized near the nucleus; in fact,
this state wi11 be exponentially bounded with a scale size
small compared to the distance from the nucleus to the
saddle point. Suppose the quasi-Penning states were, as is
the case classically, bound states in the continuum and
highly localized near the saddle point: what then will be
the overlap between the two normalized and localized
types of wave functions with centers perhaps far apart
compared to the characteristic spatial dimensions of either
eigenstate? If, in the actual case, the resonances are sharp,
the same question applies; but if they are broad and the
states are more delocalized, a larger contribution to the
oscillator strength might be made, but the effect of indivi-
dual resonances will wash out as the resonances broaden.
The classical analog of this question would be do trajec-
tories starting near the nucleus, with momenta charac-
teristic of those in the Wigner transform of D

~ pb, „„d),
ever approximate the harmonic-like trapped orbits of
CKL: or, conversely, do the unstable orbits around the
Stark-Coulomb saddle point ever pass near the nucleus?
Or, does the presence of the B field effectively prevent
this? Put more succinctly, the localized states may well
exist, but have no observable effect in a photoeffect exper-
iment initiating with the atomic ground state. In Secs.
III—V this latter aspect of the potential observability of
the quasi-Penning resonances is avoided: it is assumed
that an experimentalist can create initial excitations with
prespecified properties, in particular to modify either D or

~ pb, „„d) to produce optimal states for observation of
saddle-point resonance structure. A brief discussion of
the theoretical developments needed to go beyond this, ad-
mittedly simplistic, assumption is given in the discussion.

What is the role, if any, of a single periodic orbit of the
type found by CKL in predicting energy levels? In what
follows it is argued that the content of the periodic or-
bits lies in their signaling possible quantum "recurrences"
(in a time-dependent view of the photoeffect process),
which, in turn, imply osci11ations in spectra, rather than
making predictions of the positions of particular energy
levels. Also, unlike the general periodic orbit techniques
of Gutzwiller and Berry and Tabor, ' only informa-
tion concerning that portion of the spectrum relevant to a
particular set of initial phase-space conditions is obtained.
This is, of course, an advantage provided that the initial
conditions are appropriate to those of a particular experi-
ment. The quantization condition of Eq. (2.5) is then in-
terpreted in terms of its ability to mimic the frequencies
which are inverse to the return time(s) of a quantum wave
packet corresponding to specific initial conditions. The
wave-packet method then provides a natural extension of
the periodic orbit WKB quantization methods of Ed-
monds and Starace, and Rau (Ref. 5), in that actual spec-
tral features, rather than only spacings of oscillations are
predicted.

III. TIME-DEPENDENT APPROACH
TO SPECTRA: SADDLE-POINT MOTION

FOR B=O

We give a short outline of the time-dependent formula-
tion of the photoabsorption cross section, following Hell-

er, since this time-dependent "semiclassical" approach
differs in both philosophy and technique from the usual
WKB methods. As is shown below, the spectrum is deter-
mined by the Fourier transform of the autocorrelation
function (P

~

P(t) ), where P(t) is a Gaussian wave packet
(or a combination of Gaussian wave packets). The posi-
tion and momentum of the center of the wave packet obey
the classical Hamilton's equations of motion and thus the
spectral features can be described in terms of classical
dynamics.

A. Spectra, time correlation functions,
and classical motion

Using the usual electric dipole approximation for the
electromagnetic wave, we find that the cross section for
photoemission is proportional to X(co), the square of the
matrix element of the perturbation between the unper-
turbed states,

&(~)=
I & 0f ID I &bound& I

' (3.1)

then

X(co)=Tr[5(E H)p~]—
e' ' t dt,

where

and 0 is the Hamiltonian which generates the final-state
eigenfunction

~
Pf(E)). The photoabsorption cross sec-

tion o.(ro), defined by

o(ro) =4~ aaocdX(cg),

where a is the fine-structure constant, ao is the Bohr ra-
dius, and co is the frequency of radiation, is thus propor-
tional to the Fourier transform of the time dipole auto-
correlation function ( P ~

P( t ) ),
cr(cd)=2rraaoco f dt e' '(p

~
p(t)) . (3.2)

Equation (3.2) expresses the time-independent photoef-
fect cross section as the Fourier transform of a time-
dependent correlation function: why is this of use? First,
if only gross spectral features, such as oscillations in the
continuum oscillator strength distribution are desired, rel-
atively short time dynamics determine these, and thus use
of (P

~
P(t)) as a computational tool is highly advanta-

geous. Second, if, as is often the case for short times, the
square integrable packet

~
P(t)) remains localized, simple

classical arguments, such as Ehrenfest's theorem, often
suffice to understand its dynamics, and thus spectral

where Pf (E) is the energy normalized final state,:~+ ~ond y &b~ond and XboUnd are the initial bound-
state eigenvalue and eigenfunction, and D is the transition
dipole operator. If we set

14 & =D
I &bound &

and
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features may be related to classical dynamics. However, it
is important to note that such relationships must be un-
derstood in the sense of time and frequency transforms,
rather than in terms of direct time-independent semiclas-
sical quantization.

The initial decay of the autocorrelation function is asso-
ciated with the movement of the packet away from its ini-
tial location. This first decay time is thus associated with
the force on the packet. A steep potential implies rapid
motion of the packet, and thus a broad spectrum. This is
consistent with the usual reflection principle arguments
applied to molecular dissociation. A second time scale is
set as

~

P(t) ) returns to the vicinity of
~
P), causing a re-

currence in (P
~

P(t)). Such a recurrence at time r2 in-
duces oscillations at frequency 2~/~2 in the time-
independent frequency spectrum. To the extent that clas-
sical dynamics determines this recurrence time, as is often
the case, there is an association between a classical period-
ic orbit and spectral features; however, this is a transform
relationship, rather than a semiclassical quantization of
an individual level. Another time scale in the figure is
that of the damping of the sequence of recurrences; it is
the reciprocal of this last time scale which determines the
width of the spectral oscillations. Intuitively this is relat-
ed to the instability of the periodic orbit: even though the
center of a packet might return to its origin, if the packet
has spread too much, no recurrence of any size will ap-
pear in (P

~

P(t) ) and thus the spectrum will not show os-
cillations. This relation of three distinct time scales to
three corresponding frequency features is conveniently
"summarized in standard Fourier transform relations
and has been developed by Heller in his treatment of the
classical dynamics and corresponding spectral features in
the photodissociation of polyatomic molecules.

B. Ansatz for the wave packet, classical interpretation

Let us consider now the time evolution of the wave
function P(t), the dynamics of which will enable us to
predict the properties of the cross section. In order to in-
vestigate the role of dynamics near the Stark-Coulomb
saddle point on photoeffect spectra, we will assume that
the initially prepared state D

~ P;„;„,~) =
~
P(0)) is local-

ized near the saddle point, and consider its subsequent
propagation. This choice emphasizes the role of the sad-
dle point: if strong spectral features corresponding to the
CKL analysis do not arise in this special case, it is doubt-
ful that they will arise at all. Having future applications
in mind, we do not use the standard semiclassical tech-
niques (e.g. , path-integral techniques ), but an alternative
approach suggested by Heller. This approach is based
on the semiclassical relation between a localized quantum
wave packet and the corresponding classical point particle
and its equations of motion. The localized wave packet is
assumed to be represented by a multivariate Gaussian
wave packet, whose center will be seen to move according
to the classical equations of motion. An arbitrary

~

P(0) )
can be expanded in a linear combination of such states. In
two dimensions, for example, the time-dependent Gauss-
ian is described by

P(x,y, t) = expi [a„(x—x, ) +a (y —y, )2

+A(x —x, )(y —y, )+p„(x x, )

+p, (y —y, )+y] . (3.3)

Here a, az, X, and y are time-dependent complex vari-
ables, x„y„p„[=p„(t)],and p~ [=p~(t)] are the classi-
cal positions and generalized momenta. We require this
ansatz for P(x,y, t) to fulfill the Schrodinger equation

i =Hg=(HO+ V)g,. dg
dt

(3.4)

and this condition determines the parameters of g(x,y, t)
in Eq. (3.3). To evaluate the parameters, we expand V (in
the above case V~ ) up to second order in a Taylor
series around the center of the wave packet (x„y, ) (which
is exact, since the potential is quadratic) and insert the
above ansatz for P(x,y, t) into the Schrodinger equation
(3.3). Comparing like powers of (x —x, ) and (y —y, )

leads to the "equations of motion" of the parameters of
the wave function which describe the evolution of the
spreading and the shape of the wave packet (see Ref. 33).
Thus, the center of the wave packet is evolving according
to Hamilton's canonical equations.

If the potential is not quadratic, the potential has to be
locally approximated, by which we mean that at every
time step the potential is expanded into a Taylor series up
to second order in (x —x, ) and (y —y, ). The validity of
this local approximation should be examined for each spe-
cial case. However, as will be seen in the analytical treat-
ment, the system does not have to be separable.

This ansatz can be regarded as a "classical point" mov-
ing in phase space, clothed in a Gaussian. The approach
is motivated by Ehrenfest's theorem which states that the
Hamilton equation hold for the expectation values (see,
e.g. , Ref. 34)

(3.5)

In the case of a quadratic potential, H(x,p, t) can be re-
placed by H ( (x ), (p ),t), so that (x ) and (p ), the expec-
tation values of the corresponding quantum operators,
evolve according to the classical Hamilton's equation and
thus follow the classical path for all t.

C. Example: Saddle-point motion for B =0

To illustrate our procedure in more detail, we use
Heller's ansatz for the saddle-point potential of the com-
bined electric and Coulombic fields around the Stark
saddle-point xo, without the magnetic field. The electron
moves back and fourth along the ridge of this saddle-
point region, the harmonic motion in z direction is
neglected. The potential V is approximated by

2 2~b
V~ (xy)=V, —' x + y

2 2

(see Sec. II), where V, = 2V E is the classica—l ionization
energy in the presence of the electric field cu, =(xo) ~ and
~b =co,~2. The potential in the x direction corresponds
to an "upside-down" potential, in the y direction it corre-
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sponds to a "normal" quadratic potential. In this case the
equations of motion of the spreading parameters of the
wave packet can be solved analytically. The initial value
for y is chosen so that (P(0)

~

P(0)) =1; this means that
the imaginary part of yo 1s

r

1H= ——
2

1

2

a . ~ a2 2

2+' 2ya 8y
2 2

a . ~ a ~ 2
2

1 X + X
ay 2 2 ay 8

Im(yo)= ——,
'

ln
4( Im(ao) ][ Im(PO) ] + Vo + V„(x —x, ) + V» (y —y, ) + —, V„(x —x, )

Now we have an expression for the wave packet f(t) at
any time t. The calculation of the time correlation func-
tion (l(

~
p(t)) is straightforward, since g(t), initially a

Gaussian wave packet, remains Gaussian. Using the rela-
tion between the cross section and the Fourier transform
of (l(

~

p(t)), one can predict whether we expect modula-
tions in the threshold photoionization cross sections. Fig-
ure 1 shows the evaluation of the wave packet for dif-
ferent initial values for a and ay according to the analyt-
ically solved equations for the spreading parameters,
where co, was chosen 5X 10 in atomic units (this corre-
sponds to E=1.8&(10 a.u. or 9.26 kV/cm). For A, not
equal to zero, the differential equations for the wave pack-
et parameters have been solved numerically, and it is
found that the behavior of the wave packet remains prac-
tically unchanged. In Fig. 2 the real part of P is super-
posed on the potential according to the trajectory of the
wave packet. It can be clearly seen that the wave packet
spreads rapidly in the direction of negative slope of the
potential for any reasonable choice of initial values. Thus
the overlap function falls off sharply and hence the
Fourier transform shows no significant features, see Fig.
3. Thus, we do not expect any spectral fine structure (on
a frequency scale of co, and co, ) to appear for the 8 =0
case, in spite of the existence of periodic classical orbits:
the quasi-Penning resonances have widths broad com-
pared to their spacings.

IV. SADDLE-POINT SPECTRUM FOR 8&0;
A GENERALIZATION OF HELLER'S ANSATZ

In the quadratic Stark-Coulomb approximation the
classical Lagrangian for an electron moving in the quasi-
Penning trap is given by

2x o

COc

+ (yx —xy ),
2

where co, is the cyclotron frequency (see Sec. IIA). For
this approximation of the potential, the equations of
motion for the electron can be solved analytically.

Since the motion along the z axis is harmonic, we
neglect it and consider only the motion in the xy plane.
Thus, we take the two-dimensional Gaussian of Eq. (3.3)
as ansatz for the wave packet lt, where p„and p» denote
the generalized momenta, in order to get consistency with
the corresponding quantum Hamiltonian. P must satisfy
the Schrodinger equation and this condition determines
the time-dependent parameters a, ay, k, and y. If we
choose the vector potential A so that p and A commute,
we obtain the Hamiltonian

+ —, V»»(y —y, ) + V„»(x —x, )(y —y, ) . (4.1)

We insert Eqs. (3.3) and (4.1) into the Schrodinger equa-
tion (3.4), and comparing coefficients of like powers of x
and y [the symmetry around the center of the wave packet
(x„y, ) has been lost], we find the equations of motion for
the "spreading parameters" of P(x,y, t):

2
cx = —2AX X (4.2a)

co, 1 co,2 2

a = —2e — + A, ——Vyy 8

A, = —2A, ( a +a» ) + co ( a —a» ) —V»

y=t'(a„+a ) E+p x,—+p,y, ,

(4.2b)

(4.2c)

(4.2d)

where

2 l 2E= Vo+ —,x, + —,y, ,

c
Px =Xt+

COc

py =yt—
2

Note that 7Tx cc)c7Ty Vx and ~y =coccyx —Vy, where
~, ~y denote the mechanical momenta x„y, . The last
three terms in (4.2d) are recognized as the action integral
along the classical trajectory. Note that the equations for
B =0 are a special case of the above ones.

To evaluate the propagation of the wave packet, we
solve Eqs. (4.2a)—(4.2d) and insert the results into the
equation for the wave function (3.3). In general this is
achieved only with the assistance of numerical methods.
If, however, B =0, then the potential corresponds to a
"saddle-point region" potential, with one normal harmon-
ic oscillator potential in the y direction and an upside-
down harmonic oscillator potential in the x direction, and
the equations of motion of the spreading parameters can
be solved analytically (see Sec. III). Similarly, if we con-
sider only the magnetic field B and assume further that
A(t =0)=(0,0) and a„(t =0)=a»(t =0), so that the wave
packet is uncoupled in the x and y directions, then the
wave-packet propagation is equivalent to the Hamiltonian
of a two-dimensional harmonic oscillator and the equa-
tions for the evolution of the wave packet are well known
(see Sec. V B). From the time-dependent wave packets the
time correlation function can be evaluated and the subse-
quent Fourier transform (usually via fast-Fourier-
transform routines) leads to the absorption spectrum ac-
cording to Eq. (3.2).
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t=Q t = ~erioc t= serioc

t = —serioc oerioc Der toe
FIG. 1. Evaluation of the real part of the wave acket for different ini

'

p or i eren initial values of a, a~. The wave packets are evolving under
t e in uence o the combined electric and Coulomb field which has been harmonically approximated. co =5& 10e . co, = in atomic units

V&'cm). The wave function has initial values k = (0,0) and Re(a„)= Re(a ) =0'
Im(a„) = Im(a~) =5 & 10 and Im(a~) =5&(10 for Fig. (a) and (b), respectively.

an e a„=Re(a~ ) =0,

V. NUMERICAL RESULTS

A. General case

We encountered some numerical difficulties because the
three coupled, complex-valued differential equations
(4.2a)—(4.2c) were too stiff for the most commonly used
differential-equation-solver routines. We found that
ATOMCC was most successful under these conditions.35

The numerical accuracy depends on the choice of the ini-
tial wave-packet parameters and the choice of the electric
and magnetic field. In what follows, the parameters are
such that no numerical problems arise.

The electric field was taken to be 10 a.u. (which is
5142 V/cm), so that the Stark saddle point xo is in a dis-
tance of 1000 a.u. from the atomic nucleus. The rnagnet-
ic field was varied between 1.5~10 and 1.5&10 G. Un-
less mentioned otherwise, the initial values of Im(o.„)and
Im(a~ ) were chosen in such a way that the magnitude of
the wave packet at the classical trajectory corresponding
to the next higher transversal quantum number (see Ref.

13) has decreased to 1/e times the maximum value of the
wave packet.

Guided by the results for B =0 (see Sec. III) one might
expect that the spreading still prevents any significant re-
currence of the autocorrelation function after one period.
This is the case if the magnetic field is not too strong: for
example, 8 =1.5&&10 G. In this case the wave packet
spreads along the ridge of the saddle-point region and al-
ready after half a period resembles a plane wave. No re-
currence can be found in the overlap function.

For B =1.5)& 10 G the main features remain the same,4

that is a quick spreading in the direction of negative slope
of the potential, but the "plane" wave packet no longer
points in the same direction. The orientation of the wave
packet depends on the initial values of position and
momentum of the wave packet. In the same way, the
spreading parameters show some equilibration which de-
pends on the initial conditions.

Assuming an even stronger magnetic field, e.g.,
5B = 1.5 & 10 G, the magnetic cyclotron frequency co, be-

comes comparable to co„ the recurrence frequency of the
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FIG. l. (Continued).

periodic orbit. Though there is still spreading in the de-
clining part of the saddle-point region, the dynamics o
th reading parameters becomes more and more impor-e sp
tant. The Lorentz force drives back the spreading pa o
the wave packet to the ascending part of the potentia,
thus causing a confinement of the wave packet. But, as
can be seen in Fig. 4, the wave packet is still expanded so
much that it will not pass over the barrier of the potentia
and so will maintain its orientation after a half period.

5 h the time correlation functions and t eir
Fourier transforms for B = 1.5 )& 10, . 10,1.5)& 10, an
1.5)& 10 G. They indicate clearly the effects of spreading
and confinement on the features of the spectra. The
overall envelope of the peak in the Fourier transforms is
determined by the decay of the autocorrelation function
(and thus also determined by the initial values of a„and
a ). The repetitive overlaps control the onset of peaksEx' . e
and troughs, whose spacing is given by

~ ~ ~

co =2~/T, where
T is the period of the semiclassical orbit
co, =3.19X10, 6.02X10, and 6.37X10 a.u. for

the given field strengths). The more slowly the heights of
the recurrences in the overlap decay, the sharper become
the lines in the spectrum.

For B =1.5&&10 G one observes the onset of Landau
resonances. This implies that the magnetic field is so

d t th lectric and Coulombic field that
it dominates the behavior of the evolution of the wave

k The spreading becomes negligible and the wave

packet retains its shape after one periodic orbit: this in i-

cates that the trapping of the electron is due to the mag-
f' ld d not to the saddle-point potential sur ace of

the combined electric and Coulombic ie d w ic
presents a per ut perturbation of the magnetic field).

rof 10 GWe find that for magnetic fields of the order o
hi her the roblems of numerical accuracy ecome

crucial. Small errors in the evaluation of the sprea ing
parameters result in the displacement of the maximum

1 f th lculated wave packet from its center w ic
by construction is pinned down to the semiclassica or i

B. Free motion in a uniform magnetic field

f V =0 the wave packet evolves under the e-f-I we set =, e
z axis. Thefeet of a uniform magnetic field along the z axis. e

motion in e zth direction will again be neglecte .
of theU

'
th ll known result that the motion o e

ve acketwave packet corresponds to the motion of a wave pac e
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FIG. 2. W veave packet moving along the saddle-point region which is determined by the (approximated) combined electric and

Coulombic field. The real part of the wave function is shown during the first period. E=9.26 kV/cm, 8 =0. The packet is shown

at t =0, —, , 4, —,, 2, 4, and 1 of a full period, the latter two are shown below the potential surface for clarity.
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according to the Hamiltonian of a two-dimensional oscil-
lator, and taking A, = (0,0) and a„=a~ in Eqs.
(4.2a) —(4.2d), the equations of motion for the spreading
parameters can be solved analytically. One gets the same
expression as in Sec. III, where co, has to be replaced by
co, /2, both for a and e~. The equation for y reduces to
j (t)=2ia„It is a ni.ce exercise in this case to verify
that —disregarding some constant factor —the wave func-
tion evaluated according to the above method and the
wave function calculated by the well-known path-integral
techniques agree exactly. Note that for the special ini-36

tial values for a„and a~, a„(t =0)=i co, l4 and
a~(t =0)=ice, l4, the wave packet does not change its
shape and is called a Glauber coherent state. The
Fourier transform of the autocorrelation function ob-
tained by numerical integration then shows evenly spaced
Landau peaks in co, /2.

FIG. 3. Autocorrelation function (during the first four
periods) and its Fourier transform for the wave packet of Fig. 2.
7l indicates the initial decay time and 7-2 the recurrence time in
atomic units. The corresponding frequency spacing in the
Fourier transform is 277./7. 2 (5&(10 ' a. u. =10.97 cm ' in the
above case), the width of the overall envelope is determined by
277K.l. The sharper the falloff of the original overlap, the
broader becomes the shape of the overall peak in the Fourier
transform.

VI. WIGNER-WEYL FORMALISM.
COMPARISON WITH APPROXIMATE RESULTS

FOR THE FULL POTENTIAL

The analysis of Secs. III—V uses exact quantum propa-
gation within the context of the quadratic approximation
to the potential at the Stark-Coulomb saddle point. Since
a full treatment of the propagation in the Coulomb poten-
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FIG. 4. Evolution of the wave packet for a magnetic field B=1.5X10 G along the z axis, and in the Stark-Coulomb potential.

The dashed line in the lower part shows the potential-energy surface for the quadratically approximated combined electric and

Coulomb field, E =5142 V/cm ( =10 in a.u. ) along the x axis. The dotted line indicates the trajectory around the saddle point for
the lowest resonance. The atomic nucleus is at x =y =0 and the Stark saddle point xo lies at (1000), measured in atomic units. The
scale factor for the height of the wave packet is constant for (a)—(e).

tial is extremely difficult, we apply an approximate pro-
cedure to determine the propagation, but for the full po-
tential, and compare the thus derived results with the pre-
vious ones.

To this end we make use of the Wigner-Weyl
correspondence in phase space. In this formulation of
quantum mechanics a quantum state represented by a
density operator p is given by the Wigner distribution
function

and

f d q d p Aw(q p)Bw(q p) =(2~)"Tr(AB) .

The expectation value of the quantum operator A in the
state represented by p is

( A ) =Tr(pA)

and thus

Pw(q, p)=(~) "fd"se" '(q —s~ p ~
q+s) . (6.1)

( A ) = f d "q d "p Aw(q, p)Pw(q, p) (6.2)

In the case of a pure state P this can be substituted by

Pw(q, p)=(m. ) "fd"se '~'g'(q+s)P(q —s) .

The properties for the Wigner distribution function are
commonly known, so we will recall only those we will
need in the following. The classical function correspond-
ing to the quantum operator A is thus given by

Aw(q, p)=2" f d"s e '~'(q —s
~

A
~
q+s)

by the above expression. The Wigner distribution func-
tion evolves in time according to the quantum Liouville
equation

at
=i [Pw(q, p)e ~ 'Hw(q, p) H(q, p)e ~ 'Pw(q, —p)],

(6.3)

where H~ is the function corresponding to the Hamilton
operator M and A is the Janus operator



3278 CHARLOTTE NESSMANN AND WILLIAM P. REINHARDT

wave packet after a half period
(c)

wave packet after three quarters of a period

500

-500

500
\

0 —
I

I

-500
/

500 1000 1500 500 1000 1500

(e)
wave packet after one period

500

-500

500 1000 1500

FIG. 4. (,Continued)).
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(a)

~ t
( b)

=I5x IO4 G

B=(.5 x)05 G

pers, argues that this substitution gives reasonable re-
sults so long as the Wigner functions correspond to well
localized wave packets, or, more precisely, so long as ei-
ther the initial wave packet or the time evolved wave
packet is localized.

For the initial wave packet we choose the "former"
Gaussian. If we approximate its corresponding Wigner
function by a sum of weighted delta distributions, then
the time-evolved Wigner function is easily calculated, i.e.,

P~(q, p, &) = g ~,&(q —q, (&))&(p—p, (t)),

(c) B=l 5x IO~ G

FIG. 5. Autocorrelation functions and their Fourier
transforms for various magnetic fields in the presence of the
Stark-Coulomb saddle point for E =5142 V/cm. The left side
shows the autocorrelation function during the first four periodic
orbits around the saddle point xo. The combined electric and
Coulombic field is harmonically approximated. The magnetic
field B along the z axis varies: (a) 1.5)&10 G, (b) 1.5&&10' G,
(c) 1.5&(10 G. The right side shows the corresponding Fourier
transforms. The corresponding spacings are (a) 3. 19& 10 ' a.u.
or 7 cm ', (b) 6.02)&10 ' a.u. or 13.2 cm ', (c) 6.37&&10 a.u.
or 139.8 cm '. Note that the frequency units for the Fourier
transform in (c) have been changed by a factor of 10 compared
to the other transforms.

where po and p, are the appropriate density operators.
According to Eq. (6.2) we can rewrite this expression as

~
(p(0)

~
p(t) )

~

=(2m)" f d"q d "P P~(q, p, o)

ap aq aq Bp

the arrows indicating the directions in which the deriva-
tives have to be taken.

To calculate the photoabsorption cross section [Eq.
(3.2)] we are interested in the expression (P

~

P(t) ) and use

where the qz. (t) and p~(t) are determined by Hamilton's
equations of motion. The use of this approximative ex-
pression for the time-evolved Wigner function and the one
obtained by the original Gaussian wave packet for the ini-
tial Wigner function, makes the evaluation of the phase-
space trace (6.4) elementary.

Typical results for the evolution of P~(q, p, t) in the
presence of the full potential are shown in Fig. 6 and com-
pared with the evolution of the same initial Wigner distri-
bution function, but in the quadratically approximated
potential (the projection onto the xy plane is shown). It is
clear that the long-time behavior differs considerably over
the full extent of the packet. But since we are only in-
terested in an overall picture of the photoabsorption cross
section, e.g. , at resolution =2~/7 2 72 being the first
packet recurrence time (see Sec. III), we need only to be
concerned about the short time (e.g., t =rz) features of the
wave packet. Additionally, we only need to be concerned
with that part which overlaps the initial packet. To cal-
culate X(co) of Eq. (3.1) one needs also the time evolution
of the phase of the autocorrelation function. This missing
information can be recovered from the amplitude, ' so
that knowing the phase-space evolution of the Wigner dis-
tribution functions is sufficient to determine the photoab-
sorption cross section.

Figure 7 shows the modulus of the autocorrelation
function both in the case of the evolution of the Wigner
function in the full potential —within our framework of a
zero-order approximation to the quantum Liouville
equation —and in the case of the quadratically approxi-
mated potential as described in the previous sections. The
results agree nicely and furthermore, the features also
agree with the results from the quantum propagation of
the wave packet in the quadratically approximated Stark-
Coulomb potential as introduced by Clark et al. ' [com-
pare Fig. 5(b)]. Thus, over the time scale (within the level
of resolution) we are interested in, making the quadratic
approximation to the Stark-Coulomb potential does not
effect the results for the photoabsorption cross section.

XPg (q, p, t), (6.4) VII. DISCUSSION

where the time evolution of the corresponding Wigner
function P~(q, p, t) is governed by Eq. (6.3).

We introduce here the first approximative step, namely,
the substitution of the quantum Liouville propagation by
the classical Liouville propagation for density functions.
This is exact if the potential does not have any derivatives
of order 3 or higher. However, Heller, in a series of pa-

We have considered the spectrum obtained if a facile
experimentalist could create an initial quantum wave
packet in the combination of magnetic and electric poten-
tials arising at the Stark-Coulomb saddle point of a Ryd-
berg atom in dc electric and magnetic fields. We have
chosen this form of the wave packet for analytic conveni-
ence, and because its center follows the classical trajec-
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