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The recently introduced technique of constructing finite basis sets from B-splines for use in
atomic-physics calculations is applied to the alkali-metal atoms Li, Na, K, Rb, and Cs. Valence en-
ergies are calculated within the framework of many-body perturbation theory to second order, and
corrections to hyperfine splitting and transition matrix elements to third order in the approximation
that a dominant subset of the terms in this order, associated with Brueckner orbitals, is evaluated.
Agreement with experiment at the 1% level is found for all of the atoms considered. Comparisons
are made with other calculations, and a short discussion of the systematic extension of this work is
given.

I. INTRODUCTION

Recent experimental' and theoretical interest in parity
violation in heavy atoms has highlighted the general ques-
tion of whether precision calculations of the properties of
these complex systems are possible. The situation can be
contrasted with that encountered in the simplest atom, hy-
drogen. There the apparatus of quantum electrodynamics
(QED) leads to a systematic approach to calculating prop-
erties of the atom. The smallness of the fine-structure
constant and the ratio of the electron mass to the proton
mass make it possible to precisely define the amount of
theoretical labor required to reach a given level of pre-
cision. If, for example, one needs a one part per million
understanding of the fine structure of the atom, QED
corrections to order a and e m, /m~ must be evaluated,
with higher-order contributions guaranteed (barring
anomalously large coefficients) to be negligible at the or-
der of interest. Such a situation would be desirable also
for many-electron systems. While for the special case of
helium, such a perturbation expansion has indeed been set
up and successfully applied, for atoms with more than
two electrons the difficulty of directly solving for the
many-electron wave function has inhibited progress in
this direction. Several techniques are in current use to at-
tack this problem, including multiconfiguration Hartree-
Fock (MCHF), configuration-interaction methods, and
many-body perturbation theory (MBPT). There are two
particularly attractive features that lead us to adopt
MBPT for the present calculations. The first is that
MBPT is directly related to a fundamental QED ap-
proach, the use of a generalized Furry representation.
A similar approach has been recently advocated by Mohr
for the study of high-Z two-electron ions. The second is
that the method is systematic, with well-defined levels of
perturbation, so that one can hope to answer the kind of
question posed above for hydrogen, viz. , if it is desired to
understand a property of a many-electron atom to, say,
one tenth of a percent, how much theoretical labor and
computer time will be required' Unfortunately, due to
the complexity of MBPT and the difficulty of carrying
out the related infinite sums over states, the answer to this

question is not yet known. The purpose of this paper is to
apply a recently developed numerical technique' at the
level of second-order MBPT for ionization energies, and
third order for transition matrix elements and hyperfine
constants, to the alkali-metal atoms Li, Na, K, Rb, and Cs
in order to investigate the nature of convergence in
MBPT. Our results are encouraging at the 1% level:
Starting from the Hartree-Fock model in lowest order,
one finds a systematic improvement in agreement with ex-
periment as one goes from lowest to third order. This
makes it likely that the study of weak interaction effects
in heavy atoms will be of value, since information accu-
rate at the 1% level provides constraints on model build-
ing and the Weinberg angle competitive with those avail-
able from accelerator tests. " However, this level of pre-
cision is inadequate for tests of QED in neutral many-
electron atoms, so that at least another order of perturba-
tion theory must still be investigated. The plan of this pa-
per is as follows. In Sec. II formulas from MBPT are
quoted for second-order energies and third-order matrix
elements, and justification for restricting our attention to
a subset of the third-order matrix elements is presented.
These terms are expressed in terms of products of radial
integ rais and angular momentum factors in Sec. III.
where details of the calculation are given. Section IV con-
tains a tabulation of our results, and in Sec. V, compar-
ison is made with other calculations, and a discussion of
the observed convergence of MBPT is given.

II. SECOND- AND THIRD-ORDER MBPT
FORMULAS

Although the formalism of MBPT has been in place for
several decades, explicit presentations of higher-order for-
mulas have only rarely been given. A recent exception is
the paper by Wilson, ' which presents energy formulas up
to fifth order for closed-shell systems. We have recently
given' for a general potential formulas for second- and
third-order energies and third-order matrix elements for
systems with a single electron outside a closed shell.
These lengthy formulas simplify considerably when the
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potential is taken to be the Hartree-Fock potential, de-
fined by

( ~HF)ij g (giaja giaaj ) l

where

g b d 0 (x)4 (x)(('b(y) 4(y)x d

are Coulomb integrals and where the summation includes
all states a in the core. It is shown in Ref. 13 that the
second-order corrections to the ionization energy of a
valence electron v is for the Hartree-Fock potential

gnuba gabnu gabun( — )

nab ~a +~b ~n

gaumn (grnnau gmnva )

a n, m ~a+~v &n &m

where the sums over n and m range over all positive ener-

gy states outside the core. As discussed in Ref. 7, a QED
formulation also includes certain summations over nega-
tive energy states, but these terms are of order cx and can
be neglected at the level of precision of interest here. The
third-order matrix element is considerably more compli-
cated: We present it in the form

Z, =ZRpA +ZBg +ZsR +Z„~ml(3) (3) (3) (3) (3)

(3)
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(4d)

In the above expressions v and w refer to two valence
states (which are identical for discussion of hyperfine
splitting), and the c.c. notation means that the previous
term is to be complex conjugated and that the roles of v

and w are to be interchanged. The sum over the index i
in Eq. (4b) ranges over all states except for the valence
state. The terms denoted by RPA are third-order
random-phase approximation polarization corrections.
These terms are grouped with lower-order terms in the
present calculation, and evaluated as part of Z' ', the
second-order matrix element. ' In the following when
second-order corrections are presented, they should be un-
derstood to include ZRp~ along with the infinite sum of
higher-order RPA terms' necessary to ensure the equality
of length and velocity forms for radial matrix elements.
The terms denoted by BO, which stands for Brueckner or-
bitals, ' are those that will be evaluated in this paper.

These are clearly related to the second-order valence ener-

gy in Eq. (3), and are numerically dominant over the
remaining terms in the sum. Had Brueckner orbitals been
used in place of Hartree-Fock orbitals, these contributions
would have been automatically accounted for in first or-
der, just as the RPA terms are automatically accounted
for in the second-order matrix element. The next group
of terms are designated SR, for structural radiation, fol-
lowing the terminology of Ref. 17. As discussed in that
paper, the SR terms are smaller than the BO terms be-
cause of their denominator structure. Specifically, a typi-
cal BO term has the denominator

(e; —e„)(e„+e —e, —e„),
while a typical SR denominator is the following:

(E +e„—Ea —E„)(E„+ —e E —'e„)
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In an atom such as Cs, while e; —e, can have a small
value like 0.05 a.u. for i =6p and v =6s, the smallest
value that E +E„—E —6 can have is e6 6'5p:0 28.
Therefore the denominator factors provide an automatic
suppression factor of 0.18 between the BO terms and the
SR terms. This factor is distinctly smaller for the lighter
alkali metals, which is associated with the greater accura-
cy achieved in evaluating only the BO terms for the
lighter systems considered here. These BO terms are con-
siderably easier to compute than the numerous but smaller
SR terms. Finally, the breakdown of the linked cluster
expansion for open-shell systems' leads to the extra terms
Z„o~, which are proportional to the first-order matrix
element, the constant of proportionality being a derivative
of the second order energy. As with the SR terms, the
denominator structure tends to make these terms relative-
ly small, and they will not be treated further in this paper.

X [gb(r')gd(r') +fb(r')fd(r')],

where g, (r) and f, (r) are defined by

g, (r)
@,(r)=-

r if (r)

Q„(r)
II,~ (r)

(6)

the sums to be expressed in terms of radial integrals; this
is one of the most important simplifying features of calcu-
lations involving alkali-metal atoms. After the angular
momentum reduction, the Coulomb integral in Eq. (2) be-
comes proportional to the Slater integral

r'
RI(abed)= f dr dr' z &

[g, (r)g, (r)+f, (r)f, (r)]
r )

III. REDUCTION TO RADIAL INTEGRALS AND
METHOD OF CALCULATION

The completeness of the core allows the sums over
magnetic substates in Eqs. (3) and (4) to be completed and

the term II (r) being a spherical spinor for the orbital a
with angular momentum quantum numbers ~ and m. In
terms of Slater integrals the second-order energy given in
Eq. (3) becomes

CL (vn) Cl (am) RI (vanm)RL (nmva)

[L][v] e„+e —e, —e,a, n, m, L

,
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1. 1. [v] a m
7

RI (vanm)RL (nmav)

a, b, n, L

CI (va) CI (nb) RL(vnab, )RI (abvn)

[L][v] en+eU —e~ eb—
I

+ g CI (va)CI (nb)CI (vb)CL (na)( —1)
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RI(vnab)RL (abnv)
X '

6 L g +g —g —gb
(7)

where

j,+&~2
L

CL (ab) =(—1) ' [a]'~ [b]'~, , ~(l„lb,L)
2 2

1 if la+lb+L is even

0 if l, + lb +L is odd

with [a]=2j, + 1. It is entirely straightforward to evalu-
ate Eq. (7) using a finite basis set approach: The only
features requiring special care concern the choice of a grid
for the 8-splines and the truncation of the L sums. We
define the 8-splines on an exponential radial grid: Owing
to limitations of computer time we presently restrict the
grid to 50 points. As described in Ref. 10 our basis func-
tions are chosen to satisfy boundary conditions in a finite
cavity. The innermost point on the grid must be chosen
small enough so that the small-r behavior of the wave

functions is properly described, and the outermost point
chosen large enough so that the low-lying excited states of
the atoms that we are studying are not distorted by the fi-
nite radius of the cavity. In practice we have found that a
maximum radius of 40 a.u. and an interior radius of
0.0001 a.u. gives results stable in the sense that further
variation of these parameters leaves our results unchanged
to three figures. Once the spline coefficients have been
generated we recreate the wave function on a 400-point
grid, and evaluate the Slater integrals needed to calculate
E' ' using standard techniques. While the sum over the
core states is performed exactly, the L summation is in-
finite, and must be approximated. We have chosen to cut
off the summation at L =6 and to accelerate the conver-
gence of the sum with successive Aitken's extrapolations;
again stability was found to three digits. Various other
checks on the spline method, such as comparing the single
excited state sum part of E' ' with the result obtained
with standard differential equation techniques, and check-
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ing that finite nuclear size effects were corectly repro-
duced were performed, and satisfactory behavior was con-
firmed.

Turning now to the evaluation of matrix elements, it is
seen that the evaluation of ZBo is exactly parallel to that
of the second-order energy, with one of the valence states
replaced by a perturbed valence state. We illustrate this
by considering the comparison of the third term in Eq.
(4b) with the first term of Eq. (7) for the case of transition
matrix elements. Carrying out the angular integrals leads
to the contribution

L, a, n, m, i

CI(am) Cq(nv)

l~llvj
r„;R~(aimn)Rz (mnav)

X
(~( —~U)(~a+'m —'a —'U)

where the angular quantum number associated with i is
identical to that of v. By introducing a perturbed func-
tion R defined by

i i r
E'

V

TABLE I. Ionization energies for valence states of the alkali metals calculated in second-order per-
turbation theory (atomic units).

State'

2$
2p
2p
3s
3p
3p
3d*
3d

E(0)

—0.19632
—0.128 64
—0.128 64
—0.073 80
—0.056 77
—0.056 77
—0.055 56
—0.055 56

E(2)

Lithium
—0.001 65
—0.001 37
—0.001 37
—0.000 35
—0.00041
—0.00041
—0.00004
—0.00004

E(0)+E(2)

—0.19797
—0.13001
—0.13001
—0.074 15
—0.057 18
—0.057 18
—0.055 60
—0.055 60

Expt. '

—0.198 14
—0.13024
—0.13023
—0.074 18
—0.057 24
—0.057 24
—0.055 61
—0.055 61

3$
3p
3p
3d'
3d
4s

—0.18203
—0.10949
—0.10942
—0.055 67
—0.055 67
—0.070 16

Sodium
—0.005 88
—0.001 78
—0.001 77
—0.00023
—0.00023
—0.001 26

—0.18791
—0.11127
—0.111 19
—0.055 90
—0.055 90
—0.071 42

—0.188 86
—0.11160
—0.11152
—0.055 94
—0.055 94
—0.071 58

4s

4p
3d
3d
Ss

—0.14749
—0.095 71
—0.095 50
—0.058 07
—0.05808
—0.061 09

Potassium
—0.01245
—0.004 62
—0.004 SS
—0.002 76
—0.002 77
—0.002 86

—0.15994
—0.100 33
—0.10005
—0.060 82
—0.060 84
—0.063 94

—0.15952
—0.10035
—0.10009
—0.061 39
—0.061 40
—0.063 71

Ss

Sp
4d*
4d
6s

—0.13929
—0.090 82
—0.089 99
—0.059 69
—0.059 74
—0.058 70

Rubidium
—0.01501
—0.005 44
—0.005 19
—0.004 78
—0.004 76
—0.003 46

—0.154 30
—0.096 25
—0.095 18
—0.06447
—0.064 50
—0.062 16

—0.153 51
—0.096 19
—0.095 11
—0.065 32
—0.065 32
—0.061 77

6s
6p
6p
5d*
5d
7$

—0.127 37
—0.085 62
—0.083 78
—0.06442
—0.064 53
—0.055 19

Cesium
—0.017 74
—0.006 91
—0.00618
—0.011 16
—0.01084
—0.004 20

—0.14$ 11
—0.092 53
—0.089 97
—0.075 58
—0.075 37
—0.059 39

—0.143 10
—0.092 17
—0.089 64
—0.077 04
—0.076 59
—0.058 65

'Notation: p =p&&2, p =p3/2 etc.
Reference 19.
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Eq. (9) can be written

C~(un) C~(am) RL(tvanm)R~(n mua)
5r, =—

[L][u] E„+e —e, —e„

Since the perturbed orbital
~

te) can be formed before any
sums are performed, evaluation of these terms clearly in-
volves little more computation than the energy calcula-
tions. In particular, all the angular momentum selection
rules are unchanged. This simplicity will be lost once SR
terms are considered, and their complete evaluation will
require a different order of computational effort.

IV. TABULATION OF RESULTS

fine constants, and transition matrix elements, giving the
contributions from the first few orders of perturbation
theory and the sum of the theoretical contributions com-
pared with experiment. We assign a theoretical uncertain-
ty of 1 to the last digit of all second-order energy and
third-order matrix element results: The lower-order terms
are accurate to all digits displayed. It would be straight-
forward to reduce the theoretical error by several orders
of magnitude by working with larger basis sets and more
partial waves, but this is not yet necessary given the rela-
tively large discrepancy between theory and experiment
due to uncalculated higher-order terms.

V. DISCUSSION AND COMPARISON WITH OTHER
CALCULATIONS

In this section the results of evaluating second-order en-

ergy corrections and third-order BO matrix elements are
presented. While there are no first-order corrections to
the zeroth-order Hartree-Fock energies, there are nontrivi-
al second-order corrections for matrix elements. The
method used to calculate these corrections is essentially
identical to that used in Ref. 14. In Tables I—III below
we summarize our results for ionization energies, hyper-

Before discussing the convergence of MBPT that can be
inferred from the above tables, we compare our calcula-
tions with previous ab initio calculations, working from
Li through Cs.

MBPT was first applied to the 2s ground state of lithi-
um by Chang, Pu, and Das and to the 2p excited state
by Lyons, Pu, and Das. Recently a rather complete
MBPT study of lithium was made by Lindgren, who

TABLE II. Hyperfine constants for valence states of the alkali metals calculated in third-order per-
turbation theory (units: MHZ).

State g (2) g (3) Sum Expt.

2$
2p
2p

284.34
32.29
6.46

Li I =
2 gi ——2. 17065

105.53 10.00
11~ 61 2.01

—10.57 0.40

399.87
45.91

—3.71

401.75'
46. 17(35 )

—3.07( 13 )'

3$
3p
3p
4s

623.53
63 ~ 39
12.59

150.46

Na I =
2 gi ——1.47749

143,62 93.25
18.89 9.11
5.41 1 ~ 80

34.22 16.71

860.90
91.40
19.80

201.38

885.82'
94.3(2)'
18.65( 10)

202(3)~

4s

4p

146.71
16.62
3.23

K I =
2 gl ——0.26064

34.69 45.25
4.89 4.92
2. 15 0.95

226.65
26.43
6.33

230.86"
28.85(30)'

6.09(4)"

5s
6s

643.9
172.0

Rb I =
2 gr ——0.541208

135~ 8 233 ~ 5

35.9 37.4
1013.2
245.3

1011.9"

239.2(1.2)k

6s
7s

1435
394

Cs I = —g =0.737 720 8

289 642
80 98

2366
572

2298'
546"

'Reference 20.
"Reference 21.
'Reference 22.
Reference 23.

'Reference 24.
Reference 25.
Reference 26.

"Reference 27.
'Reference 28.
'Reference 29.
"Reference 30.
'Reference 31.

Notation: p*=p&&2, p =p3/2 etc.
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TABLE III. Reduced matrix elements for the resonance transitions n$~np, np in alkali-metal
atoms calculated in third order (units: eao).

Transition' D(l) D(2) Sum Expt.

2$ ~2p
2$ ~2p

3.364
—4.758

—0.014
0.020

Lithium
—0.029

0.041
3.321

—4.697
3.305(1 )'

—4.674(2)'

3$~3p
3$ ~3p

3.691
—5.219

—0.043
0.061

Sodium
—0.102

0.145
3.545

—5.013
3.513( 1 )'

—4.947( 1 )'

4$ ~4p*
4$ ~4p

4.555
—6.439

—0.154
0.217

Potassium
—0.314

0.444
4.087

—5.778
4.08(8)

—5.77(11)

5$ ~5p*
5$ ~5p

4.819
—6.802

—0.213
0.296

Rubidium
—0.420

0.600
4.186

—5.906
4.11(6)'

—5.90(7)'

6$ ~6p
6$ ~6p

5.278
—7.426

—0.303
0.413

Cesium
—0.582

0.842
4.393

—6.171
4.52(1)

—6.36(1)

'Reference 32.
Reference 33.

'Reference 34.
Reference 35.

'Notation: p =p&q2, p =p3/2

calculated energies and hyperfine constants using
Brueckner orbitals, and who made extensive comparisons
with older work. The present perturbation theoretic treat-
ment of correlation is just the first step in an iterative
scheme, which ultimately leads to the description in terms
of Brueckner orbitals used in Ref. 38. Numerically our
correlation corrections for the 2s and 2p ionization ener-
gies in Li,

Eps, 2p
= —0.001 649, —0.001 375 a.u.

agree very well with the values obtained after one iteration
in Ref. 38, viz. ,

EE2 pp
———0.001637, —0.001360 a.u.

The small differences are presumably due to the fact that
only terms with I & 4 are included in first iteration in Ref.
38. It should be mentioned that the final values of the
ionization energies obtained after the iteration scheme had
converged, agreed with measurements to five significant
figures. The values for our third-order corrections to the
lithium hyperfine constants compare very well with corre-
sponding values obtained by Lindgren in the first itera-
tion of the Brueckner orbital equations. Since no other
higher-order MBPT calculations of transition amplitudes
in lithium are available we compare our values of transi-
tion amplitudes with the calculations of Sims et aI. ,
who employed methods on Hylleraas coordinates to ob-
tain

f(Li, 2s&/2~2pi/2) = 70.7476,

(Ref. 39) for the oscillator strength. This value can be

compared with the result

f(Li,2sin~2p 1/2) 3~ 0'7495 ~

from the present calculation. It is seen that the two
theoretical results agree better with one another than with
the measured value,

f (Li,2s»2~2p, /2) = —,
' 0.7416(12).

For sodium there are no previously published MBPT
calculations of ionization energies; however, one can ob-
tain comparison values for correlation corrections to ioni-
zation energies from the MCHF calculations of Froese
Fischer. For the 3s, 3p, and 4s states the values of the
correlation energies deduced from the MCHF calculations
are the following:

E3z 3p Qz
———0.006 65, —0.002 13, —0.001 47 a.u.

which agree approximately with the values,

E3 3p4 —0.00589, —0.00178, —0.00126 a.u.

from the present perturbation theory calculations. Indeed,
the MCHF wave functions used in the calculations of Ref.
40 included configurations with the valence electron and a
single core electron excited; these are precisely the excita-
tions appearing in Eq. (3). The transition amplitudes
given in the present calculation also agree well with the
results from Ref. 40. For the resonance transition
3s &~q~3p i~2 one finds the following values for the first-,
second-, and third-order contributions to the transition
amplitude:
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T

], z 3] 3.691, —0.043, —0. 102 (present)
3.695, —0.046, —0. 119 (Ref.40) .

The resulting theoretical values

DMCHF(Na, 3s ]/2 ~3p ]/2 )

from Ref. 40 and

DMBpT(Na, 3s]/2 3p]/2 ) =3 545

from the present calculation agree better with one another
than with the measured value

D,„~,(Na, 3s ]/2 ~3p ]/2 )

We have also confirmed that the present values for the
ionization energies of the 3s and 3p states of sodium as
well as the value of the 3s hyperfine constant agree we11
with the first iteration of the corresponding Brueckner or-
bital calculation. ' Many-body calculations of the Na 3s
hyperfine constant were also carried out by Lee, Dutta,
and Das who obtain a value

A (Na, 3s, /z) =857.80 MHz

compared to the present value

A (Na, 3s]/2) =860.99 MHz .

Part of the difference in the two values is because relativ-
istic corrections are included in the present calculations,
another part because the complete core polarization
corrections are included, and finally because summations
over excited states are carried out more fully in the
present work.

We were unable to find suitable comparison calcula-
tions for potassium except for the configuration-
interaction (CI) calculation of Ref. 5. These CI calcula-
tions give values for energies, hyperfine constants, and
transition amplitudes in very close agreement with experi-
ment, but the polarization potential used involves an ad-
justable cutoff parameter. The comparison of the present
calculations with these CI calculations is essentially iden-
tical to the comparison with experiment. Among the
lower-order ab initio calculations we mention the sys-
tematic calculations of relativistic all-order polarization
corrections to hyperfine constants which gives excellent
agreement with the present second-order hyperfine con-
stant for the 4s state of K and for the ground states of the

other alkali-metals as well.
For rubidium the present calculations of the ground-

state hyperfine constant,

A ( 'Rb, 5s»2)=1013.2 MHz

compares well with the value

A ( Rb, 5s]/2)=1020. 7 MHz

from the relativistic many-body calculations of Vajed-
Samii et al.

For cesium extensive relativistic many-body calcula-
tions have been made of correlation corrections to ioniza-
tion energies, hyperfine constants, and transition am-
plitudes, by Dzuba et al. The present values for the
second-order corrections to ionization energies should
agree with the corresponding values from Ref. 45, since
the two calculations are formally identical. We find, how-
ever, disagreements at the few percent level between the
two calculations, that may possibly be due to the different
number of partial waves considered. We have retained at
all terms contributing to the sums with I (6 in the
present work and have made an attempt to estimate the
remainder for I ~6 using Aiken's method. In Table IV
we compare values from the present calculation with per-
turbation theory values from Ref. 45, with Brueckner or-
bital values from Ref. 47, and with experiment. Values
for the hyperfine constants for cesium from the present
calculation compare favorably with the values in Ref. 46,
which were obtained using somewhat different methods;
we treat all excitation channels, but evaluate only the BO
terms in Z' ', whereas Dzuba et al. include only I diago-
nal (and in the third-order matrix element only j diagonal)
excitation channels but in this approximation evaluate all
third-order contributions. We find

]33 2366.4 MHz

2346. 5 MH

]33 571.8 MHz

561.5 MHz

where the upper values are from the present calculation
and the lower from Ref. 46. The correlation contributions
from the two calculations agree with one another at the
level of a few percent. The present calculations of

TABLE IV. Comparison of ionization energies for states of cesium from the present calculation with
other theoretical and measured values (energies in a.u. ).

State

6$1/2
6p1/2
6p3/2
5 d3/2
Sd5/2

HF

—0.127 37
—0.085 62
—0.083 78
—0.064 42
—0.064 53
—0.055 19

HF + corr'

—0.143 25
—0.092 14
—0.089 61
—0.074 64
—0.074 35
—0.058 89

BOb

—0.14445
—0.092 72
—0.090 12
—0.075 79
—0.075 24
—0.058 55

Present

—0.145 11
—0.092 53
—0.089 97
—0.075 58
—0.075 37
—0.059 39

Measurement'

—0.143 10
—0.092 17
—0.089 64
—0.077 04
—0.076 59
—0.058 65

'Reference 45.
Reference 47.

'Reference 19.
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6s~6pi&2 transition amplitudes for Cs can be compared
with results from Ref. 47

4.40 (present)

D(6s»z~6pi~z) = 4.45 (Ref.47, length form)
4.52(1) (expt) .

The method used in Ref. 46 is different from the present
approach in that approximate Brueckner orbitals were
evaluated, and these orbitals were used to determine the
first- and second-order transition matrix elements. The
agreement between the two approaches is seen to be satis-
factory at the few percent level.

The most obvious feature of the Tables I—III is that an
ab initio description of atomic properties valid at the few
percent, and sometimes significantly better than 1% level
is being achieved. It is also clear that without inclusion of
the BO terms the agreement degenerates to about the 10%
level. Therefore we are in a position to claim for the
alkali-metal atoms that second-order energy calculations
and a particular subset of third-order matrix element cal-
culations suffice to make predictions accurate at the
1—2% level for the heavier atoms, and 0.1—0.5 % for the
lighter atoms. It is possible that similar accuracy may be
achievable for other one-valence electron atoms, such as
those of the boron period, but because the argument about
the dominance of the BO terms breaks down for these
atoms a full calculation including SR terms may be re-
quired. ' It is also possible that the agreement found is

fortuitous. However, given the large number of experi-
mental observables all described accurately by this
method, we consider this unlikely. We would consider
further improvement in the agreement between theory and
experiment in going to the next order of MBPT as con-
vincing evidence that the perturbation theory is converg-
ing smoothly. While this extension would be an extremely
large scale task, the increasing power of supercomputers
means that it is not impossible. The results in this paper
involved about five hours of computation on a Cray X-
MP/24. We estimate that the SR terms, if carefully cod-
ed, could be done in about 15 hours. It is difficult to pre-
cisely estimate the amount of time for a complete evalua-
tion of third-order energies and fourth-order matrix ele-
ments, but we expect that less than 200 h would be re-
quired. If indeed such calculations can be performed and
accuracies of well under 1% achieved, then in addition to
obtaining high precision information about the weak in-
teractions from atomic physics, one would also begin to
test QED in neutral many-electron atoms.
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