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Some lower-lying S-wave resonances in positron-hydrogen scattering associated with the posi-
tronium N 2 and hydrogen N 3 thresholds are investigated using the method of complex-
coordinate rotation and using an adiabatic treatment in hyperspherical coordinates. Both calcula-
tions indicate that the lowest resonance associated with the positronium N 2 threshold lies near
E —0.150279 Ry, in disagreement with Doolen's prediction that the lowest resonance occurs at
E —0.222 Ry. We also report for the 6rst time resonance parameters associated with the hy-
drogen N 3 threshold.
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Here (1) and (2) denote the electron and the positron, re-
spectively, and p denotes the proton. Likewise, m; is the
mass of particle i and r;1 represents the distance between
particles i and j. In the complex-coordinate calculation we
use the true mass of the proton mp 1836.151m ~. The

Several independent studies' have already demon-
strated the existence of doubly excited state resonances in
positron-hydrogen scattering just below the hydrogen
N 2 threshold. Comparatively little work has been car-
ried out at higher energies. In a complex-rotation calcula-
tion with inverse iteration, Doolen predicted four reso-
nances below the positronium N 2 threshold, of which
the lowest was found at a total energy E —0.222 Ry.
The surprisingly large binding energy of this resonance
[relative to the Ps(N 2) threshold] and the large uncer-
tainties quoted by Ref. 5 have led us to carry out a study of
the S-wave resonances below Ps(N 2) and H(N 3) us-
ing two independent methods. A complex-coordinate cal-
culation gives the resonance features to high accuracy,
while a hyperspherical-coordinate analysis shows the criti-
cal regions in energy and in configuration space despite
somewhat poorer quantitative accuracy.

The first method starts from a complex-coordinate rota-
tion, as described in detail elsewhere. In rydberg units
the Hamiltonian is H T+ V, where

kinetic-energy operator is expressed conveniently in terms
of the interparticle separation coordinates as in Ref. 6.
The approximate eigenfunctions of the resonant states are
represented by a Hylleraas-type wave function:
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with k+l+rn ~ ta and to a non-negative integer. Up to a
total of M 969 such terms have been included here, cor-
responding to to 16. Moreover, to avoid potential prob-
lems associated with the ill-conditioned nature of
Hylleraas-type wave functions, the calculations have been
performed using quadruple precision arithmetic (about 30
significant digits) on an IBM 3084.

Theoretical details of the complex-coordinate rotation
are given in Ref. 1, so we only summarize the main com-
putational aspects of the method. Resonance parameters
are determined from the conditions that the complex ener-
gy eigenvalues are stabilized with respect to changes of 8
P, and M, where 8 is the angle in the complex coordinate
rotation r r exp(i8), P is the nonlinear parameter in the
wave function (3), and M is the total number of terms in-
cluded in the expansion (3). For a given set of 8 and P, it
takes about 8 h on the IBM 3084 to solve the complex ei-
genvalue problem for the most extensive M 969-term
basis wave functions.

Table I explores the convergence of the lowest resonance
associated with the Ps(N 2) threshold. These results are
given as a function of M with fixed values of P and 8
(P 0.3 and 8 0.3), showing that the results are con-
verged quite well. Furthermore, results are also stabilized
in ranges of 8 from 8 0.2 to 8 0.4, and of P from P 0.2
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TABLE I. Convergence behavior for the lowest S-wave reso-
nance below the positronium N 2 threshold (P 0.30,
8 0 30).

455
560
680
816
969

12
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16

E(Ry)
—0.150281 8
—0.150278 8
—0.150279 2
—0.150279 4
—0.150279 5

—,
' r(Ry)

0.000 327 3
0.000 332 8
0.000 334 1

0.000 334 6
0.000 334 6

R~(r2 +r2 )1/2 (4)

where for simplicity we now regard the proton as being

to P -0.4. Table II shows the complex-rotation results for
three resonances associated with the Ps(N 2) threshold,
and for two resonances associated with the H(N-3)
threshold. Those associated with H(N 3) are reported
for the first time. In Table II we show Doolen's results,
which were also obtained by a complex-coordinate rotation
but through an inverse-iteration technique. In the
inverse-iteration calculation, only one eigenvalue was cal-
culated at a time. In the present calculation, however, the
entire complex-eigenvalue spectrum is calculated as a
function of 8, P, and M. This permits us to examine
several resonant eigenvalues in a single diagonalization,
and to distinguish the complex eigenvalues representing
true resonances from those complex eigenvalues that
represent "cuts," i.e., the nonresonant continua. In partic-
ular, we have found that Doolen's complex energy eigen-
value at E = —0.222 —0.010i Ry must be an artifact. No
such eigenvalue shows stabilized character when 8, P, and
M are changed. We now believe that this eigenvalue
represents part of the cut that starts from the branch point
of the hydrogen N 2 threshold at E- —0.25 Ry. The
nonexistence of the resonance eigenvalue at E —0.222
Ry is even clearer on qualitative grounds when studied us-
ing adiabatic hyperspherical potential curves.

These potential curves are eigenvalues of the adiabatic
fixed-R Hamiltonian H/r -~„„,with the hyperspherical ra-
dius R defined as

infinitely massive. These eigenvalues then serve as adia-
batic potential energy curves in the calculation of approxi-
mate energy eigenvalues. In the adiabatic approxima-
tion these resonances appear to be true bound states, since
their decay is a nonadiabatic transition between potential
curves. Accordingly, no widths have been obtained in this
study.

Adiabatic potential curves are normally found variation-
ally by diagonalizing H~- „,t at each R in some con-
venient basis set. References 4 and 10 use very large basis
sets consisting of hyperspherical harmonics, which are op-
timum for small values of R. In the present calculation we
use instead a much smaller basis of only 15 functions opti-
mized for large radii as in Refs. 11 and 12. These basis
functions include all of the N =1, 2, and 3 wave functions
of hydrogen and of positronium, augmented by the lowest
three hyperspherical harmonics to improve convergence at
small R.

Figure 1 shows the attractive potential curves converg-
ing to the Ps(N 2) and H(N 3) thresholds. These are
the only potential curves in this energy range which con-
tain resonances. The potential curves converging to lower
thresholds are given by Pelikan and Klar. Three entirely
repulsive curves are not shown in Fig. 1 for clarity, since
they show several sharp avoided crossings between R 25
and R 30 a.u. which have been allowed to cross diabati-
cally. (Diagonal adiabatic correction terms have been
neglected here as well. ) The attractive curves in Fig. 1

have the following behavior at large R:

U;(R) E; —
2R R

(5)

where in rydbergs E; ——,
' and —

~ for Ps(N-2) and
H(N 3), respectively, and where a; 23.02 and 16.20 for
these respective channels. The lowest resonance in each
channel is drawn into the relevant potential curve of Fig. 1,
and each is given in Table II, showing reasonable agree-
ment with the more accurate complex-coordinate calcula-
tion discussed above. The presence of long-range dipole
potentials in Eq. (5) requires (nonrelativistically) an
infinite series of dipole levels to be present below each
threshold. The binding energies E and decay widths I of
successive levels r in each potential curve then scale ap-

TABLE II. S-wave resonances in e+ —H scattering.

E(Ry) —,
' r(Ry)

Complex rotation'
(present work)

Complex rotation
(Doolen, Ref. 5)

E(Ry) —,
'

1 (Ry)

Below Ps(N 2) threshold

Hyperspherical
(present work)

E(Ry)

—0.150279 (2)
—0.131 659(2)
—0.126774(5)

0.000 335 (2)
0.000 163(2)
0.000 048 (5)

—0.150318
—0.1316
—0.1267

0.000 334
0.000087

—0.14994
—0.131 33
—0.126 70

—0.11606(1)
—0.11206(2)

0.000 62 (I )
0.000 14(2)

Below H(N 3) threshold

—0.11671
—0.11227

'Numbers in parentheses represent the uncertainties in the last digits quoted.
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FIG. 1. Adiabatic hyperspherical potential curves for the
L 0 positron-hydrogen system are shown as a function of the
hyperspherical radius. Three other potential curves converging
to Ps(N 2) and H(N 3) are not shown since they are entirely
repulsive and support no resonances. The lowest resonance state
in each potential is indicated by a horizontal line.

proximately' as

E„~~ E, exp( —2x/a), I „+~ I „exp( —2x/a), (6)

where a; (a; —
4 ) '~ .

The most immediate conclusion which can be drawn
from the potential curves shown in Fig. 1 is that the lowest
resonance below the Ps(N 2) threshold could not possi-
bly lie at the energy given by Doolen, E —0.222 Ry.
This energy lies far below the minimum of the correspond-
ing potential curve, and is thereby ruled out at once. Simi-
larly, the potential curves of Ref. 4 rule out the possibility
of an 5-wave shape resonance just above the H(N 2)
threshold, which leads us to conclude again that there is no

resonance feature whatsoever at E —0.222 Ry.
We next compare the complex-coordinate calculation

with other resonances reported by Doolen. The lowest res-
onance shown in Table II lies at E —0.150279 Ry. This
compares with Doolen's value of —0.150318 Ry. The
difference is due to the fixed-nucleus (infinite-mass) ap-
proximation used in Ref. 5. The present complex-
coordinate results shown in Table II are obtained using the
finite proton mass, but it should be mentioned that we are
able to reproduce Doolen's results for this resonance when
we assume the proton to be infinitely massive. For the
second resonance (E —0.131659 Ry) below the
Ps(N 2) threshold, we find an appreciable difference be-
tween our width (2 I 0.000163 Ry) and that given in
Ref. 5 ( —,

' I 0.000087 Ry). This is presumably because
more extensive wave functions (M 969, F0~16) are ern-
ployed in the present calculation than those of Ref. 5
(M 680, ro 14). Furthermore, the use of more exten-
sive basis functions enables us to determine the width for
the third resonance, which was not obtained in Ref. 5.

In summary, we have used two independent methods
(complex-coordinate rotation and adiabatic hyperspherical
potential curves) to conclude that the lowest S-wave reso-
nance associated with the Ps(N 2) threshold lies at
E —0.150279 Ry, and not at E —0.222 Ry as report-
ed by Doolen. Since more extensive wave functions have
been used, the resonance parameters reported in this work
improve over previous results in the literature. Finally,
resonance parameters and potential curves for Feshbach
resonances associated with the H(N 3) threshold are re-
ported for the first time.
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