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We study growth oscillations in a class of deterministic models of growth which may be regarded
as mean-field-like approximations to certain more realistic stochastic models. We demonstrate that
the general morphology of the stochastic and deterministic models are similar. We then show that
growth oscillations produce a rich multiperiodic structure in the deterministic models, as they do in
the related stochastic systems. In both cases the multiperiodic oscillations are due to an induced in-
commensuration between a fundamental length scale (in this case the lattice spacing) and a dynami-
cal length scale (in this case, the average distance grown per time step). We show how to estimate
the effects of the growth oscillations and how to solve the deterministic equations analytically. This
solution leads to a series of approximations, successive terms of which include the effects of longer-
wavelength contributions to the multiperiodic growth oscillations. Finally, we present a sequence of
approximations, the first one of which is the deterministic model studied here, which approach the

related stochastic models.

I. INTRODUCTION

It has recently been shown!—3 that several models of ki-
netic growth processes possess a remarkable and unexpect-
ed feature, namely, the existence of oscillations in the
propagation of the growing interface. These oscillations,
which we refer to as “growth oscillations,” seem to be
quite an ubiquitous phenomenon, and can, generally, be
expected in processes satisfying the following two condi-
tions: (i) Growth takes place at a fairly well defined inter-
face and (ii) the growth process is discrete, i.e., material
agglomerates onto the growing cluster in packets or parti-
cles of finite size. As we have argued elsewhere,? having
satisfied these conditions, the growing structure can
generically be expected to develop a dynamically induced

incommensuration. In the lattice models discussed in Ref.,

2 (hereinafter referred to as I), and in the present paper, it
is easy to see that the induced incommensuration is be-
tween two length scales. The first is the static small dis-
tance cutoff, which in these models is the lattice spacing.
The second is a dynamically defined length scale, which
in these models is the average distance which the growing
interface moves in one time step. (Arguments for the ex-
istence of growth oscillations in nonlattice models were
presented in I and are discussed briefly in the conclusions
of the present paper.)

These oscillations have observable physical conse-
quences and result in, among other things, interesting
multiperiodic oscillations in the density and growth ve-
locity of the cluster. In I, phenomenology of growth os-
cillations in a simple stochastic model of growth was
studied in some detail. This model* (although differing in
some important details) is a close cousin of the Broadbent,
Hammersley, Leath, and Alexandrowicz algorithm for the
generation of percolation clusters.® Paper I also contained
an extensive qualitative discussion concerning the origin
and generality of growth oscillations.

In this paper we wish to study growth oscillations fur-
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ther by turning our attention to a deterministic model of
growth which has the form of a rather complicated itera-
tive map, and which can be thought of as a kind of
“mean-field” approximation to the stochastic model dis-
cussed in I. The clusters generated by the deterministic
model studied in this paper exhibit both a morphology
and growth oscillations which are qualitatively similar to
those seen in the stochastically grown clusters of the
model of paper I. However, we are able to make consider-
ably more analytical and numerical progress on this deter-
ministic model, and this has led to deeper insights into the
nature of the growth oscillations phenomenon and its
behavior in various circumstances. Furthermore, if we
consider the model studied in this paper as a first approxi-
mation to the stochastic model of paper I, we are able to
suggest a sequence of successively better approximations
to the physically more realistic stochastic case. As we
shall discuss below, this may be useful in trying to calcu-
late the behavior of kinetic growth near a critical value of
its control parameter, which corresponds to kinetically
generated fractal aggregates.

The rest of this paper is organized as follows. In Sec. II
we briefly review the stochastic model of paper I and
demonstrate that our deterministic model is a mean-field-
like approximation to it. Using a numerical solution of
the deterministic map in two dimensions, we show that
the stochastic and deterministic (mean-field) models have
qualitatively similar morphologies. We then turn our at-
tention to a construction of simple one-dimensional and
quasi-one-dimensional deterministic models (a term which
will be explained below) with which we will study various
aspects of the growth. We discuss the way in which the
structure of these simple deterministic maps changes
when we change the initial conditions or dimensionality of
the system. In Sec. III we present a detailed study of the
one-dimensional deterministic maps constructed in Sec. II.
For this realization of the model we present a variety of
numerical and analytical results including (i) a series of
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numerical solutions which exhibit density oscillations for
various values of p, the control parameter, (ii) a procedure
for obtaining an analytical solution of the deterministic
problem. This analytic procedure also results in an ap-
proximation scheme for the density which can be thought
of as an expansion, higher terms of which represent the
contribution to the density of oscillations of successively
longer periods, and (iii) a determination of the behavior of
the growth when p is near p., the critical value of p at
which growth is marginal. (p, is the analogue of the
value of the control parameter which, in a more realistic
model of stochastic growth, would lead to the growth of a
fractal-like structure.) We will show that in this case the
density of the cluster falls off like an inverse power of x
at p=p.. Some of the results and methods presented in
this section can be applied more generally, and we indicate
when this is so.

In Sec. IV we discuss a larger class of related deter-
ministic models. These models, although formally one-
dimensional, also describe growth normal to a (d—1)-
dimensional facet embedded in d dimension. We will
show that for these models, there are two critical values of
p at which the growth undergoes qualitative changes both
in its morphology and in the nature of its oscillations.
Roughly speaking, one of the critical values of p is associ-
ated with a faceting transition and the other with the ana-
log of marginal fractal growth. Furthermore, in this sec-
tion we will present a simple argument which will help to
explain the multiperiodic nature of the growth oscillations
and their qualitative dependence on p.

In Sec. V we will discuss the relationship between the
stochastic and deterministic models further. In particu-
lar, we will describe a sequence of approximations which
allows us to systematically approach the stochastic model.
The first member of this sequence is just the deterministic
model discussed in the earlier sections of this paper. Sec-
tion VI consists of a summary, conclusions, and a catalog
of interesting remaining problems, along with suggestions
concerning their solution.

II. GENERAL FEATURES OF THE STOCHASTIC
AND DETERMINISTIC MODELS

To describe the stochastic model of growth studied in
Refs. 1, 2, and 4, consider a d-dimensional hypercubic lat-
tice (usually, we will consider the case d =2) with some
set of initially filled sites. For specificity, consider initial
conditions consisting of a single seed particle at the origin
of the lattice. (Other initial conditions will be discussed
below.) In the first time step, fill each nearest neighbor
site of the seed particle independently and stochastically
with a probability p. Call the sites so filled the second
generation. In the next time step fill the empty nearest

neighbors of the second generation independently and sto-
chastically with a probability p. Continue growing the
cluster by testing, in the nth time step, all the nearest
neighbors of the nth generation and filling each one with
a probability p. This algorithm may be summarized by
the following iterative equation: '

Sp11(x)=¢,(x) [1—=JI[1=S,0)]1| ITI [1=Sm(x)]
y m=1

(2.1)
with
(gn(x))=p (2.2a)
and
(gn(x)gn(x")) — (gn(x)){gn(x"))
=p(1—p)d(n—n')d(x—x') . (2.2b)

Here x labels the lattice site and n labels the time steps.
The & functions in (2.2b) are Kronecker & functions of
their (integer-valued) arguments,

1, if site x is filled precisely at time n,

Sp(x)= )
0, otherwise,

(2.3)

and the g,(x)’s are independent random variables taking
on values O or 1. The product over y in (2.1) is a product
over all nearest neighbors of the site x. The brackets { )
denote an average over an ensemble of many clusters, so
that Egs. (2.2) just express the fact that the g,(x)’s have
an average value of p and are independent with respect to
both x and n.

This model has a rich morphological structure and ex-
hibits, in addition, very interesting and complex growth
oscillation effects. The reader is referred to paper I and to
Ref. 4 for a detailed description of these properties. A
general familiarity with the results of paper I will be as-
sumed in the rest of this paper.

The expression (2.1) is difficult to analyze both numeri-
cally and analytically. Numerically the difficulty arises
because the stochastic noise, which increases as p de-
creases, necessitates averaging over many samples of clus-
ters, or, alternatively, growing single clusters of a rather
large size. Analytically, difficulties arise because of the
complicated correlations between different S, (x)’s result-
ing from the algorithm (2.1). It is, however, possible to
simplify (2.1) so that analytical and numerical progress
can be made more easily. To do this, we focus on a quan-
tity of particular interest,

P,(x)=(S,(x)) (2.4)

and take an ensemble average of (2.1) approximating the
right-hand side as a product of independent averages, viz.,

P i) =Sy 41 = (a(0) 1= T0-5,001] I1 [1-5,01)
y m=1

—{g,(x)) [1~ ]’I[l—(S,,(y))]]
y

[1—(S,(x))] 2.5)
=1

m
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so that
Py(x)=p [1=TI[1=P,]) II [1—Pn(x)] .
y m=1

(2.6)

Equation (2.6) can be considered to be a kind of mean-
field approximation to the stochastic equation (2.1), and
defines the model that will be the object of study of most
of this paper. Equation (2.6) is a rather complex deter-
ministic iterative map for the quantities P,(x). As we
shall see, it has morphological characteristics and exhibits
growth oscillations which are qualitatively similar to
those of (2.1). As such, enough of the important dynam-
ics has been retained in (2.6) to provide a good first-order
approximation to (2.1), as well as providing us with a sys-
tem which is interesting in its own right. Moreover, as we
shall discuss in Sec. V, it is possible to systematically gen-
erate a sequence of better approximations to (2.1), the first
one of which is just (2.6).

We begin our study of the deterministic growth model
(2.6) by demonstrating that the morphology of clusters
grown according to this algorithm is qualitatively similar
to those grown according to (2.1). To do this, we have
solved (2.6) on a computer for various values of p on a
two-dimensional square lattice with initial conditions

Py(x)=58(x) (2.7)

which just represents the existence of a single seed particle
at the origin of the lattice. In Fig. 1 we show the overall
cluster shapes obtained by using (2.6) up to 200 genera-
tions. To define the cluster shapes, we first note that the
density p(x) has the property

plx)ac 3 Pylx) . (2.8)

As we shall see in Sec. I1I, p(x) has a complicated oscilla-
tory structure, but beneath the oscillations and aside from
some initial transients there is also an average uniform
(but p-dependent) piece for p >p.=0.25. The boundary
of the clusters were defined by those points at which the
density first fell to + of its average value within the clus-
ter. Except for values of p extremely close to p,, this def-
inition yields a clear and unambiguous definition of the
cluster boundary. A comparison of Fig. 1 with Fig. 1 in
Ref. 4 shows clearly that the general morphological
characteristics of Eq. (2.1) and (2.6) are very similar
indeed. Like (2.1), the deterministic model generates clus-
ters which have a faceting transition (in this case,
pr=0.5) as well as a transition to “marginal growth” (in
this case p, =0.25).

The equation (2.6) [as well as its stochastic counterpart
(2.1)] can be applied to a variety of situations in different
dimensions and with different initial conditions. It is a
simple exercise to write down the particular form of (2.6)
which is applicable in different cases. Here we wish to
display some of the forms which will be of particular in-
terest for us in the rest of this paper. The situations we
shall describe lead to equations that are one-dimensional,
although the equation may describe an aspect of a growth
process which takes place in more than one dimension.

p=10 p=0.90 p=080 p=0.70
p=0860 p=050 p=040 p=030

FIG. 1. Shape of clusters grown according to the determinis-
tic model of Eq. (2.6) for various values of p.

The equations so generated all have a similar structure,
but their differences nevertheless lead to interesting differ-
ences in their behavior, as we shall discuss below. For
simplicity we limit ourselves to hypercubic lattices.

Consider first true one-dimensional growth along a line
with initial conditions corresponding to a single seed par-
ticle at the origin. In this case (2.6) becomes

froe1X)=1=p[1—fr(x —1)f,(x+ D] I fm(x),
m=1

(2.9)
where
fax)=1—P,(x) .

A close cousin of the process (2.9) is the case of two-
dimensional growth with initial conditions which consist
of an infinite line of seed particles along the y axis. In
this case, because of the translational invariance in y, the
growth is clearly a function only of the coordinate along
the x axis, and (2.6) becomes

(2.10)

FrtX)=1=p[1— £ (x = 1)f2x)fyx + D] T fnlx) ,
m=1

(2.11)

which is similar, but not identical to (2.9).

Another important aspect of growth in two-dimensions
is growth along a direction intersecting a facet. The sim-
plest case to consider is growth along a ray oriented at 45°
to a lattice axis. If we take as our initial conditions either
(i) an infinite line of seed particles perpendicular to the
direction of growth, or (ii) a single seed particle at the ori-
gin and wait long enough so that a clear facet of at least
several lattice spacings has developed, then the growth
along 45° will be essentially translationally invariant along
the facet. In this case (2.6) becomes

Fusr@)=1=p[1—f2x = Df2x+ D] [T fmlx) .
m=1

(2.12)

In (2.12) x labels the direction perpendicular to the facet.
(Essentially, x labels rows of staggered lattice sites.)
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It is easy to generalize (2.12) to higher dimensions. In
d dimensions, for large enough p a cluster will have facets
of dimension 1,2,...,d —1. For example, in three di-
mensions there will be, for large enough p, flat two-
dimensional facets [oriented along the (+1,+1,%1) direc-
tions] as well as sharp one-dimensional edges which lie in
the planes defined by pairs of lattice axes. If we consider
growth along a direction perpendicular to a (d —1)-
dimensional facet, then, for values of p such that that
facet exists, (2.6) becomes ‘

S =1=p[1—fx —1fHx+D] [ fmlx),

m=1
(2.13)

where (2.13) is understood to be applicable well within the
facet region, i.e., for values of x and n for which the sys-
tem is essentially translationally invariant perpendicular
to the direction of growth. [Of course, if we wish to be
more precise, we may say that (2.13) applies to growth
from initial conditions which consist of an entire hyper-
plane of seed particles of dimension d —1, the normal to
the hyperplane being in the direction X;+%;+ * * + +X%g4.]
We stress that (2.13) applies only in the region of a.
(d —1)-dimensional facet in d dimensions. In particular,
the equations describing growth near a (d—j)-
dimensional facet (j > 1) in d dimensions are not one di-
mensional.

III. DETERMINISTIC GROWTH IN ONE DIMENSION

In this section we will present a variety of numerical
and analytical results for the simple case of purely one-
dimensional deterministic growth governed by Eq. (2.9).
In Sec. III A we will describe the general structure of this
growth as a function of p and will discuss the features of
(2.9) that are important in order to have oscillations. We
will also display the results of numerical solutions for the
density for some values of p. In Sec. III B we will show
how to solve Eq. (2.9) to obtain analytic expressions for
P,(x). In Sec. IIIC we will describe the structure of the
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cluster for p near p., and will show that the density falls
off like a power of x when p=p,.

A. General structure

The qualitative behavior of Eq. (2.9) is similar in many
ways to the behavior observed for the stochastic model
studied in paper I. In Fig. 2, for example, we have plotted
the function P,(x) generated by Eq. (2.9) with the initial
conditions (2.7) for p=0.8. In this figure the points
represent the trail of all values of P,(x) for all n and x.
The solid lines pass through P,(x) for selected values of n
so that each curve represents the growing interface at a
given time.5

This figure should be compared to Fig. 2(b) in paper I
in which the same quantity along a lattice axis, defined by
ensemble averaging, is plotted for the stochastic two-
dimensional growth model discussed there. While they
differ in detail, the two figures are clearly qualitatively
similar. Moreover, if we plot P,(x) for different values
of p, we see the same general trends for both the d =2
stochastic model along a lattice axis and the d =1 deter-
ministic model, namely, the fundamental period of oscil-
lation, which is determined, roughly, by the distance be-
tween the peaks of the broad curves in Fig. 2 [or Fig. 2(b)
of paper I] decreases with decreasing p. This behavior
will be explained in more detail in Sec. IV. In addition,
the amplitude of the oscillations tends to increase with de-
creasing p. Furthermore, in both models there is a critical
value of p, p., at which growth becomes marginal. Thus,
both models share the same scenario: For 1>p >p,, the
algorithm grows a structure with finite overall back-
ground density and with oscillations on top of that. As
p—1 the oscillations become longer in period and smaller
in amplitude, and the growth becomes relatively more uni-
form.” As p—p,, the fundamental period goes to zero.
This we understand, in a sense that will become clearer
below, as a limit cycle becoming a fixed point. Moreover,
when p=p, the fixed point is the trivial fixed point since,
when p=p,, P,(x)—0 for large x and n. As we shall see
in Sec. IIIC, at p=p, the growth is marginal with a
power-law-behaved density analogous to fractal behavior.

250

150 200

FIG. 2. P,(x) as a function of x along a lattice axis for the deterministic model (2.6) in two dimensions with p=0.8. The heavy
dots, connected for visual clarity by solid lines, represent the values of P,(x) for a fixed n. Values for n =20, 70, 120, 170, 220, and

270 are shown.
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Thus, kinetic fractal growth is controlled by the trivial
fixed point of the appropriate functional stochastic or
deterministic map analogous to (2.9).

By studying (2.9) further, we can derive a number of
other results which will be helpful in elucidating the gen-
eral characteristics of such maps. First, it is simple to
derive the value of p, for (2.9). To do that, we recall as
p—D., P,(x) is small for large n and x, and so we can
linearize (2.9) in P,(x). We can then sum over n on both
sides of the equation to obtain an expression for the densi-
ty D(x)= 3,, P,(x). To deduce a value for p,, it is suffi-
cient to keep only linear terms in D(x). In this approxi-
mation we have

D(x)=p[D(x+1)4+D(x—1)],
2D(x)=(1—2p)D(x)+ -+ .

(3.1a)
(3.1b)

For p <p, =% the physically acceptable solution of (3.1b)
is exponentially falling with x. For p >p, D(x) has oscil-
latory behavior as a function of x. For p=p, =+, the
linear term on the right-hand side vanishes and the
behavior is determined by nonlinear terms. In Sec. IIIC
the behavior of (2.9) at p =p, will be discussed more care-
fully, and the power-law behavior of the density of the
cluster at p=p, = % ‘will be derived.

It is interesting to compare this value of p, with the
value obtained for the closely related problem defined by
(2.11). Linearizing that equation and applying the same
reasoning that led to (3.1) we find p,=+. That these
values of p, are correct is intuitively obvious when we re-
call that in model (2.9) each growth site has two nearest
neighbors and in (2.11) each growth site has four nearest
‘neighbors.

.Another lesson to be learned from studying (2.9) is the
conditions necessary to obtain oscillatory behavior. In
particular, consider (2.9) without the last factor, i.e.,

o1 (x)=1—p[1—fa(x—Df(x+ D] .

It is not difficult to see that with the initial conditions
(2.7) this iterative map does not have the oscillating struc-
ture of (2.9). In Fig. 3, for example, we have plotted

(3.2)

P,(x) generated by (3.2) for p=0.8. The reason there is
no oscillatory structure is just that there are no competing

~terms in the iterative map. In order to have oscillations

we need such competitive interactions. The simplest ex-
ample of this is competition between the linear and quad-
ratic terms in the Feigenbaum map.®? The last factor in
(2.9) provides the necessary competition. Physically what
happens is this: A site has a better chance of being occu-
pied at time »n the more likely it is that its neighbors are
occupied at time n —1. On the other hand, the more like-
ly its neighbors are to be occupied at time n — 1, the more
likely the site in question is to be occupied at time n —1.
[Roughly speaking, this is the information contained in
the last factor of (2.9).] The competition between these
two effects is necessary for growth oscillations. Further-
more, this same competition gives rise to a moderately
well-defined interface for the growing structure, which, as
we have argued elsewhere!? is a necessary ingredient for
understanding the existence of growth oscillations from a
different point of view. To see this clearly, look again at
Fig. 3. Notice that P,(x) for fixed n as a function of x is
very broad (extending all the way to x =0) compared with
the similar quantity plotted in Fig. 2. There are no limit-
ing terms to suppress the small x tail of P,(x) for fixed n
in Fig. 3, so that the growing interface does not stay nar-
row. Note finally that while the last factor in (2.9) is
physically motivated for our growth process, a much
simpler form would also give rise to growth oscillations.
To get oscillatory structure in this simple example, we
need only keep a finite number of factors, f,,(x), near
m=n.

To complete our survey of the general structure of

-equations such as (2.9), it is interesting to plot the density

of a growing one-dimensional cluster as a function of x
for various values of p. The density oscillations generated
by (2.9) are small enough in amplitude to be rather sensi-
tive to numerical rounding errors in computer calcula-
tions. However, the oscillations of the related equation
(2.11) are somewhat more pronounced and are unaffected
by numerical errors in the computation. In Fig. 4, there-
fore, we have plotted the density as a function of x for the

X

150

250

FIG. 3. P,(x) as a function of x for the model defined by (3.2). This figure was generated by iterating (3.2) for 300 generations.
The heavy dots, connected for visual clarity by solid lines, represent the values of P,(x) for fixed n. Values for n =20, 60, 100, 140,

180, 220, 260, and 300 are shown.
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FIG. 4. Density as a function of x for one-dimensional deterministic growth governed by Eq. (2.11) for various values of p. For
each curve a detail is shown in the upper right-hand corner. For all graphs p(x) was determined by averaging over the region
600 < x <4000 to eliminate initial transients. The vertical axis is [ p(x)—g]Xx 10% (a) p=0.4, (b) p=0.5, (c) p=0.6, (d) p=0.7, (e)
p=0.8, () p=0.9, (g) p=0.5290, (h) p =0.5291.
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FIG. 4. (Continued).

equation (2.11). Most qualitative observations we wish to
make apply to (2.9) as well. (Note, however, that the criti-
cal values of p are different in the two cases.) From these
figures we can deduce two important characteristics of the
density of this model. First, the density clearly has a
complex, multiperiodic structure. In fact, in general, we
should expect contributions from Fourier components
with wavelengths up to the order of the size of the cluster.
This can be understood by referring to Fig. 2 [which, al-
though it was generated by (2.6), is qualitatively similar to
the analogous curves generated by (2.9) and (2.11)] in
which we see that the broad dotted curves are not identi-
cal one to the next, but have increasingly long tails dying
off toward the origin. Since p(x)~ 3, P,(x), these long
tails will modulate the density on a period of the order of
the size of the cluster. This multiperiodicity is also con-
sistent with what was observed in paper 1 for the stochas-
tic model. .

In Sec. IV, when we discuss analogous oscillations in a
related quasi-one-dimensional model, we will present a
qualitative explanation of the oscillations that should help
to clarify the nature of the multiperiodic structure as well
as the dependence of the fundamental period on p.
Second, the oscillatory structure of p(x) can be incredibly
sensitive to small changes in p, as we see by comparing
Figs. 4(g) and 4(h). In these figures p differs by 10~%.

B. Analytic solution of one-dimensional
deterministic growth

In this section we will show how to solve Eq. (2.9)
analytically. Our method of solution will provide us with
a hierarchy of linear equations for functions describing
the dotted line curves such as those shown in Fig. 2. With
minor modifications the technique can be applied to any
quasi-one-dimensional growth process such as that ex-
pressed in Eq. (2.11).

To begin, we first change variables in (2.9) and consider
f as a function of L =x —n and n, rather than as a func-
tion of x and n. Define

r(L)=fu(x),

then (2.9) becomes

(3.3)

FpptL —1)=1—p[1—ry(L +1)r (L —1)]

n
X I r(L+n—i).
i=0

(3.4)

[Note: The argument of the function r is the value of x
to which the corresponding f in (3.3) refers, minus the
subscript of the r. So, for example, if in (3.4) we pick a
value of n and x, say (ng,xo) such that L =L,=xq—n,,
then the argument of 7; in the last factor of (3.4) is just
Lo+no—i, which corresponds to a value of x=(L,
+no—i)+i=Ly+ny=xy, as it should.]

Now, since the moving interface can never propagate
faster than one lattice spacing per time step, and since our
initial conditions consist of a single seed particle at the
origin, it is clear that r,(L)=1 for any L >0, and for any
n. Using this we can simplify (3.4). If we set, in (3.4),
L =1 then we have.

"a41(0)=1—p[1—r,(0)],
ro(0)=0,

(3.5a)
(3.5b)

where (3.5b) just expresses the initial condition of a seed
particle at the origin. Equation (3.5) is an easily solved
linear equation for the function r,(0) as a function of n.
This information can now be used to determine the r,(A4)
for other values of A by using (3.4) with other value of L.
If we set L =0 in (3.4) we have

Foit(—=1D=1—p[l—r,(—1)]r,(0),
ro(—=1)=ro(=2)="---=1.

(3.6a)
(3.6b)

Equation (3.6a) is a linear equation for r,(—1) which,.
with the initial conditions in (3.6b) and the function r,(0),
can be solved. It is easy to see that the only physically ac-
ceptable solution for r,(—1) is r,(—1)=1. This is be-
cause the growth algorithm forbids the occupancy of odd
(even) sites at even (odd) times. Next, setting L=—1 in
(3.4) yields
rn(=2)=1—p[1—r,(=2)r,(0)]r,(—D)r,(0) , (3.7)
which, given (3.6b), r,(0), and r,(—1), can be solved for
ry,(—2). In general we can set L=—2/, and define
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t,(—1)=r,(L) [to eliminate the trivial functions r,(L)
for odd L] in (3.4), and we have
ty i(—=D=1—p[1—t,(=Dt,(—1+1)]
th—l(_l+1)tn—3(—l+2) e tn—21+1(0) ’
(3.8)
so that the function t,(—1[) can be solved in terms of the
functions ¢,(—A4) w1th 0<A4<L

We can easily write down the general solution of (3.8).
We note that it has the form ‘

hy(—=D+g,(—=Dt,(=1), (3.9)

tn+1('*l):
where the coefficients are given by
hy (=) =1—pt, _((—=I+1)t, _3(—1+2)- - t,_211(0)

(3.10)
and

The general solution of (3.9) is

gn( -1

ty o i(=D=to( =D ] g:i(—1)

i=0

+ 2 [Me(~D. @11

f[ (=0 |7=°

Clearly, the complete set of functions r,(L) is equivalent
to the complete set of function f,(x). But what are these
r,(1)’s? These just describe the dotted-line curves that ap-
pear in figures such as Fig. 2. The curves are labeled by
—1, so that 1—1,(—1) considered as a function of n for
fixed [ just describes one of the broad dotted curves in the
figure. To see that this is so, consider two successive
points on one of the dotted curves. Let the first point
represent some value of P,(x), i.e., the probability that
the site x is occupied at time n. The next point to the
right along the same curve just represents the probability
that site x 4+1 is occupied at time n+1 which is
P, (x+1). But t,(—=D=t,(x—n)=[f,(x)=1-P,(x),
and 1—-P, (x+1)=f, qx+1)=t, ([x+1—(n+1)]
=t, 41(x —n)=t, 1(—1) so that both points share the
same value of . Thus, 1—t,(—1) as a function of n de-
scribes the broad dotted curves as a function of x. The
first dotted curve corresponds to /=0, the next to /=1,
and so forth.

The expressions for these curves are simple for low
values of |/| and get progressively more complicated as
| 1] increases. For example,

t,(0)=1—p" (3.12)
n—1 A
t,(—D=p" | T] (1—p"
i=0
n—1 _ j+1
x |1+ 3 —1=2tP (3.13)
j=0 p]-q-l I‘I (l—p )
k=0

We have plotted these functions directly and have checked
that they reproduce the curves generated by direct use of
Eq. (2.9).

This procedure for solving (2.9) can be thought of as a
method of approximating the structure of the growing

- cluster by retaining contributions of successively longer

wavelength. This can be most easily understood in terms
of the density, which, as we saw has a complicated mul-
tiperiodic structure. Suppose we solve for #,(0), #,(—1),
t,(—2), t,(—3), and t,(—4) and plot them as in Fig.
5(a). It is clear that a good approximation to the structure
of the cluster as given, say, by its density would be to take
the segment of Fig. 5(a) that lies between the intersection
of the /=1 and /=2 curve [point A4 in Fig. 5(a)] and the
intersection of the /=2 and /=3 curve (point B) and sim-
ply repeat it as shown in Fig. 5(b). (We have chosen to
repeat this segment rather than the one lying between
point O and A since the region OA still includes signifi-
cant transient effects.) This will capture much of the os-
cillatory structure of the density, and, in particular, will
include the strong effects of the fundamental period. If
we solve, in addition for #,(—5), then we can get a better
approximation by plotting all six curves and taking the
segment that lies between the intersection of the /=1 and
/=2 curves and the intersection of the /=3 and /=4
curves [point C in Fig. 5(a)] and repeating that. This will
include not just the effect of the fundamental period, but
also the effect of some modulations of it on a longer
length scale. Since the oscillations with shorter periods
seem to have, in general, the largest amplitude, a fairly
low order of this approximation should give a reasonable
description of the growing structure. From Fig. 2 it is
clear that one major contribution to the very long-
wavelength oscillations is the long low tail of the curves
with larger values of |/| which contribute only a small
amplitude modulation to the density. Notice also how
closely the lower contributions from the /=3 and /=4
curves match when we repeat the segment AB.

(a)

~_ -0
>
~----0

x[-—--=-=--=

(b)

|
|
i
1

X
FIG. 5. (a) The function ¢(0), t(—1), t(—2), t(—3), and
t(—4) from Fig. 2. (b) Repetition of the segment 4B in (a).



C. Behavior for p near p,

In Eq. (3.1) we derived p., the value of p below which
the cluster grows only to a finite size. We found p, =5
Here we wish to study the behavior near p, in a little
more detail. In particular, we want to calculate the “frac-
tal dimension” (i.e., the power of x with which the density
falls off) of the cluster defined by (2.9) at p,., and we want
to understand, qualitatively what happens to the curves of
constant x —n derived in Sec. IT as p—p.t.

To begin, we note that for p near p., P,(x) will get
small as n and x get large. Since we are interested in the
asymptotic behavior of the cluster in this region, we can
expand (2.9) in powers of P,(x). Doing so, and keeping
terms of order P2(x), we have

Py y1(x)=p |Py(x — 1)+ Py(x +1)—P,(x =P, (x +1)

—[Py(x+1D)+P,(x—1)] 3, Pp(x)|.

m =0
(3.14)

In Eq. (3.14), let us now take x large and fixed and sum
over n. Defining '

D(x)= f‘,opm(x), (3.15)
we have " |
D(x+1)+D(x—1)—§D($c)

= ioPn(x+l)Pn(x—l)

+ io [Py(x+1)+P,(x — 1] iop,,,(x) .
(3.16)

D(x) is clearly just the density of the cluster as a function
of x.

Now let us try to simplify the terms on the right-hand
side of (3.16). Our object is to obtain an equation for
D(x) which is accurate in form for large x so that we can
deduce the asymptotic behavior of D(x). We are not con-
cerned with computing precise values of coefficients here,
but only with discovering which are the leading nonzero
terms in the asymptotic limit. First, we note that in the
last term on the right-hand side of (3.16) we can replace

S Pox)— S Po(x)=D(x).

m =0

(3.17)

m =0

To justify this, note that for x fixed P,(x) will be essen-
tially zero for n sufficiently small and sufficiently large.
If n is sufficiently large for fixed x then clearly

i —oPm(x)=D(x). If n is small enough so that the
primary contribution to D(x) is missing from
> —0Pm(x), we can still make the replacement (3.17) in
(3.16), since for these values of n the coefficient of
o —o0Pm(x) will be essentially zero anyway. [Note that
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we assume that P,(x) is a moderately smooth function of
x for large enough x.] Thus, to leading order, the last
term on the right-hand side of (3.16) becomes

2[Px+1D+P,(x—1)] 3 Ppix)

m=0

—[D(x+1)+D(x—1)]D(x). (3.18)

The first term on the right-hand side may, for our pur-
poses, be replaced by an upper-bound. It is certainly true
that

0< 3 P(x+ 1P, (x—1)<Dx +DDx—1).  (3.19)

As we shall see, when p =p, the leading behavior of D(x)
for large x will come from terms on the right-hand side of
(3.16) proportional to D*(x). Since both terms on the
right-hand side of (3.16) have the same sign, the first term
can, at most, alter the value of the coefficient of the
D?*(x) which will not affect our results for the behavior of
the density with x. To demonstrate this, we will replace
in (3.16)

S Py (x+ 1P, (x—1)—aD(x +1)D(x—1)  (3.20)

and show that the form of the asymptotic behavior (i.e.,
the exponent of x) is insensitive to the value of a.
Using (3.20) and (3.18) in (3.16), and further expanding

D(x+1)=D(x)+D'(x)++D"(x) (3.21)
we have
D"(x)+ 2—% D(x)=(2+a)DXx)—a[D'(x)]?
+(1+a)D(x)D"(x) , (3.22)

where we have kept terms up to second order in deriva-
tives with respect to x.

What does (3.22) imply for the large x behavior of
D(x) for various values of p? When p=£p, there is a term
proportional to D(x), and so we may ignore all the terms
on the right-hand side of (3.22). We find then that

D(x)~ exp[ —i(2—1/p)V?x], p+#p. . (3.23)

For p>p.=+ D(x) given by (3.23) is oscillatory. This
solution for p >p. is not necessarily consistent with the
assumptions used to obtain (3.22). Nevertheless it is in-
dicative of the fact that D(x )0 for large x when p > p,.
For p <p., (3.23) shows us that D(x) falls exponentially
with x. That is to say, the cluster grows only to a finite
size, even in the n— o  limit, as we expect for p <p,.
When p =p, =+, the coefficient of the D(x) term is zero,
and we must keep the terms on the right-hand side of
(3.22). For large x, the leading behavior is determined by

the first term on the right-hand side of (3.22) and we find
D(x)~x"24 -, p=p, . (3.24)

The other. terms, involving derivatives on the right-hand
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side of (3.22) will control higher-order corrections to the
asymptotic behavior given in (3.24). Note that the ex-
ponent in (3.24) is independent of a (> 0), as promised
above. Because the arguments leading to (3.22) are a bit
loose, we have also solved (2.9) numerically, on a comput-
er for p=p, =+. We found that the asymptotic behavior
of D(x) is that predicted by (3.24). Thus, the one-
dimensional deterministic model (2.9) has a power-law-
behaved density for p=p, ——-%. This expression of mar-
ginal growth is the closest our simple one-dimensional
model can come to mimicking fractal behavior. True
fractal growth will occur in the more realistic higher-
dimensional stochastic models described elsewhere.

IV. DETERMINISTIC GROWTH OF FACETS

In addition to the equation studied in Sec. III, it is use-
ful to study Eq. (2.13) which is a quasi-one-dimensional
equation describing growth normal to a (d—1)-
dimensional facet in-d dimensions, as described in Sec. II.
We will find that as a function of p, the growth described
by this equation has two “critical points.” The first, py, is
the value of p below which there are no facets (in a sense
to be described below). The second, p., is the value of p
below which the probability to continue growing to infini-
ty is zero. Our purpose in this section is not to determine
all the details of the behavior of (2.13). Rather, we shall
apply the methods of solution of Sec. III to determine the
general behavior of the growth governed by (2.13). In so
doing we will gain additional insight into the origin and
nature of the growth oscillations.

Before beginning, it is useful to stress a point made in
Sec. II. Equation (2.13), properly speaking, describes
growth along the direction z= >{_, X;, where X; is a unit

“vector in the i direction on a d-dimensional hypercubic
lattice, and where the initial conditions are a (d—1)-
dimensional surface of seed particles normal to z. Con-
cerning growth from a single seed particle in d-
dimensions, this equation is relevant to the local descrip-
tion of the growth perpendicular to a (d — 1)-dimensional
facet when such a facet exists. Equation (2.13) assumes
translational invariance in directions perpendicular to z.
When there is no facet in growth from a single seed such
translational invariance disappears and (2.13) is no longer
relevant to the description of that situation. Nevertheless,
Eq. (2.13) with p > p, does, qualitatively at least, describe
growth normal to the facet when such a facet exists.
Moreover, the value of p; determined from (2.13) is, at
least in the deterministic model discussed here, the same
as the value of p at which the corresponding facet disap-
pears in growth from a single seed particle. We expect
this identity to survive also in the corresponding stochas-
tic models.

In the stochastic model studied in paper I, it was ob-
served that for directions normal to a facet there were ap-
parently no strong growth oscillations. An analogous sit-
uation obtains for Eq. (2.13). To see how this comes
about, let us apply the method of Sec. III to solve Eq.
(2.13). As before, we define L =x —n, and

ol L)=fp(x) @.1)

so that (2.13) becomes
FastlL—1)=1—p[1—rHL +DriL—1)]

n
X [IrL+n—i). 4.2)
i=0
Setting L =1 in (4.2) yields
Fur1(0)=1—p[1—r&0)] . (4.3)

For any d and p <1 (4.3) has a (trivial) fixed point at
r(0)=1. For d=1 and p <1 this is the only fixed point.
It is attractive and corresponds, as we saw in Sec. III, to
the situation in which P,(x =n)—0. This is just a state-
ment of the fact that the average growth velocity of the
cluster is less than one lattice per time step. [In fact, as
we saw in Sec. I1I, all »,(L)—0 as n— o for this case so
that all P,(x =n+L)—0 for all finite L <0. This means
that the velocity of growth is strictly less than one lattice
spacing per time step. It is, on average, a finite fraction
of a lattice spacing per time step.] For p=1 there is
another fixed point of (4.3) which is #(0)=0, and corre-
sponds to dense, regular, uniform, and boring growth.

For d>1 the situation is somewhat different. For
1/d <p <1 there is a nontrivial fixed point of (4.3) which
is attractive and for which 0 < lim,_, , 7, < 1. For exam-
ple, for d =2, lim,_, , ,(0)=(1—p)/p. This tells us that
for 1/d <p <1 there is a finite probability for the cluster
to grow n lattice spacings in n time steps so that the
growth velocity is one lattice spacing per time step. In
growth from a single seed particle, this is the situation
that gives rise to a facet. Thus the faceting transition py
associated with (2.13) is py=1/d. Let us first analyze the
behavior of the growth implied by (2.13) for 1>p>py.
The case p < py will be discussed below.

Let us study the asymptotic behavior of the 7,(L) for
|L | >0. Setting, for example, L =0 in (4.2), we have

Faspr(—=1)=1—p[1—rf(—1)]r,(0) . 4.4)
We can use the solution of (4.3) in (4.4) to solve for
rn+1(—1). To find the fixed-point behavior of r(—1),
though, it is sufficient to take n— o0 on both sides of
(4.4) and insert the fixed-point value of #(0). Thus,

r(—=1)=1—p[1—r{—=D]r0), (4.5)

where

r(L)= lim r,(L) .
n— o0
Equation (4.5) has the same form as (4.3) with n— 0, ex-
cept that p—pr(0). Thus, for example, for d=2, two
values of 7(—1) satisfy (4.5), namely 1 and p/(1—p).
For + <p <1, only the solution r(—1)=1 is physically
acceptable. In fact r,(—1)=1 for all »n, and here again
we see the fact that our algorithm forbids occupancy of
an even (odd) site at odd (even) time.

As in Sec. III, we proceed to sequentially solve for the
r,(L) for larger values of —L. It is not difficult to see
that the result is that the attractive fixed point® for 7, (L)
for even L is strictly between zero and one for 1/d <p <1
and goes to 1 both for p=1 and p=1/d. For example, it
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P (x) [ARBITRARY UNITS]

50

was generated by iterating (2.13) for 400 generations.

is a straightforward matter to solve for r(—2) for d =2,
and we find that the nontrivial attractive fixed point is at

2= 2= [p*—4p*(1—p)’] 172
2(1—p)* -

which is between 0 and 1 for + <p <1 and is equal to 1
for p=+ and 1, as expected.

How do we interpret these results?
function r,(L) is just

r(— (4.6)

Recall that the

r(L)=1—P,(x=n+L) 4.7
so that lim,,_, , [1—r,(L)] is just a measure of the proba-
bility for the cluster to occupy the (n + L )th lattice site at
the time n. (Remember that L'<0.) If r(L)=1 for any
(finite) L then the growth velocity is strictly less than 1.
If 0<r(L)<1, then the growing edge of the cluster will

100

150 200

X+y
FIG. 6. P,(x) for Eq. (2.13) with p=0.7 and d =2. In terms of two-dimensional growth, this figure represents growth normal to

a facet (at 45° to a lattice axis). Again, the heavy dots represent values of P,(x) for a fixed value of #n, as a function of x; and are
connected by solid lines for visual clarity. Curves for » =40, 80, 120, 160, 200, 240, 280, 370, 360, and 400 are shown. This figure

propagate with a velocity equal to 1 lattice spacing per
time step.

In Fig. 6 we have plotted P,(x) determined by Eq.
(2.13) with d =2 for p=0.7. Notice the following impor-
tant features: (i) The curves for fixed L have a nonzero
asymptotic value which is reached exponentially from the
origin. (ii) The asymptotic values »(L ) must decrease rap-
idly enough with L to ensure that », P,(x) for fixed,
large x converges, since this is just a measure of the net
probability for the site x to be occupied. (iii) There is no
evidence of any oscillatory structure. After the initial
transients have died out (which for p >ps= —;— occurs ex-
ponentially fast) the cluster grows in a smooth nonoscil-
lating way. This is consistent with our picture of the
physical origin of growth oscillations: For p>ps, the
propagation of the cluster is locked to the underlying lat-
tice. There is no possibility for beating, or incommen-

P,(x) [ARBITRARY UNITS]

50

X

100

150

200

FIG. 7. P,(x) determined by Eq. (2.13) for d=2 and p=0.4. Here p <p;=0.5 for this equation and we see clearly the existence
of oscillations. There is no simple relation of this figure to bona fide two-dimensional growth. Heavy dots connected by solid lines
again represent P,(x) for fixed n as a function of x. Curves for n =40, 80, 170, 160, 200, 240, 280, 320, and 400 are indicated. This

figure was generated by iteration (2.13) for 400 generations.
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surations to develop, and so there are no oscillations.

For p <py, the situation is entirely. different. There
lim,_,  r,(L)—1, and the picture that develops is like
that shown in Fig. 7 where we have plotted P,(x) deter-
mined by Eq. (2.13) with d=2 and p=0.4. Notice the
qualitative similarity with Fig. 2.

A very simple, qualitative argument can be used to

understand the general features of the curves shown in
Fig. 7, or Fig. 2, or the analogous results in stochastic
models. This argument will allow us to understand quali-
tatively the shapes of the L curves, the existence of maxi-
ma in these curves, and the positions of these maxima.
The argument is based on the fact that in all these cases,
the average growth velocity is a fraction of a lattice spac-
ing per time step. Because the growth velocity A for these
processes is less than one lattice spacing per time step,
P,(n+L)—0 for large n and fixed L. On the other
hand, since A < 1, we may estimate A by (a —2)/a where a
is an integer. The best such estimate will be obtained by
a=a* such that |(a*—2)/a*—A| is a minimum. Thus,
the lattice site that is most likely to be occupied at time
a* is roughly given by x =a*—2, and so the curve with
L=x—n=a*—2—a*= -2 will have a maximum near
x =a*—2. Similarly, if we find the best approximation
to A of the form (b* —4)/b* with b* an integer, then the
curve with L = —4 will have a maximum near x =b* —4.
In general, b* will be close to 2a*, although not necessari-
ly exactly so. It is clear that the process continues and the
extent to which the integers in higher-order estimates are
not integer multiples of those in lower order estimates
gives rise to some of the multiperiodic effects.

With this picture we can also understand the observa-
tion that the fundamental period of the oscillation in-
creases as p increases [e.g., in Eq. (2.13) as p—p;]. Asp
increases A increases also, and so the a* which minimizes
|(@a*—2)/a*—A| will be larger. Thus, the peak in the
L = —2 curve will occur at larger x, and the distance be-
tween a* and b* will likewise increase. But this distance
is approximately the fundamental period of oscillation.

On the basis of this simple argument, we therefore con-
clude that, because A <1, (i) there are peaks in the L
curves whose position can be easily estimated, (ii) the fun-
damental period of the growth oscillations is approxi-
mately the distance between peaks in these L curves, and
(iii) this fundamental period increases as A gets closer to
one, which, generally means p increasing in a domain in
which there are oscillations. Refinements of this argu-
ment can be used to help understand the multiperiodic na-
ture of growth in more detail. This will be done else-
where.

Thus, we have arrived at an understanding of the gen-
eral behavior of (2.13) as a function of p. For
p>pr=1/d growth proceeds with an average velocity of
one lattice spacing per time step. In this regime there are

1

typo(x)=1—¢, 1(x) [ 1=[1—=g,(x +D[1—1,(x +2)t,(x)]

X[ 1—gp(x — D[1—t, ()t (x —2)] ‘ IT [im(x—1)] ]
m=1

no growth oscillations. This corresponds to growth nor-
mal to a facet in growth from a single seed particle. For
D <py the average growth velocity A is less than 1, and
growth oscillations appear because of induced beating be-
tween the average distance traveled per time step and the
lattice spacing. The fundamental period of oscillation de-
creases as p decreases from py.

Finally, there is another critical point associated with
(2.13), p., below which the cluster does not grow indefi-
nitely large. The analysis of (2.13) for p near p, is similar
to the analysis of (2.9) for p near p., as discussed in Sec.
ITIIC, and the behavior is quite analogous. For (2.13) it is
easy to see that p.=1/2d. As p—p., the fundamental
period of the growth oscillations decreases, the peaks be-
tween curves of constant L merge, and the average growth
velocity A goes to zero as p—sp.. At this point the
growth is marginal and has a density which is, in general,
power-law behaved as a function of x. For p <p. the
cluster grows only to a finite size (the density falling ex-
ponentially with x), and has zero probability to grow in-
definitely as a function of n.

V. RELATIONSHIP BETWEEN THE STOCHASTIC
AND DETERMINISTIC MODELS

The deterministic models we have discussed, while in-
teresting in their own right, are also approximations to the
stochastic models of Refs. 1 and 2. In the sense discussed
in Sec. II, they may be considered to be mean-field-like
approximations to the stochastic models. In this section
we wish to elucidate this connection by describing a se-
quence of approximations whereby the stochastic model
may be approached starting with the deterministic model.
For our purposes it will be sufficient to discuss this con-
nection in the context of the one-dimensional realization
of (2.1), whose deterministic counterpart is (2.9). Applica-
tion of the method to other models in higher dimensions
is, in principle, straightforward. Before beginning, let us
recall that in one dimension (2.1) is trivial in the sense
that for p <1 growth is always damped exponentially so
that the probability of growing a cluster to arbitrarily
large size is strictly zero. On the other hand, when p=1,
the one-dimensional cluster grows densely and uniformly
forever. Thus, in this sense, p, =1 for (2.1) in one dimen-
sion. On the other hand, p, =% for (2.9), the determinis-
tic version of (2.1). We will show how our sequence of
approximations improves the estimate for p, in this sim-
ple model. ' '

The sequence of approximations we have in mind is
rather obvious. The zeroth-order approximation, (2.9), re-
sults from taking independent averages over the S,(x) on
both sides of (2.1). To obtain the first-order approxima-
tion, we simply iterate (2.1) once before taking averages.
We have then

f[ [tm(x+1)]]
m=1

, (5.1)

n+1
{H ty(x)
m=1
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where ;
t(x)=1-S,(x) . (5.2)

We now want to average both sides of (5.1) over many clusters, neglecting on the right-hand side of (5.1) correlations be-
tween different S, (x)’s [or, what is the same thing, ?,(x)’s]. We are interested in the behavior of (5.1) for p near p, and,
in particular, in deducing the value of p, for this approximation. Recognizing that near p, P,(x) is small, we can ex-
pand (5.1) keeping only terms that will give rise to terms linear in P,(x). Furthermore, we can replace all the ¢,(x)’s on
the right-hand side of (5.1) independently by p since no two of them have the same indices and they are all independent.

With these simplifications, we have

(tyo(X))=Ffn 4 2X)={(1—p(1—{1—p[1—1,(x +2)2,(x)]} {1 —p[ 1 —1,(x)t,(x —2)]1}))
=(1—p{p[2—t,(x +2)t,(x) — 1, (X)), (x —2)]—p2[ 1 — 1, (x +2)t, (x)][1—1,(x)t,(x —2)1})
=(1—p{2p —p*+ (P> =Pty (x +2)2,(x)+1,(x )t (x —2)] —p %, (x +2)t,(x)t,(x —2)} )
=1-2p24p>+p2 (1 —p)fn(x +2)fn (X)) + £, () fr(x —2)1+p3f(x +2)f (X ) fu(x —=2) . (5.3)

The important difference with the zeroth-order approx-
imation appears in the last term on the right-hand side of
(5.3): Because the t,(x)’s are idempotent, the last term
contains only three factors of #'s, and thus three factors of
f, and not four as we would have had if we had iterated
the deterministic equation (2.9).

To deduce p. from (5.3), it is sufficient to examine the
linear term in the P,(x)’s on the right-hand side of (5.3).
We require that the coefficient of the linear term be equal
to —1 when p=p,. This yields the condition

P —ap? |y =—1, (5.42)

or,

pi—ap2+1=0, (5.4b)

from which we find P,=0.54. This value of p. is closer
to the real value of p, =1 than is the value of p, (p,==)
deduced from Eq. (2.9). Note that had there been four
factors of f’s in the last term on the right-hand side of
(5.3), Eq. (5.4) would have been replaced by 4p2= 1, which
would have yielded p,=7, as we found in Eq. (2.9).
Thus, by iterating (2.1) once before taking averages, we
have properly accounted for some of the short-range
correlations in the stochastic model, and have thus im-
proved our approximation.

Continuation of this procedure will clearly result in im-
proved approximations to the stochastic model. However,

the improvements, for example, in the estimate of p., .

seem rather small. Indeed, it is likely that convergence of
this procedure to the stochastic result, particularly in the
region near p., will be rather slow. The reason is that
while our procedure allows us to include short-range ef-
fects of stochastic noise, it does not take account of long-
range effects of noise. To properly compute the behavior
of the growth near p, we need to be able to estimate the
long-range effects of stochasticity. This clearly requires
the use of renormalization-group techniques, and will be
discussed elsewhere.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied and elucidated a variety
of aspects of growth oscillations by examining a number

[

of deterministic algorithms. These algorithms are not
only of interest in their own right, but are closely related
to certain more realistic stochastic models of growth,?
and, in fact are mean-field-like approximations to those
stochastic models. We have shown that the deterministic
models studied in this paper have morphological features
as well as growth oscillations which are qualitatively simi-
lar to those of the stochastic models to which they are re-
lated. Thus, many of the conclusions reached in this
study apply also to the stochastic case.

Among the most important insights gleaned from this
study, is a better understanding, supplementing the con-
clusions of Ref. 2, of the origin of growth oscillations. As
we have discussed here and in Ref. 2, growth oscillations
can generically be expected in kinetically growing struc-
tures in which the growth process is discrete (e.g.,
proceeds by the addition of discrete clumps, or particles of
material of well-defined finite size) and in which the
growing interface is reasonably narrow. Under these con-
ditions, the dynamics is expected to produce two length
scales which in general will be incommensurate. In the
case of the simple lattice models discussed here, the aver-
age distance grown per time step is in general incommen-
surate with the lattice spacing, giving rise to the oscilla-
tions. In other, nonlattice growth models, oscillations
may also be expected. As discussed in Ref. 2, one may ex-
pect to see oscillations due to an incommensuration be-
tween the particle size and the screening length which
controls the average distance over which the aggregating
particle penetrates into the structure. Of course, there are
additional sources of noise in the nonlattice case and so
the oscillations may be considerably more difficult to ob- -
serve. We are currently studying such nonlattice models.

Many of the specific results of this paper have been de-
rived, for simplicity, in the context of one-dimensional or
quasi-one-dimensional models. (This latter term refers to
equations which describe growth normal to a facet, so
that the structure is translationally invariant in d —1 out
of d dimensions.) The equations describing these situa-
tions have the form of functional iterative maps. In this
language we have been able to understand growth oscilla-
tions from a different point of view. In terms of iterative
maps, we have seen that growth oscillations depend on the
existence of competing terms in the map, in a way quite
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analogous to the way in which limit cycles depend on
competing terms in, for instance, the Feigenbaum map.

For these one-dimensional cases, we have constructed
numerical solutions and have shown that growth oscilla-
tions exist, and that their behavior is qualitatively the
same as that observed in stochastic models. Furthermore,
we have been able to solve these equations analytically, by
converting a functional iterative map into a hierarchy of
an infinite number of single variable linear maps. This
hierarchy of maps allows us to construct, in a natural
way, an approximation scheme for calculating the effects
of growth oscillations. The scheme involves a truncation
in the period of the oscillations: In general, growth oscil-
lations give rise to a complicated multiperiodic structure,
in which the shorter period oscillations are typically the
most pronounced. The approximation scheme discussed
in Sec. III includes correctly the effects of oscillations up
to a certain wavelength. Higher terms in the approxima-
tion include effects of longer-wavelength modulations.

In the context of our deterministic models we were also
able to calculate the behavior of the growth near a critical
value p. of the growth parameter. We showed that for
p=p. the density of the cluster falls asymptotically like
an inverse power of distance from the origin. This result
is the analogue of fractal behavior observed in the analo-
gous stochastic models of growth at the critical value of
the growth parameter. We also showed that in quasi-
one-dimensional deterministic models of growth there is
another critical value ps of the growth parameter above
which there are no growth oscillations. This value p
represents in these quasi-one-dimensional systems the
value of the control parameter at which there is a faceting
transition in the analogous case of d-dimensional growth.
To be more precise, the analogy is that for p >p, the
quasi-one-dimensional model represents growth normal to
a (d —1)-dimensional facet in d dimensions. Consistent
with the results obtained in the stochastic case, there are
no growth oscillations in a direction normal to the facet.
In the d-dimensional model, for p <pys the facet disap-
pears, and growth oscillations appear. Similarly, for
p <py growth oscillations appear in our quasi-one-
dimensional models. However, due to the lack of lateral
translational invariance in the d-dimensional case, the
quasi-one-dimensional equation does not quantitatively
describe d-dimensional growth for p <ps. Nevertheless,
because its structure is similar to that of the full d-
dimensional growth near a (d —1)-dimensional faceting
transition, the quasi-one-dimensional equation does
correctly describe the qualitative behavior of the d-
dimensional case, including the existence of the faceting

transition and the presence (absence) of growth oscilla-
tions for p < (> )ps. (Of course, if we consider growth in
d dimensions starting from a d —1 dimensional hyper-
plane, then our quasi-one-dimensional equation will quan-
titatively describe the growth for all values of p.)

We were also able to elucidate the multiperiodic nature
of the growth oscillations and were able to provide a sim-
ple procedure for estimating the fundamental wavelength
of the oscillations. Nearly all of the techniques and con-
clusions which we derived in the context of one dimen-
sional and quasi-one-dimensional growth can be applied,
with some modifications, to higher-dimensional systems.

Finally, we described a sequence of approximations, the
lowest order of which are the deterministic models studied
in this paper, and which approach successively closer to
the stochastic models. We showed, in particular, a small
improvement in the estimate for p, by going from our
deterministic model to the next order of approximation in
one particularly simple case. '

While the study of growth oscillations we have present-
ed here is a useful beginning, there are a number of very
intriguing questions that require further work. There are
two issues that are particularly interesting and important.
First, it is important to understand more precisely, the
stability of growth oscillations to noise. In a previous pa-
per,"? we presented an argument relating the persistence
of growth oscillations to the roughening exponent of the
growing interface. While this argument is appealing, a
more complete and precise treatment of the stability of
growth oscillations to noise is clearly desirable. Second, it
is important to be able to compute the effects of stochasti-
city near p, more reliably. We have already showed that
our deterministic model has a power-law-behaved density
at p=p.. However, to realistically calculate kinetic frac-
tal growth, requires that we be able to accurately compute
the long range effects of stochasticity, as stated at the end
of Sec. V. It is likely that the conceptual framework we
have developed in connection with our study of growth
oscillations will be of great use in trying to calculate prop-
erties of kinetic fractal growth.
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