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We study the influence of nonlinear effects on the electrohydrodynamics of uniaxial nematic
liquid crystals. To measure a novel reversible nonlinear coupling between an electric field, distor-
tions of the director, and the stress tensor, we suggest an experimental setup and predict the oc-
currence of a flow in an initially static configuration. We show that the dissipative effects proposed
by R. S.Akopyan and B. Ya. Zeldovich [Sov. Phys.—JETP 60, 953 (1985)] do not exist.

I. INTRODUCTION

The hydrodynamic description of uniaxial nematic
liquid crystals is by now well established! ~® and has been
checked experimentally in detail.>”® The study of elec-
trohydrodynamic effects has been triggered by the appli-
cation of electro-optic effects in these materials in display
devices.” Nevertheless it seems clear that the combination
of hydrodynamics and electric effects'® has still not been
achieved to a satisfactory extent on the nonlinear level.

In the present paper we derive nonlinear electrohydro-
dynamic equations for uniaxial nematics, thus generaliz-
ing the nonlinear hydrodynamic equations presented pre-
viously.>~¢ Static as well as dynamic phenomena will be
considered and an experiment to test a novel nonlinear
cross coupling between gradients of the velocity field, the
macroscopic polarization, and gradients of the director
will be discussed.

When incorporating electric effects, one must keep in
mind that hydrodynamic excitations can acquire a gap for
small wave vectors due to the long-range nature of the
Coulomb forces, which render Goldstone’s theorem inap-
plicable.

Naturally the incorporation of the macroscopic polari-
zation is not only important for the low-molecular-weight,
rodlike, thermotropic nematic phases predominantly stud-
ied so far, but will be at least as important for the investi-
gation of the physical properties of lyotropic nematic
phases and nematic liquid crystalline polymers, the study
of which is just starting.

Having in mind the applicability of the equations de-
rived to lyotropic phases, we also keep as a macroscopic
variable, i.e., as a quantity which relaxes in a long, but fi-
nite, time 7, the modulus of the nematic order parameter
S. These variations can be expected to be crucial in ther-
motropic nematics mainly close to the isotropic transition
and in the vicinity of defects, but for lyotropic materials
they are probably much more important since one can ex-
pect that external forces such as electric and magnetic
fields or shear flow will lead to a local change in the con-
centration of the micelles (which are embedded in an iso-
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tropic background fluid) and thus to a local change of the
degree of order. Therefore we think that the influence of
the spatial variations of the modulus on the macroscopic
behavior cannot be overestimated for lyotropic systems.
As we go along we will also consider at each step the in-
fluence of mixture effects, i.e., we incorporate an addi-
tional concentration as conserved quantity. Such effects
are obviously always present in lyotropic nematics as
those are always multicomponent systems (typically one
has water, a higher alcohol, and a surfactant as constitu-
ents).

The present paper is organized as follows. In Sec. II we
discuss static properties, in Sec. III we investigate reversi-
ble and dissipative dynamic effects followed by the sug-
gestion of an experimental setup for the study of a non-
linear reversible current in Sec. IV. In Sec. V we present
the discussion and the conclusions including an analysis
of why the dissipative terms suggested by Akopyan and
Zeldovich!! do not exist. The latter is based on a time-
reversal symmetry argument. In the Appendix we sum-
marize new static and dynamic contributions to the elec-
trohydrodynamics of other liquid crystalline phases such
as cholesterics, hexatic- B, smectic-I and - F, chiral smectic
phases, etc.

II. STATICS

To derive the general electrohydrodynamic equations,
one has to determine first the macroscopic variables.
Those come in two groups: truly hydrodynamic variables
and macroscopic quantities which relax in a long, but fi-
nite, time 7. For uniaxial nematics we have the hydro-
dynamic variables density p, entropy density o, density of
linear momentum g, and concentration of one component
(in binary mixtures) along with the variations 6n of the
director @i characterizing the spontaneously broken con-
tinuous rotational symmetry of uniaxial nematics. As ad-
ditional macroscopic variables we have the macroscopic
displacement D (or, equivalently, its thermodynamic con-
jugate, the local electric field E) and the modulus
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of the order parameter S which is introduced via Q;
=S(n,~nj—-%5,~j) with n?=1. In thermotropic nematics,
the modulus is especially important as a macroscopic
variable close to the nematic-isotropic transition and in
the vicinity of defects, where the modulus varies as a
function of space. The Gibbs relation takes the form
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Tdo=de—udp—V-dg+D-dE—Zdc—WdS —h;dn; ,
(1)

with D=E+47P, where E is the internal field, which
will be, in general, different from the external field.
For the generalized energy we find

+M (3;8)(3;n; ) (8 n; +8}Ln,~)+(§16};’cnj+§28}§cn,-)E,-ajnk +(&38; +&anin; )E;9;S
+H5(a]p)E,+H,3(a]c)E,+H,}'(a}0)E,] , (2)

where the terms-coupling gradients of the director on one hand and gradients of the density, the concentration, the entro-
py density, and the modulus on the other lead in addition to surface terms of the structure

f do;n;n;d;p, fdai n;n;d;c ,

etc. In Eq. (1) @, contains all the standard terms, i.e., those already given, e.g., in Ref. 3, including the Frank free energy
and the dielectric term, whereas ®; contains all the contributions which are not related to electric effects, distortions of

1, and which are not contained in Ref. 3:

@, = [ d7[B1(85)*+B,(8S5)(8p) +B3(8S)(8¢) + By(8S)(80) + N5(3;S)(3;0) + NE(3;9)(3;0)+ N5(3,8)(3;0)] . (2a)

The A/ terms have been introduced as higher-order gra-
dient terms in Ref. 5 for p and o; here we have also incor-
porated the effect of an additional concentration. The
gradient energy for the modulus (~L,L,) takes the
standard form for an uniaxial system. The cross-coupling
term M between VS and Vn has been discussed first from
a general point of view in Ref. 12. For a discussion in the
framework of a Ginzburg-Landau free energy, cf. Ref. 13;
it is clear, however, that in general there is no simple rela-
tionship between the values of the coefficients (e.g., be-
tween L,, L, and M). These simple relations are ar-
tifacts of the Ginzburg-Landau approximation. £; and &,
represent the usual flexoelectric contributions and £; and
$4 come from a term E;3;Qj which has been given for
the first time in Ref. 14 and which gives &, &,, §3, and &,
when specialized to uniaxial nematic liquid crystals. As
already noted in Ref. 14, the ¢ terms contain both gra-
dients of the director and gradients of the modulus. The
last two lines written down in Eq. (2) represent higher-
order gradient terms coupling the electric field to gra-
dients of all scalar conserved densities, i.e., to density, en-
tropy density, and concentration. These contributions
have not been given before.

By inspection of Eq. (2) we see immediately that every
macroscopic variable except for the density of linear
momentum (which has a different behavior under time re-
versal) is coupled statically to every other variable if
higher-order gradient terms are taken into account.

We would like to stress that the generalized energy does
not contain any nontrivial terms to cubic order in the
variables, where we mean by trivial terms those which
contain only the scalar variables [as, e.g., (8p)*80] or
which are straightforward generalizations of quadratic
terms such as, e.g.,

f

ey B Ej— (e +€f 8p+€f 80 +€j 5c +¢5 SSIEE; . (3)

The thermodynamic forces are obtained from the general-
ized energy written down in Eq. (2) by taking the varia-
tional derivative with respect to one variable while keep-
ing all the other ones fixed, e.g.,

hy=8D/8n; | g, . - @)

III. DYNAMICS

To derive the dynamic couplings we relate the currents
and quasicurrents which appear in the balance equations
for the macroscopic variables to the thermodynamic
forces which in turn have been obtained in Sec. II by tak-
ing variational derivatives of the generalized energy with
respect to the variables.

For the balance equations we have

p+9:8:=0,

gi-’rajaij =0,

rii + ),x =0 ’

. (5)
S+X=0,

Pi+ji=0,

. .o R

0'+ai.]ia:7 »
vhere R is the entropy production. In Eq. (5) we have

written down a dynamic equation for the macroscopic po-
larization which has to be supplemented by Maxwell’s
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equations along the lines discussed in Ref. 15. The con-
servation law for the energy density follows from the oth-
er balance equations in (5), because all hydrodynamic vari-
ables are linked by the Gibbs relation (1).

For the dissipative terms it is most convenient to write
down the entropy production R and then to determine the
dissipative parts of the currents and quasicurrents by tak-

ing variational derivatives of R with respect to one ther-
J
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modynamic force while keeping all the other quantities at
a fixed value, e.g.,

8R
D__ _OR

= 8V,-vj
We find

R=Ro+ [ drlvW 4+ u(V, W)V, T)+p(V,W)E, + oL E,E;

+0GE (Y, T)+(EENV, T) 4+ E3E; b By + 1

mqij

Vinj )thm +7/£_]1k)th1Ej

F VRV DA+ 150 WA 0 (Vi) 4T (Vi) N Vi )V gy TV Eg + 75 imn (Vi (Vi VEm E, 1

where R, is the entropy production discussed before®
without electric fields and spatlal varlatlons of the
modulus S. For the structure of §,Jk and g,,k we have!®

(2) _ p(2) 2)
§ijk=§1 8ikn; +62 85

)]
_g 3) S:knj +8,~jnk)
and where ,u:-}) and ,ui-f’ have uniaxial form. The latter
terms are associated with linear dissipation and mean that
spatial variations of the modulus are dissipatively coupled
to electric and/or temperature gradients, thus opening ad-
ditional channels for dissipation. For the higher-order
gradient terms 7/, we have

(1) (I)gtr (1) gtr
7’1]k“7’1 Sxkn +72 6knx ’

(2)

2) (8)
Vi =72 (8jkn; +85n;) .

Aside from the nonlinear dissipative terms written down
explicitly in Eq. (6), all linear coefficients can be made to
be nonlinear in a straightforward way by keeping explicit-

ly a linear dependence on the modulus, e.g., wu;;
= ,uﬁjm—k m J”W To incorporate the effects of an additional

concentration all one has to do is to replace V;T by V,Z
and to keep the Soret effect.

We note that the the cross-coupling term M between
gradients of the director and gradients of the modulus (in
the generalized energy) has no counterpart in the dissipa-
tion function; a term ~h; W does not exist. For the re-
versible currents we find

J

a,ﬂdp—al(n 8,k51p+nj 1k8 )+a2nk8,151p+a3( n;d

jiBkp +1;8;

(6)
—
jk __aljklp(v V; )(Vlnp) ’
Ji = — el (Vi V)(Vin,)
ZBUV‘V' 9)
1~k)8"nk—(1+k)8,knj ,
Uu:B;,W-f-Mn,hJ—f-njh,)+7(n,hj—njh,)
£ E?
+¢kjvink+'4; EiEj—T‘Sij

+ i (Ve DUV ) + i, Ex(Vin,)

where the linear terms ( ~A, %) are the ones familiar from
the hydrodynamics of uniaxial nematics. In addition one
has contributions ~f3;; coupling gradients of the velocity
field to the modulus—these are isomorphic to terms con-
sidered before for a coupling to the smectic or discotic or-
der parameter close to the nematic-smectic 4 (Ref. 17) or
nematic-columnar'® transitions. The novel terms are
~a§ﬁdp and ai-ﬁdp. They represent nonlinear cross cou-
plings between velocity gradients, gradients of the direc-
tor, and electric fields or temperature gradients, i.e., if an
electric field is applied to a sample with a distorted direc-
tor field, the first equation in (9) predicts the appearance
of flow. This will be discussed in more detail in Sec. IV.
The same effect does not only arise for temperature
gradlents or electric fields but also for concentratlon gra-
dients in mixtures. We find for the structure of a,ﬂdp

Skp ) “+ayn; 8“6

+as(n; 85,85 +n; 85, 8%) + aen;n;n 8, +as(ny 85i8y; +ni 858 ) + agn; ankS’I

+a9(5 6" +8,p Jk)n1—+—a10nkn,(8,~pnj+8};n,») ,

i.e., there are ten independent phenomenological parame-
ters contained in a;j,, if we require the stress tensor to be
symmetric.'® Thus if one starts with a deformed director
configuration, all macroscopic variables are dynamically
coupled. It seems important to note that upon lineariza-
tion the new terms ( ~a;j, ) vanish identically.

(10)

This situation is different from that for the flow align-
ment term A coupling the director to extensional flow,
which survives when linearized. The latter coupling,
which was the first reversible current bringing along a
phenomenological parameter, namely, A, has been studied
in great detail for uniaxial nematics, both theoretical-
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ly and experimentally. More recently?*?* flow
alignment has also been investigated for the coupling to
the in-plane director in smectic C. This record of the in-
vestigation of reversible dynamic effects gives rise to the
expectation that purely nonlinear effects can also be ob-
served.

IV. PROPOSED EXPERIMENT

To investigate experimentally the nonlinear reversible
cross coupling discussed in Sec. IV, it would be very im-
portant to have a simple experimental setup for a critical
check of their magnitude. To be specific we consider a
“hybrid” cell,?® i.e., a layer of nematics between two elec-
trodes with the alignment of the director being planar on
one electrode and homeotropic on the other. In addition
we will focus on the case of a temporally constant electric
field. All considerations below are equally valid for an
externally applied temperature or concentration gradient.

From Eq. (9) we have

of(a'E)=alf, Ex(V;n,) (1
or for g;
gi(a'B)= ~Vjoy
= —V;(aljip,ExVin,) . (12)

By inspection of Eq. (12) we see immediately that the hy-
brid configuration chosen is very convenient to detect g;
because it is clear from Eq. (12) that even for a spatially
constant external electric field, finite second spatial
derivatives of the director field will be sufficient to pro-
duce flow phenomena. And a hydrid cell provides us by
construction with finite first, second, and higher-order
derivatives of the director in a static configuration (as
long as no external field is applied).

To demonstrate the effect to be expected in more detail,
we assume for simplicity the global configuration to be
two-dimensional with the normal to the plates along the z
direction and the director lying in the z-x plane. In addi-
tion we suppose that the sample has a sufficiently large
extent in y direction, so that the spatial variation in this
direction can be neglected at least initially. Then it is
clear that there is no twist and everything happens in the
x -z plane. We find from Eq. (11) that this also produces
flow only in the x-z plane. Nevertheless all coefficients
contribute to the resulting flow pattern and it seems very
difficult to suggest a setup which shows the influence of
one of the coefficients only. At this stage, however, it is
most important to establish the effect predicted qualita-
tively. If the field is applied in a direction which has also
a y component, however, a fully three-dimensional flow is
to be expected in the hybrid cell due to the new cross cou-
plings.

V. DISCUSSION AND CONCLUSIONS

In this paper we have analyzed the nonlinear electrohy-
drodynamics of uniaxial nematic liquid crystals and we
have found a number of new dynamic couplings, both dis-
sipative and reversible. To detect a novel nonlinear re-
versible cross coupling between extensional flow, external

field, and gradients of the director field, we have suggest-
ed a simple experimental setup.

We would like to point out here that the nonlinear “dis-
sipative” terms given in a recent paper by Akopyan and
Zeldovich!! do not exist. To see this, all one has to do is
to study the behavior of Eq. (A4) in Ref. 11 under time
reversal. As is well known (cf., e.g., Ref. 2), the dissipa-
tion function R is invariant under time reversal. Inspect-
ing Eq. (A4) of Ref. 11, one sees immediately that all con-
tributions are products of three terms. And in all contri-
butions two of the three terms are invariant under time re-
versal whereas the third one is always odd. Thus all con-
tributions written down on the right-hand side are odd
under time reversal and can therefore not be dissipative.
We mention for completeness that none of the 12 contri-
butions written down in Eq. (A4) of Ref. 11 leads to van-
ishing entropy production and would therefore be a candi-
date for a reversible term. Only the terms presented in
this paper are nonlinear reversible cross-coupling terms
between extensional flow, gradients of the director field,
and external temperature gradients.

In the Appendix we have written down a number of
new static and dynamic contributions for the electrohy-
drodynamics of other liquid crystalline phases. Especially
we have discussed the analogs of the new terms for uniax-
ial nematics for the bond angle in hexatic- B and smectic-/
and - F phases.

In complementing the derivation of the macroscopic
dynamics presented here, one of us?’ has given very re-
cently the dynamics close to the nematic and cholesteric
to isotropic transitions in an external electric field. There
we find again a similar type of nonlinear reversible cross-
coupling term as the one presented here. Amusingly
enough it turns out that close to the cholesteric to isotro-
pic transition it is even possible to have a coupling which
has one gradient less (¢ ~QE with Q the order parameter
of the transition), because one has a-faseudoscalar quantity
available (gg).

In deriving the macroscopic dynamics presented here
we have kept as a macroscopic variable the modulus of
the orientational order parameter. As mentioned earlier
this will be mainly important for lyotropic multicom-
ponent systems where spatial inhomogeneity effects for
the modulus can be expected to play an important role
under the influence of external forces such as electric
fields, temperature and concentration gradients, shear, etc.

We note that the effects described can only be observed
for dc and low-frequency ac fields. If the frequency is too
high, not all variables can follow. Finally we stress that
none of the effects linear in the electric field has a mag-
netic counterpart due to the different behavior of magnet-
ic and electric fields under parity and time reversal.
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APPENDIX

In this appendix we summarize new results for the elec-
trohydrodynamics of various liquid crystalline phases
such as cholesterics, chiral smectic, hexatic-B (cf. Ref. 28
for the hydrodynamics), etc. For the liquid crystalline
phases with bond-orientational order, i.e., for hexatic-B
and for smectic-I and -F, we find that there are no flex-
oelectric terms due to the bond angle. One has only the
standard flexoelectric terms associated with the layering
which is isomorphic to that of the 4 phase?® for hexatic B
and to that of the C phase!’ for smectic I and F. For the
chiral counterparts of smectic I and F, i.e., for I* and
F*, flexoelectric effects are isomorphic to those given for
C*.

In closing the discussion on static effects we mention
that terms of the form

[ dr{[&08p+E7 80 +65 8¢ + &5 S + 54V u ) 1E; |

with £¥=¢*gop; exist for smectic I* and F*. They are
thus of the same structure as for the piezoelectric effect in
cholesterics and smectic C* (Ref. 15) and as the couplings

(A1)

3)_p3)
RP=RF,
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to the scalar conserved quantities introduced very recent-
ly.'*

For the electrohydrodynamic contributions to the dissi-
pation function, the analysis presented in the main part of
the present paper can be easily extended to cover other
liquid crystalline phases. Specifically we obtain for hexat-
ic B

R = f dT{VijklAijAk1+Kij(Vi T)(VJT)
1V X+ (Vi P+ EPi(V TNV )

+BX:5:(Vid (VX o)

+[Big(Ve D +Bi E 1 (V X))} (A2)
In Eq. (A2) all second-rank tensors are of the form
Yig :Vllﬁiﬁq +7/15:; . (A3)

We have also incorporated in Eq. (A2) nonlinear terms
that have not been previously considered and which con-
tain derivatives of the bond angle.

For cholesterics we obtain

+ [ dr{kR V. DUV, TIE, + K3V, T)E, E; +k${E E, Ey

+Tijitm (Vi Vi XV VDE,, +7 [ (V, TE, (V) +FREE; (Vi) +7 FE(V;6)(Vid)] , (A4)

which is a generalization of Eq. (2.13) of Ref. 10. From
inspection of Eq. (A4) it is evident that in the dissipation
function every macroscopic variable in cholesterics cou-
ples to every other one in cubic order. It is straightfor-
ward to incorporate the effect of an impurity concentra-
tion in Eq. (A4). All one has to do is to replace V;T by
ViZ and to add the couplings of concentration and tem-
perature. The situation in cholesterics is very different
from that in smectic 4 where we do not find any addi-
tional electrohydrodynamic terms in cubic order. For
chiral smectic phases such as C*, I'*, and F*, terms iso-
morphic to those written down for cholesterics ex1st

For the reversible currents we find in hexatic B for the
analog of the a;j;, in uniaxial nematics

of}”:a,-jkl(Vk T)(V]e) (A5)

with

Ajjr = €i1Pj +€jDi) » (A6)

i.e., instead of ten coefficients for uniaxial nematics we
find only one for the bond angle in hexatic B.*° For smec-
tic I and F we find that a;jx; contains ten independent pa-
rameters for the bond angle © and ten parameters for @.

For cholesterics and for all chiral smectic phases (C*,
F*, and I*) we have for the nontrivial contributions to
the stress tensor

o =CinErgo+EiViTqo (A7)
where?!
gﬁ g(l)plpjpk +§2 p] S:k +Di 8111; +Pk6:;) . (A8)

An analogous term exists also for concentration gradients.
If the requlrement of 0;; being symmetric is dropped, we
find that §, ijk has six independent components.

*Present address: Department of Physics, University of Essen,
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