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Wigner crystal of a screened-Coulomb-interaction colloidal system in two dimensions
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The phase diagram of a two-dimensional system consisting of colloids is investigated within the
Kosterlitz-Thouless-Halperin-Nelson-Young theory of dislocation-mediated two-dimensional melt-

ing. We also present results for the interaction energy, the phonon spectrum, and the longitudinal
and transverse sound velocity for different values of the screening length.

I. INTRODUCTION

It is well established (see, e.g., Refs. 1 and 2 for recent
reviews) that a system of colloidal spheres (e.g., of poly-
styrene spheres) submerged in aqueous suspensions can ex-
hibit transitions from an ordered to a disordered state
(liquid). The crystal-ordering forces in this three-
dimensional (3D) system have been shown to be electro-
static, which are similar to those in the two-dimensional
(2D) system of electrons on a liquid-helium surface. The
latter have been found to crystallize into a Wigner lat-
tice. The main advantage of the system of colloids in
comparison to the system of electrons on helium is that
one is directly able to see the motion of the spheres
through a microscope. Thus one is able to detect optically
(without perturbing the system) the state of the system.

Up to now the main attention of theorists and experi-
mentalists was focused on the study of 3D systems of col-
loids. Only a few recent experiments were directed to-
wards the observation of the effect of spatial confinement
of the colloids on their collective properties. For example,
in Refs. 7 and 8 one was able to induce a continuous tran-
sition between 2D and 3D behavior by the use of a wedge.

In the present paper we study the 2D behavior of col-
loids. Pieranski studied experimentally a 2D colloidal
crystal formed at a water-air interface. The interaction
between those colloids was found to be a dipole repulsion
which is a consequence of the asymmetry in the charge
distribution due to the specific experimental configura-
tion. The system was studied theoretically in Ref. 9.

The 2D system we envisage is depicted in Fig. 1. The
colloids are confined between two solid surfaces which
are, on the colloidal scale, perfectly rigid, smooth, and
parallel. The distance between the two solid surfaces (d)
can be varied continuously. The colloidal particles are
taken as identical spheres with a radius a typically be-
tween 100 and 10000 A. When dissolved in, for example,
water (dielectric constant a=80), endgroups dissociate
from the colloid which leads to a large electrostatic charge
Z per colloidal particle. The dissociated endgroups are
single molecules and are considered as providing a back-
ground of continuum charges. These counterions will
screen the direct Coulomb interaction between the col-
loids. A simple calculation shows that the image charges
induced in the two confining plates have the same sign
and are of the same order of magnitude as the charge of

the colloidal particles itself because of the relatively large
dielectric constant of the medium (i.e., @=80). These im-
age charges will induce a potential in the direction perpen-
dicular to the plates which will force the colloids in the
middle between the two plates.

The interaction between the polyballs is quite compli-
cated. But it has been claimed ' that a simple screened
Coulomb interaction may still be used to describe the
long-range interaction if the charge Z is normalized to
Z*. We take for the electrostatic interaction between two
colloidal particles

e
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U(r) =

with k the screening length, e the dielectric constant of
the medium (we will take a=80), and Zq=Z "f(alk),
where Z* is the normalized charge and f(x) is a form
factor which describes the effect of the nonzero radius a
of the colloidal particles. We will follow Ref. 11 and take
f (x)= sinh(x)lx. Others ' have taken a different form
f*(x)=e"l(1+x) which has essentially the same func-
tional behavior as the one of Sogami. For x~0 they are
equal but with increasing x, f'(x)lf(x) increases to a
factor of 2 in the limit x~ oo.

The screening of the Coulombic interaction is taken as
three dimensional because the counterions are free to
move in the z direction (which is taken perpendicular to
the 2D colloidal layer) but bounded by the two plates.
The screening length k is given by the usual expression

A2=2 Ekg T ]
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with n3D the three-dimensional charge density of the

surface charge counterion
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FIG. 1. Experimental configuration for a 2D system of col-
loids.
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counterions and kz the Boltzmann's constant. The coun-
terions are provided by the colloidal particles and lead to
a charge density Z*n2D/d, because they are distributed
over the slab with thickness d. It is possible that the sur-
faces of the confining plates are charges when they are
brought in contact with water. This leads to a plate-
surface charge density n, (-2.5X10' cm for glass
plates) and consequently it gives a contribution of 2n, /d
to the counterion charge density. Thus
n3D ——(2n, +Z "n2D)/d, where we assumed that the plate
surface is charged negatively as is the case for glass
plates. It is interesting to see that on the basis of local
charge neutrality the screening length in the system can be
varied continuously by changing the distance between the
two plates. To give an idea of the order of magnitude, we
have plotted in Fig. 2 the screening length A, versus the
distance between the two plates for charged (we took
n, =2.5X10' cm ) and neutral plates. The temperature
was taken equal to 300 K.

It is interesting to note that a similar situation was en-
countered for the electrons on a thin liquid-helium-film
system' where the reduction of the thickness of the
liquid-helium film leads to a screening of the direct
Coulomb interaction between the electrons. In the present
system the plates have to move closer to each other to in-
crease the screening which should be compared with a
thinning down of the helium film in the case of electrons
on helium.

In order to investigate the phase diagram we will make
use of the now generally accepted picture of classical 2D
melting by the unbinding of pairs of defects as first sug-
gested by Kosterlitz and Thouless' (KT) and later ela-
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2pp+ Xp
(3)

where pp A,p are the Lame coefficients of the 2D solid and
b is the lattice constant.

The present paper is organized as follows. In Sec. II we
calculate the interaction energy of a triangular lattice and
of a square lattice. We find that the triangular lattice has
the lowest energy for all values of the screening length.
The phonon spectrum for the triangular lattice is calculat-
ed along the boundary of the irreducible element of the
Brillouin zone. The longitudinal (C~) and the transverse
(C, ) sound velocity are calculated in Sec. III which then
will be inserted into Eq. (3) in order to obtain the phase
diagram. Our conclusions are presented in Sec. IV.

II. INTERACTION ENERGY AND PHONON
SPECTRUM

Because the system is classical it is possible to separate
the kinetic energy and the potential energy. For the con-
sidered temperature (i.e., T =300 K) the kinetic energy
equals k&T. The interaction energy of one colloidal parti-
cle with all the other particles is given by

borated on by Halperin and Nelson' (HN) and Young
(Y).' This theory was very successfully applied' to the
classical system of electrons on helium. It predicted
correctly the phase diagram.

The KTHNY theory describes melting of a classical 2D
solid irrespective of the interaction between the particles
and can thus also be applied to the present system. The
aim of the present paper is to apply this theory to the sys-
tem of particles which interact with a screened Coulomb
potential. This system may be considered as a model sys-
tem for melting of a 2D system of colloids. The KTHNY
theory states that at the melting transition'
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FIG. 2. The screening length A, (in A) vs the width of the slab
O

d (in A) for a 2D system of colloids with average separation
a, =5000 A and effective charge Z =1000 at T=300 K, in
the case with ( n, =2. 5 & 10' cm ) and without ( n, =0)
surface-plate charges.

where R(I) is the lattice position of the particle at site 1

(the colloidal system is considered in the solid phase).
The interaction two-particle energy U(r) is given by Eq.
(1). The lattice sum runs over all possible lattice positions
( I) except the origin. Because of the exponential screening
the sum in Eq. (4) converges relatively fast and it is not
necessary to apply the Ewald summation technique as in
the case for long-range potentials' ' like, for example,
the pure Coulomb potential.

We considered two different lattices: (i) a square lattice
with unit vectors (b, O) and (0, b) and (ii) a triangular lat-
tice with translation vectors (b, O) and (b/2, bM3/2). It
is convenient to use Eo ——(Zze) /eb as the unit of energy
and the interaction energy then depends only on the vari-
able a, /1, where a, = I /Qn zD and b /a, = 1 for the
square lattice and

b /a, = (2/v 3) ' = 1.074 569 9

for the triangular lattice.
Note that we have still to add the interaction energy of

the particle with the background (Ez' '), which in the
present case is taken as a uniform continuum of coun-
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terion charges. The counterions are distributed over the
slab with width d and consequently EI ' will be a func-
tion of d. This d dependence is not crucial in determining
which lattice type has the lowest energy. Therefore when
we present numerical results we will consider the back-
ground charge as being distributed in the 2D plane of the
colloidal particles. This choice has the additional advan-
tage that we will be able to reobtain some known results.
Namely, the interparticle potential under consideration
[Eq. (1)] contains the Coulomb potential as a special case,
namely, A, ~oo. In this limit the known results' for the
interaction energy should be reobtained.

The interaction with the neutralizing background gives
a negative contribution

S;,(q)=
2

V(R —R(l) )e
e2 ()R; BR. I (~ )

The unit of frequency is taken to be coo with

+ j [C (q) —Cyy(q)]'+4C„'y(q) j '~'),

with the dynamical matrix
2

CJ(q) = — [S~)(q)—SJ(0)]
m

and the matrix

(5)

(6a)

(6b)

E (b) / 27T6 1

a, (a, /A. )

The resulting interaction energy EI ——EI'+EI ' is shown
in Fig. 3 as a function of a, /A, for the triangular and the
square lattice. We found that the triangular lattice gives
the lowest interaction energy and is thus the most stable
solid phase for all values of the screening length. This is
in contrast with the 3D system of colloids where it was
found ' *' ' that a structural phase transition takes place
from an fcc to a bcc lattice with increasing screening
length A..

In the zero screening limit the results for the 2D
Coulomb solid are reobtained, ' i.e., EI /Eo ———4.213425
for the triangular lattice and —3.900265 for the square
lattice. In Refs. 13 and 18 the interaction energy was re-
ferred to Eob /a, and if we make that conversion the
present results coincide with those of Refs. 13 and 18. In
the large screening limit, i.e., a, /A, ~ oo, we found
EI /Eo ———6.751 722/(a, /A. ) for the triangular lattice and
—6.283 185/(a, /A, ) for the square lattice.

Next we will calculate the phonon spectrum of the 2D
colloidal solid. The frequency of the two normal vibra-
tional modes are given by

and the unit of wave vector is 1/b. As seen above, the tri-
angular lattice has the lowest energy. Therefore we will
only give the phgnon spectrum for this type of lattice.
Furthermore, we found that the square lattice exhibits
pure imaginary transverse normal mode frequencies in
certain directions in q space which imply that such a lat-
tice is unstable. This result is a generalization of a similar
observation made by Bonsall and Maradudin' for the 2D
Coulomb lattice.

The phonon spectrum is shown in Fig. 4 along the
boundary of the irreducible element of the first Brillouin
zone for different values of the parameter a, /1, . The
a, /it=0 result is identical to the 2D Coulomb result of
Bonsall and Maradudin. ' From Fig. 4 it is apparent that
with increasing screening the phonon modes soften. Fur-
ther the longitudinal mode for a long-range Coulomb
solid has a square-root dependence on the wave vector for
small wave vectors, i.e., co~ —vq, while for the screened
system the longitudinal mode becomes acoustical. This is
similar to the system of 2D electrons on a thin liquid-
helium film' where the interparticle interaction is
screened by the substrate which supports the liquid-
helium film. Also note that the acoustical branch has a
superlinear behavior, as was first noted by Platzman and
Fukuyama. ' This superlinear behavior becomes less pro-
nounced with increasing screening.

C3
UJ

UJ
I 3

CX

LLJ

2
C)

LaJ

3
3—20-

UJ

~~1

10 10 10

J X
WAVE VECTOR

FIG. 3. The interaction energy for the ideal 2D configuration
(i.e., d =0) vs a, /A. for a triangular and a square lattice.

FIG. 4. The phonon spectrum for the triangular lattice along
the irreducible element of the first Brillouin zone for a Coulomb
system (i.e., a, /k =0) and for two different values of the screen-
ing length, namely, A, =a, and A. =a, /5.
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FIG. 7. The same as Fig. 6 but now for a fixed-sphere effec-
tive charge Z* =1000 and for different values of the sphere ra-
dius a.
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FIG. 8. Value of the plasma parameter I for which a solid-
liquid phase transition takes place for a 2D screened Coulomb
system.

true except for large values of the screening length where
this dependence on the sphere radius a disappears.

IV. CONCLUSIONS

We have studied the solid-liquid phase diagram of a 2D
system of colloids confined between two plates. As far as
we know this is the first analysis of such a system in
terms of the dislocation-mediated melting theory of 2D
solids of Kosterlitz- Thouless-Halperin-Nelson- Young.
The Lame coefficients are calculated within the harmonic

approximation and thermal fluctuations are neglected.
The inclusion of thermal effects will lead to corrections to
the Lame coefficients which will change the position of
the phase transition quantitatively. Nevertheless we ex-
pect that the present theoretical analysis will give a good
qualitative picture of the phase diagram for a 2D colloidal
system. For example, we believe that the general trends as
far as the qualitative dependence on A, , a, and Z* is
correctly described by the present rather simple approach.
At present we feel that there are several parameters which
are not well understood like, for example, the applicability
of the screened Coulomb potential for the present system
(see, e.g., Refs. 25 and 26) and the importance of hydro-
dynarnic forces which have been shown ' to overdamp
the phonon modes in a 3D colloidal system. Therefore we
think that before we attempt a more quantitative accurate
calculation it will be necessary to investigate the form of
the potential and, for example, the charge renormalization
in the present 2D system. This will be left for future
work.

In many works in connection with one-component plas-
mas (OCP) a plasma parameter is defined which charac-
terizes the classical OCP completely. This parameter is
given by

(Ze)
EkB Tr

where in 2D r, =1/Q~n2D ——a, /v m and which in fact is
the ratio of the average potential energy to the average ki-
netic energy. For the present system with screened
Coulomb interactions this becomes

(Z )'r= e
ok~ Tr,

From the present theory we can calculate the value of I
at the phase-transition point. The result is shown in Fig.
8 as function of a, /A, . In the limit of no screening we
found I =78.71 as obtained earlier in Ref. 27. The exper-
imental result for a Coulomb system of electrons on heli-
um is I -125 which can be explained' by the KTHNY
theory if one incorporates the temperature dependence of
the shear modulus arising from the phonon-phonon in-
teraction and the polarizability of dislocation pairs.

In conclusion we state that the 2D colloidal system pro-
vides a nice experimentally realizable system at which 2D
melting can be studied. Several experimental variable pa-
rameters are available (e.g. , the thickness d of the 2D slab,
the radius of the spheres a, the charge of the spheres Z*,
the counterion content, etc.) which will influence the in-
terparticle interaction (e.g., via the screening length A, ) in
one or another way.

The KTHNY theory allows for the possibility of the
existence of a hexatic phase. Recent computer simula-
tions seem to confirm the existence of such a phase. In
this phase the system has lost its translational order but
there is still quasi-long-range orientational order. In the
case of the "electrons on helium" system no such hexatic
phase has been demonstrated. The difficulty there has an
experimental origin: how to discriminate experimentally
between a liquid phase and a hexatic phase? In the
present system under study the different colloidal parti-
cles can be seen through a microscope and this should al-
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low one to observe directly such a hexatic phase. In the
present paper we concentrated on the solid-liquid transi-
tion which is defined as the transition where translational
order disappears. In the phase diagrams shown in Figs. 6
and 7 the hexatic phase would be located along the phase
line on the liquid side. Then there should be another
phase line for the transition from the hexatic to the isotro-
pic liquid phase.
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