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Dichotomous-noise-driven oscillators

R. F. Pawula
Random Applications, Inc., 51'5 South Junction Avenue, Montrose, Colorado 81401.
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The problem of finding the probability density function of the output of an oscillator (a filter of
order higher than the first) driven by dichotomous Markov noise (the random telegraph signal) is
considered. No known theoretical methods are available for completely solving problems of this

type. A somewhat general expression is derived for the output moments and an exact formulation
for the probability density is presented in terms of Fokker-Planck —type equations. However, partly
because of irregularly shaped boundaries, the Fokker-Planck equations are complicated and remain
unsolved except in the first-order case. The paper concludes with some Monte Carlo results for a
second-order But terworth filter.

I. INTRODUCTION

The problem of calculating the probability density
function of the output of an RC filter driven by a binary
random process has been studied extensively over the past
25 years or so. ' The much more difficult case when the
RC filter is replaced by an oscillating higher-order filter
has, to our knowledge, received no mention in the pub-
lished literature, and is the subject of the present paper.
For concreteness, much attention will be focused on the
second-order Butterworth filter driven by the random tele-
graph signal. (The terms "random telegraph signal" and
"dichotomous Markov noise" will be used herein inter-
changeably. ) This example serves well to illustrate the dif-
ficulty of the genera1 problem of higher-order filtering,
and it is anticipated that the solution in the second-order
case will be instrumental in providing the key to the solu-
tion in the general case.

In the RC filter case, the class of binary processes for
which most results are available is that with intervals gen-
erated by an equilibrium renewal process. The simplest
of these is the random telegraph signal which has ex-
ponentially distributed intervals, and, in this case, the den-

sity of the output can be found by Fokker-Planck
methods. For intervals with other distributions, integral
equations can readily be derived for the output density,
and can be either solved directly by numerical methods or
transformed into differential equations. It is tempting to
try to apply these various approaches to the higher-order,
non-RC filter. Although some progress can be made, it
does not appear that any of these previously used tech-
niques can be directly applied to yield a complete solution.
Some of the reasons why are considered in depth in this
paper. It is hoped that our considerations will give some
insight into the development of analytical methods for the
solution of this most challenging problem.

The second-order Butterworth filter is examined in de-
tail in Sec. II, which gives the filter differential equations,
their state-space formulation, examination of the regions
of state space over which the equations hold, and con-
sideration of the output moments. Extensions of these re-
sults to the general nth-order filter are considered in Sec.

III. After a very brief review of the applicable theory,
Fokker-Planck equations for the output density are for-
mulated in Sec. IV, and are then specialized to the first-
and second-order Butterworth filters. Some Monte Carlo
results are presented in Sec. V, and the final section sum-
marizes and discusses the results.

II. SECOND-ORDER BUTTERWORTH FILTER

The frequency response of the second-order Butter-
worth filter is

H( ) I+(2fIB)"
where B is the filter 3-dB bandwidth, and the correspond-
ing impulse response is

h (t) =2/3e P'sin(/3t), t & 0 (2)

in which P=vrBi2. The second-order differential equa-
tion relating the input x (t) and output y(t) of the filter is
then

+2P +2P y(t)=2P x(t) . (3)

This differential equation can be rewritten using state-
space formalism as a vector differential equation. Let-
ting z(t) be a column vector with components z&(t)=y(t)
and z2(t) =y(t), the vector equation is

z(t)= Az(t)+Bx(t),
where the matrices A and 8 are given by

0 1 0
—2P —2P ' 2P

(4)

Although we are considering a specific second-order sys-

The only binary input that we consider here is the ran-
dom telegraph signal with exponentially distributed time
intervals between traversals. The random telegraph signal
will be denoted by x (t), and the average number of traver-
sals of x (t) per unit time by a.

A. Filter differential equations
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tern, the matrix equations are valid for general nth-order
systems. This is true of (4), (6), and (29).

B. Filter output equations

The state of the system, the vector z(t), can be obtained
as the solution to (4) in terms of the state-transition ma-
trix @(t) as

z(t) =@(t—tp )z(tp ) + f 4 (t r—)Bx(r)dr
tp

where W(t) is the solution to the matrix equation
N(t)= A@(t) with initial condition %(0)=I and, for the
second-order Butterworth filter, comes out to be

e t =e-t" cos(pt)+ sin(pt) p 'sin(pt)
—2p sin(pt) cos(pt) —sin(pt)

The steady-state stationary solutions are then, from (6),
t

y(t) =2p f e ~" 'sin[p(t r)]x(r—)dr (8)

and

y (t) = p'f e ~" 'I cos[p(t —r)]
—sin[P(t —r)] jx (r)dr . (9)

The output is oscillatory over intervals of constant input.
Because of this, we note that the integral equation ap-
proach which formed the basis of the analyses in Refs. I
and 2 is not tenable in the present situation, for the
derivation of the integral equations requires that the in-
verse function y

' be a single-valued function of t over
intervals of constant input.

C. Output domains

Even though (8) and (9) are explicit relations for y(t)
and y(t) for any sample function of the input process
x(t), the ranges of y(t) and y(t) are not immediately evi-
dent from them. Since x(t) is a binary process, the in-
tegral in (8) is maximized when x(r)=sgn[sin[p(t —r)]I,
and we find

D. Output moments

2 1+a
1+2a+ 2a2

(14a)

In a similar way, the fourth moment is (cf. Ref. 3)

4 24 10a +64a +173a +215a+75
[1+(1+2a) ][1+(3+2a) ][9+(3+2a) ]

(14b)

The general expression can be obtained by going back to
the integrals which led to (14a) and (14b) and writing the
integrands in complex form. For example, instead of
(14a) we get

y'=i'(2!)
+, 2a+1+iq, 2+i(q&+q2) '

and (14b) is the same as

(14c)

For a bounded random variable, its marginal probabi1i-
ty density function can be determined, in principle, from
knowledge of all of its moments by summing and invert-
ing the moment generating function. Indeed, Wonham
and Fuller first determined the density of the output of
an RC filter driven by the random telegraph signal by do-
ing just this. However, in the case of the second-order
Butterworth filter, the higher moments become increas-
ingly complicated. Although a general expression for the
moments can be written, it involves multiple sums, and its
evaluation requires the use of complex arithmetic and a
digital computer.

The second moment can be obtained by squaring
(8) and using E[x(ri)x(r2)]=exp( —2a

~
r2 ri

l

—) and
comes out to be (a =a /P)

ly(t)
l

&coth(~/2)=1. 09033. . . .

In a similar way

~
y(t) l

& v 2pe / csch(n. /2) =(1.347 83. . . )p .

However, y(t) and y(t) are not independent, and the re-
gion of permissible values of the pair (y,y) will not neces-
sarily be a rectangle in the (y,y) plane. Indeed, selecting
x(r) in (8) and (9) to maximize the sum y(t)+Ay'(t) (here,
A, can be viewed as a Lagrange multiplier) leads to the
parametric equations

.4 .8

go

y
90

l.2

y = 1 —csch(m/2)e ~(cosP —sing),

y =2Pcsch(vr/2)e icos/,
(12)

(13)
—8--

in which —~/2&P&m/2. The locus described by this
pair is the upper half of the curve shown in Fig. 1. By
symmetry, the lower half of the curve is a reflection of the
upper half. The peculiar shape of the boundary region
leads to certain complications in attempting to find the
marginal and joint densities p (y) and p (y,y). These diffi-
culties will be described later in Sec. IV.

FIG. 1. The boundary of allowable values of y and y/P. The
probability density functions p+(y, y') must vanish outside the
curved region.
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TABLE I. Output moments for second-order Butterworth filter.

1

5

1

2

0.810 81

0.60000

0.40000
0.230 76
0.098 36

V

0.787 77

0.529 41

0.291 58

0.11898
0.025 64

0.794 92

0.511 66

0.251 47
0.080 57

0.009 94

y8

0.81605

0.514 68

0.234 33
0.062 67
0.004 85

y10

0.846 85

0.529 67

0.228 19

0.052 96
0.002 75

4 4(4t) g q 1 q2 q4

+, 2cr+I+iq, 2+t'(q, +q, ) 2cr+3+i(q, +q, +q, ) 4+t'(q, +q, +q, +q4)
J

(14d)

The general form of these last two is then

2n
y'" =(—I)"[(2n)!]

aiiq =+i k=i (I —( —1)"1&+k+i~kj

(14e)

Zf

Z2

Zn —1

Zn

Z3

F„(z)

(15)

in which the summation is a 2n-fold summation over
qi, q2, . . . , q2„and Sk ——g, q . Summations of this
type have been used to compute the even order moments

up to y'", and the results of some of these computations
are given in Table I.

In the case of the RC filter driven by the random tele-
graph signal with arbitrary interval distributions, Mun-
ford has devised a recursive method for computing all of
the moments. However, it does not appear that his
method can be extended to the higher-order filter.

III. GENERAL FILTERS

The operation of an nth order linear filter can be
described by an nth order differential equation, and the
state-space vector for the characterization of this system
is then the vector whose components are y(t) and its first
n —1 derivatives. Letting z;(t)=y' "(t), i =1, . . . , n,
the generic state-space form of such a differential equa-
tion is

For example, for the second-order Butterworth filter,
F„(z)=2P x —2P z i

—2Pz2. In general, for any linear fil-
ter, F„(z) will be a linear combination of the input and
the n components of the state vector. For Butterworth
filters of orders 1—3, filter differential equations, along
with their impulse responses, are given in Table II. The
corresponding F 's can easily be read by inspection from
the differential equations.

All of the analysis of the preceding section can, in prin-
ciple, be repeated in the general case. However, the state
transition matrix is more difficult to determine for
higher-order systems, the domains of definition become
oddly shaped regions described by parametric equations in
n space, and the moments are even more complicated
than they are in the case of the second-order Butterworth
filter. Thus, even though soine of the analyses can be car-
ried through in the general case (see the Appendix for the
moment formula for an arbitrary second-order filter), it is
highly desirable to try to formulate the problem in such a
way that some of the difficulties noted above are circum-
vented.

In the next section, we show how Fokker-Planck equa-
tions can be derived for the joint probability density func-

TABLE II. Butterworth filters.
~
H„(f)

~

=I/[I+(2f/8)2"] and cpp rtB. ——

n=1

Filter differential equation

dy
dt

+6)+ =COoX h (t) =cooe

Impulse response

El =2

Pl =3

d dy
dt2 dt

+ 2Mo +co~ =coox

+2~0 +2coo +may =mox

h (t) =Zpe ~'sinpt, p= cop/V 2

ro&t 2cpp a&pt/2 ~3——
h (t)=cppe + e cos cppt+—

3 2 3.
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tion of the components of the state vector in the general
case. We will see that the only quantity necessary in the
general formulation is the specification of the function
F„(z), as might be expected from (15).

IV. FOKKER-PLANCK EQUATIONS

Fokker-Planck methods have been used with great suc-
cess in the study of dynamical systems and transition phe-
nomena in all branches of modern science and engineer-
ing. Normally, all variables are either discrete or con-
tinuous; however, the situation presented by the filtering
of the random telegraph signal is one of the mixed type

since the input is discrete and the output is continuous.
Fokker-Planck equations for this "inixed-variable case"
were derived in 1967,' but to date have received limited
attention.

A. General theory

In order to use Fokker-Planck methods for nth-order
systems, it is necessary to consider the joint probability
density function of all of the components of the state vec-
tor. Furthermore, in the mixed-variable case, it is also
necessary to append the state of the discrete process to the
probability density function. Thus, we are led to consider
joint probability density-probability distribution functions
of the form

pk(y, y, ,y
" ')=p(y, y, . . . ,y'" "~x =k)PIx =kI, keX (16)

where X denotes the set of states of the discrete process. For the random telegraph signal, X= I
—1,+ 1 I. Only steady-

state behavior will be treated, and so (16) will not be a function of time. The marginal density p(y) of the output can, in

principle, be determined from (16) by

p(y)= Jdy
. . Jdy'" "g pk(y, y (17)

keX

!fonly p(y) is of interest, this may seem like a circuitous procedure, but to date it is the only known general approach to
the problem.

Fokker-Planck —type equations for densities like pk(y, y, . . . ,y'" ") were derived in [Ref. 9, Appendix A, and Ref.
10, Eq. (35)]. Again, using the state variable notation with z; =y' ",pk(y, y, . . . ,y'" ")=pk(z), these equations in the
n-dimensional case are

0=2 II
M i=1 i

a
kpk(z)]+ y ak~pi(z)

az;' i EX
(18)

where m=(m i, . . . , m„), the summation is over all integers m; such that M & 1, where M = g,".
, m;, and the condi-

tional moments are

ak; ——lim —[PIx (t +b ) =k
~
z(t), x(t) =i I 5k]—1

0
(19)

and

A „=lim E II Iz;(t+—b, ) z;(t)I ' ~z(t), x(t—)= (t+b, )=k1 m;

0
(20)

In using these, the conditional moments are first calculat-
ed from the physics of the problem; i.e., the filter dif-
ferential equation and the statistical description of the in-
put process. Although the limits of the sums in (18) are
infinity, in most cases of practical interest they will be
tioo or less (see Ref. 7, Sec. 4.5, and Ref. 8, Sec. 4.3) since
the A k's will vanish if any of the m s is larger than huo.

B. The conditional moments

For the random-telegraph-signal input, the state vari-
ables in the conditioning in the definition of the ak; s can
be dropped, and we have

ak; ——lim [P I x (t +5)=k—
~

x (t) =i I
—

5ik ]
1

0

,
—a, ifi =k,
a, if i&k, (21)

where, again, a is the average number of traversals of the
random telegraph per unit time.

The remaining conditional moments are evaluated by
use of the system equations (15). The only nonzero A k's
will be those which result from the first power of one of
the state variables and the zeroth powers of all of the oth-
ers, so that only first partial derivatives with respect to
each of the state variables will be present in (18). These
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k's are readily shown to be

0 if M&1,
k ——z+& if M=1 and m;=1, i&n,

Fk(z) if M =1 and m„= 1 .

(22) (1 y2)a —1

p(y) =
2 'B(a,a)

in which B ( ) denotes the beta function.

(26)

For the "boundary conditions" p(y)=p( —y) and that
p(y) must integrate to one, this has the solution

n —1 Bp+g z+| + (F p )+ap =ap —,
i =1 Zi Zn

(23)

where F+ ——Fq(z) with k =+1, and p+ ——pk(z) with
k=+1. Specific examples of the use of these equations
will be given in the following.

D. First-order Butterworth filter

The first-order Butterworth filter is merely the RC fil-
ter, and in this case the density p(y) is well known.
However, since p(y) is ordinarily not obtained by the
method developed herein, it will be useful to consider this
case as an illustration. The Fokker-Planck equations fol-
low by using the differential equation from Table II with
F„(z)=copx —spy; viz. , with a=a/cop,

d [(1—y) 1+ap (24a)

d
[(1+y)p l+ap =ap+.

dy
' (24b)

Defining p=p++p and q=p+ —p, adding and sub-
tracting (24a) and (24b), and eliminating q between them
leads to

d
, [(1—y')p)+2a

d
(yp)=o.

dy dy
(25)

C. The Fokker-Planck equations

When the moments (21) and (22) are used in (18), the
Fokker-Planck equations for the density of the state vari-
ables in the case of the general linear filter are given by
the pair

E. Second-order Butterworth filter

From Table II we now have F„(z)=copx —copy
—v 2copy, and (23) gives the pair

- Bp+ B
y + [(cop —copy —scopy )p+ ]+ap+ ——ap

By

(27a)

. Bp'B. [(cup+ copy+ scopy )p J+ap =ap+ . (27b)
By

p+(y y) =p-( —y —y) . (28)

It is reasonable to expect, from intuition, that p+(y, y')
should vanish on the boundary in the third quadrant, and
that p (y,y) should vanish on the boundary in the first
quadrant. However, at present these are conjectures
whose validity remains to be established. Even if they
were true, they might be difficult to apply in view of the
parametric representation of the boundary.

Although the Fokker-Planck equations have been rela-
tively easy to obtain, their solution in all but the first-
order case appears formidable. Even if they could be
solved, integration of the joint density to get the marginal
density, as illustrated in (17), would be complicated be-
cause of the parametric representation of the boundary.
Consequently, the limits in the integrals of (17) would not
be expressible as explicit functions.

The region of validity of these equations is the interior of
the curve shown in Fig. 1. The only apparent "boundary
conditions" for the solution of (27a) and (27b) are that
p+ (y,y ) each integrate to —,, and the symmetry relation

TABLE III. Monte Carlo results for second-order Butterworth filter.

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95
1.00
1.05

1a=—
5

0.500
0.513
0.530
0.543
0.557
0.575
0.589
0.608
0.628
0.656
0.670
0.798
0.937

1a=—
2

0.496
0.526
0.555
0.585
0.615
0.646
0.678
0.711
0.748
0.789
0.826
0.871
0.953

PIy& Y)
a=1

0.497
0.543
0.587
0.633
0.679
0.723
0.769
0.816
0.858
0.900
0.927
0.944
0.974

0.501
0.575
0.641
0.699
0.757
0.812
0.866
0.912
0.950
0.981
0.988
0.995
1.000

0.499
0.622
0.704
0.799
0.881
0.937
0.972
0.989
0.997
1.000
1.000
1.000
1.000
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1.0

Ymax = 1.0903...
I

.8
Vl—.7

.5 .2 .4 .8 I.O

V. SOME MONTE CARLO RESULTS

On any interval over which the input is constant, say
(tp, t), (6) gives

t —f0z(t)=e(t —t, )z(t, )+ f e(~)dr Bx(tp+)

FIG. 2. Monte Carlo results for the output distribution of a
second-order Butterworth filter driven by the random telegraph
signal.

lead to the consideration of the state vector of the system
and the joint probability density function of all of the
components of the state vector. Although we were able to
formulate Fokker-Planck equations for the general filter,
the equations are coupled partial-differential equations in
n variables (for the nth-order filter) and are difficult to
solve. The solution is further complicated by the irregular
shape of the boundary region and its implicit characteri-
zation through parametric equations. Furthermore, suit-
able boundary conditions for the solution are as yet un-
known. Analytical determination of the marginal density
of the output from all of its moments appears to be in-
tractable because of the complexity of the higher mo-
ments.

This is the type of problem that the neophyte would ex-
pect to find all worked out in some standard text on prob-
ability and random processes. It is hard to imagine a ran-
dom process as well behaved and as easily characterizable
as the random telegraph signal, and intuition strongly
suggests that the problem should be tractable. Perhaps
this, and the fact that so little progress has been made to
date in getting an analytic solution, make the problem
more fascinating and intriguing. It is hoped that the
Monte Carlo results will provide some insight and gui-
dance for future studies.

=C (t —t, )z(t, )+A —'[N(t —t, ) —I]Bx(tp+ ) .

(29)

For the second-order Butterworth filter, this equation can
be used to simulate y(t) and y(t) at points between the
traversals of x (t), and from y(t), the probability distribu-
tion P1y ( 1'I estimated as the percentage of time y (t) is
below the level Y. Results of the simulations for this case
are listed in Table III and are plotted in Fig. 2 for several
values of the parameter a =a /p. The corresponding
probability density function p(y) appears to be roughly
uniform for a near 1, convex upward for a & 1, and con-
vex downward (going to zero at y = +y,„) for a & 1.
This behavior is similar to that in the case of first-order
RC filtering; however, the form p (y) = c (1—y /y, „)
for the density is precluded since this form is not con-
sistent with the moments (14a) and (14b).
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APPENDIX: MOMENTS FOR ARBITRARY
SECOND-ORDER SYSTEMS

h ( t) =Ae ' '+ A "e (A1)

Then, the moments are

Equation (14e) can be generalized for an arbitrary
second-order filter whose impulse response is the sum of
two complex exponentials; viz. ,

VI. SUMMARY AND CONCLUSIONS y'" = l(2n)']
n . =+i i =i l 1 —( —1) ]~+kp +'p ~k

We have considered in some detail the problem of find-
ing probability densities after higher-order filtering of the
random telegraph signa1. In order to be concrete, and also
since this is one of the simplest higher-order filters, much
of our attention was directed to the second-order Butter-
worth filter. In the higher-order cases, classical methods

(A2)

in which we have expressed A and B in terms of their real
and imaginary parts as A =A„+iA; and B=p, +i p;
When A„=O and A; =p, =p; =p, this reduces to (14e).
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