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Herein we present a calculation of the mean first-passage time for a bistable one-dimensional sys-

tern driven by Gaussian colored noise of strength D and correlation time v, We obtain quantitative

agreement with experimental analog-computer simulations of this system. We disagree with some

of the conclusions reached by previous investigators. In particular, we demonstrate that all available

approximations that lead to a state-dependent diffusion coefficient lead to the same result for small

Dw, .

I. INTRODUCTION

X(t)=G(X)+g (X)f(t),
where f ( t) is a Gaussian zero-centered random process
with correlation function

P(t —r)=(f(t)f(r)) . (1.2)

Typicall'y f ( t) is chosen to be a Csaussian Markov process,
whence

D —itil~,
ic

(1.3)

We shall compare the results of the various approxima-
tion schemes that lead by different routes to an approxi-

In the last few years considerable confusion has arisen
in the theoretical understanding of the behavior of sto-
chastic systems driven by colored noise, i.e., by fluctua-
tions of strength D with a finite correlation time 'T, . '

Of particular prominence has been the calculation of the
first-passage-time statistics for bistable systems. Dif-
ferent theories' have been used to obtain different
dependencies of the mean first-passage time T on the
correlation time ~„comparison of these dependencies
with digital' and analog computer experiments have
then led to claims about the preferability of one theory
over another. In this paper we establish that all the
currently available Fokker-Planck-like theories that have
a state-dependent diffusivity lead to the same ~, depen-
dence of T to the order of approximation to which T can
be reliably calculated. Comparison with experiments
shows quantitative agreement with the prediction of these
theories.

Let us consider a one-dimensional process X(t) charac-
terized by an evolution equation of the form

G(x)P(x, t)
a

+ g (x) g (x)D (x, t)P (x, t),a a

P(x, t) = ——
at

(1.4)

where D(x, t) is an effective diffusion function which is in
general both state and time dependent and which reduces
to the constant D when ~, ~0. The transient effects,
which occur over a time scale t & ~„are usually neglected
so that D(x, t) is replaced by

D(x)= lim D(x, t) .l~ oo
(1.5)

The differences among the various approximations lie in
the way in which Eq. (1.4) is derived starting from Eq.
(1.1), each technique leading to a different diffusion func-
tion D(x). Four different forms have been reported.

(1) Sancho et al. derived a form valid for small D and
small ~„

D&(x) =D I+r,g(x)
G (x)
g (x)

(1.6)

where the prime denotes a derivative with respect to x.
(2) Sancho et al. and Lindenberg and West indepen-

dently obtained an expression valid for small D,

D2(x) =D I+r, G (x)
G (x)
g(x) ' dx

g(x)
G(x)

(1.7)

where the dldx does not act on P(x, t) in Eq. (1.4), i.e. ,
D2(x) is a function and not an operator.

(3) Hanggi et al. proposed an x-independent form for

mate Fokker-Planck-like equation for the evolution of the
probability density P(x, t) associated with Eq. (1.1). This
approximate equation has the form'
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the particular case of additive noise [g(x) =1] and a bi-
stable potential wherein G (x)=ax b—x,

D
1 —r, (G'(x)) ' (1.8)

Since the average (G'(x)) depends on the unknown
probability density P(x, t), Hanggi et al. replace (G'(x))
with its steady-state value (a 3b (—x )„)and treat (x )»
either as an adjustable parameter or as having the white-
noise value a /b.

(4) Fox has proposed yet another form for the effective
diffusion function,

r

where [, ] denotes the commutator. We will apply this
formula with the identifications

A =Lpga, B =Lf(t —r) (2.5)

Let us denote the nth-order commutator in the series (2.4)
by C„(x,t —r):

C~(x, t —r) = [Lp [Lp, ' [Lp Lf'(t —r)] ' ' ]]n!
(2.6)

where there are n factors of Lp in (2.6). We now show
that this operator can be written as

D4(x) =D 1

1 —r, G'(x)
r, G (x)[lng (x)]'

[1—r, G'(x) ]
(1.9a) C„(t—r) = f(t —r) — F„(x),C}

n& Bx
(2.7)

In a recent paper Fox modified his result (1.9a) and in-
stead obtains

where the c-number function F„(x) obeys the recursion
relation

D4(x) =D (1.9b) F„(x)=G'(x)F„ i(x) G(x)F—„'
i (x) (2.8)

1 —r, G'(x) — G (x)
g'(x)
g(x)

In Sec. II we construct the Fokker-Planck-like equation
using the cumulant summation technique. The diffusion
function (1.7) is derived in Sec. III and is compared with
those obtained by other investigators, In Sec. IV we cal-
culate the mean first-passage time for a bistable anhar-
monic oscillator. The theoretical results are compared
with analog experiments in Sec. V and the two are found
to be in excellent quantitative agreement. We end with a
brief summary of the salient results of our analysis in Sec.
VI.

II. CONSTRUCTION OF FOKKER-PLANCK-LIKE
EQUATION

XP,[1+0(Dr,)], (2. 1)

The procedure for constructing a phase-space-evolution
equation for the conditional probability density P,

P(x, t ~xp) th—at describes the system (1.1) with initial
condition X(0)=xp is well known. The technique yields
an exact generalized master equation; to 0(Dr, ) the re-
sult for Gaussian fluctuations is

aP, LD~ —L0r

at
=LpP~+ f dr(Lf(t)e Lf(t —r)e )

=Lf(t r)= f(—t r) g—(—x) .a
BX

(2.9)

Let us suppose that the (n —1)st-order commutator has
the form (2.7). The nth-order term then is

C„(x,t r) = —[—Lp, C„,(x, t —r)]
n

=f ( t —r), 6 (x), F„ i(x)
a a

=f ( t r) [ —G'(x)F„ i(x)—n! Bx

+ G (x)F„' i (x) ]

f (t —r) F„—(x)a
n

(2.10)

and (2.8) immediately follows.
We have thus established that the series (2.4) with the

identifications (2.5) can be written as

with Fp(x) =g(x). The definition of Fp(x) follows direct-
ly from the first term in the series (2.4),

a
Cp(x t —7)= f(t —r)— Fp(x)

BX

where I p is the deterministic evolution operator

aLp=—— G(x)
Bx

and Lf(t) is the stochastic evolution operator

Lf(t): f(t) g (x) —. —a
Bx

(2.2)

(2.3)

e "Be "=B+ [A,B]+—[A [A,B]]
21

To evaluate the integrand in (2.1) we apply the formu»

e ' Lf(t r)e '—= f(t r) g ——F„(x)
Bx „pn! (2.11)

8=P(r) g(x) g, F,(x) .
Bx Bx „pnt (2.12)

with the F„(x) defined via the recursion relation (2.8) and
Fp(x) =g(x). Multiplying (2.11) on the left by Lf(t) and
averaging over the fluctuations then yields the integrand
in the evolution equation (2.1),

(Lf(t)e Lf(t r)e ' )

+ —,[A, [A, [A,B]]]+.. . ,
1

(2.4)
To leading order in D~, the phase-space-evolution equa-
tion is then of the form (1.4),
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t r" F„(x)
D(x, t)= f dr/(r) g

o n! g(x)
(2.14)

Equation (2.13) is the "best Fokker-Planck-type equa-
tion" to describe the dynamical system (1.1) subject to
colored Gaussian fluctuations in the sense that all subse-
quent correction terms contain contributions of higher or-
der in the fluctuation strength. Thus, (2.13) contains all
the second-derivative contributions of O(Dr,"). Note that
(2.13) with (2.14) is valid for arbitrary correlation function
P(r) and does not require this correlation function to be
exponential ~

a a a a
P, = — [G(x)P,]+ g(x) g(x)D(x, t)P, , (2.13)

Bt Bx Bx 0x

with

(3.6) is

H(x, s) = 1+ G (x) a

s —G'(x)+ G (x)
g'(x) Bx

g (x)

X
s —G'(x)+G(x) g'(x)

g (x)

(3.7)

H(x, s) = f dx' exp —f dy
G (x) ",g (x') X

g(x) o G (x') x' G (y)

The explicit solution of (3.6) is shown in Appendix A to
be given by

III. THE DIFFUSION FUNCTION D (x, t )

+H(O, s) . (3.8)

The diffusion function D(x, t) can be evaluated by in-
serting the solution of the recursion relation (2.8) into
(2.14) and performing the indicated summation and in-
tegration. Alternatively, one can construct a differential
equation for the sum appearing in (2.14). Thus let us
write

The boundary value H(O, s) enters (3.8) as a constant of
integration and must be calculated directly from the defi-
nition (3.2) of H(x, r) and the recursion relation (2.8). If,
as is often the case, G(0)=0 and G'(0)=const=a, then
we show in Appendix A that

D(x, t)= f dr/(r)H(x, r), (3.1)
K(O,s) =

s —a
(3.9)

where

~ F„(x)
H(x, r)= g

0 n! g(x)
(3.2)

=a " =a
,
F„(x)= g, F„(x)= H (x,r)g (x)

, (n —1)! " c}„rno!

(3.3)

The product g(x)H(x, r) is thus the generating function
for the F„(x). Now multiply both sides of Eq. (2.8) by

'/(n —1)!,sum from n =1 to co, and note that

The problem has thus been reduced to quadrature. In-
verse Laplace transformation of (3.8) and substitution of
the result into (3.1) then yields the diffusion function.

A further simplification occurs if we now invoke two
further assumptions routinely made in the literature. '

(1) The upper limit of integration in (3.1) is taken to in-
finity. This step presumes that the correlation time ~, is
much shorter than the time t of observation, and results
in a diffusion function that is independent of time,

D (x, t) =D (x)—:f dr P(r)H (x,r) . (3.10)

(2) The fluctuations are exponentially correlated, i.e.,

to obtain the partial differential equation ' D —
! T! /~,

C

(3.1 1)

H(x, r) =G'(x)H(x, r) —G (x)H'(x, r)
a~

—G(x)H(x, r)
g'(x)
g (x)

(3.4)

so that f(t) is a Gaussian Markov process. In this case
the integral (3.10) is precisely the Laplace transform of
H(x, r) with s = I/r, so that (3.8) is proportional to the
diffusion function with no further operations,

A. Solution of (3.4) by Laplace transformation

The Laplace transform of H(x, r) with respect to r, de-
fined by

H(x, s)= f e "H(x,r)dr, (3.5)

then satisfies the ordinary differential equation

I

s —G'(x) +G (x) H(x, s)+ G (x)H '(x, s) = 1,
g (x)

(3.6)

where we have used the initial condition H (x,r=0) = 1

that follows directly from (3.2). The formal solution of

D G(x) &d, g(x') f" dyD(x) = dx
~ expg(x) o G (x')

+D(0) . (3.12)

If G (0)=0 and G'(0) =a then

D(0)=
1 —a~,

(3.13)

Although our result is more general and includes (3.12) as
a special case, we will base our further analysis on the
latter form, as are most of the results reported in the
literature.
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B. Comparison with other theories

It is useful to compare our results with those of others.
The comparison is most easily made if we write the dif-
fusion function in terms of the formal expression (3.7),

D(x) =D 1+ r, G(x) d

1 —r, G'(x)+r, G(x)
g'(x) dx

g x

1 r, G'—(x)+r,G(x)
g'(x)
g(x

(3.14)

The "small-D approximation" of Sancho et al. obtained
using functional-derivative techniques is equivalent to
(3.14). The "small-r, approximation" of Sancho et al.
retains only the first-order correction to the white-noise
limit,

D(x)=D I+r, G'(x) —G(x)
g'(x)
g(x)

(3.15)

D
1 r(G'( )x)—

Fox's result is

(3.16)

The ansatz of Hanggi, made for a particular example
with additive noise [g(x)=1], does not contain the
second term in the first bracket in (3.14) and in place of
the function in the denominator of the second bracket
there appears its average,

T, = exp[A/, „p,(r, )/D, „p,],a&2
(4.3)

where the measured function b,P,„~,(r, ) for small r, is the
linear quantity

a
pp(T ) ( 1 +C p& &7) (4 4)

Here a /4b is the value of bP,„~, in the limit of white
noise. The parameter C,„„, is the experimental slope of
the data (see Fig. 2). Deviations from the linear form set
in when ~, is of the order of a '. Note that the slope
C,„~, in Fig. 2 is D,„~, dependent and that it increases
with increasing D, p$.

Let us now consider the theoretical prediction for T, on
the basis of the various Fokker-Planck-like equations (1.4)
with D( tx) replaced by D(x) using Eq. (1.5). The mean
first-passage time T from one minimum to the maximum
is obtained by standard techniques and is given by

the potential. The results for T, as a function of the.
correlation time r, are shown in Fig. 1 for various values
of the strength parameter D in Eq. (1.3). It should be not-
ed that the measured values D,„z, may be ambiguous due
to large experimental fluctuations and that the mean value
of D itself drifts downward as ~, decreases. The
"white-noise" (r, =0) values of T, therefore correspond
in each case to a significantly lower value of D than the
reported value D,„„,. The experimental mean sojourn
time is written in the form

D(x) =D 1

1 —r, G' x
r, G (x)g'(x)

[1—r, G'(x)] g(x)
(3.17a)

D(x)=D
1 —r, G'(x)+r, G(x)

g'(x)
g x

(3.17b)

and can be obtained from (3.14) by omitting the second
term in the first bracket.

This result can be obtained from (3.14) by omitting the
second term in the first bracket and expanding the second
bracket. His modified diffusion function is

20

l5

E
)0

OO

IV. MEAN FIRST-PASSAGE TIMES

As noted in the Introduction, the calculation and mea-
surement of first-passage-times statistics for bistable sys-
tems have been particularly prominent in the litera-
ture. ' ' The experimentally measured bistable system
is described by the dynamic equation

0
50 l 00 l 50

r, (p.s)
200

X=aX bX +f(t), — (4.1)

which is of the form (1.1) with g (x)= 1. The "potential"

V(X)= , bX —,
' aX2—— (4.2)

corresponding to (4.1) has minima at +(a/b)'~ and a
maximum at zero. The analog computer experiments of
Moss et al. yield the mean sojourn time T, in one well of

FIG. 1. Mean first-passage time T vs the correlation time v.,
with a =b =1 for several values of D. Crosses, D,„~,=0.073;
open circles, 0.083; closed circles, 0.114; squares, 0.153; and tri-
angles, 0.212. The data are taken from Moss et al. with the
permission of the author. Solid curves: Eq. (4.26) with
D =D,„~,=0.114 (lower) and D =D,„~,=0.083 (upper). Dashed
curves: D =0.10 (lower) and D =0.075 (upper).
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IO

O

of values of r, . The functions D2(x) and D4(x) require
that ar, &1 and leads to a bimodal distribution P„(x)
provided this condition is satisfied. The short-
correlation-time approximation D, (x) requires a more
stringent restriction on v., and leads to a bimodal distribu-
tion only if r, & [ —1+(1+18Db/a )'y ]/(18Db
/a).

Equation (4.5) cannot be evaluated in closed form. In
general, the mean first-passage time can be written in the
form (4.3), i.e.,

T = exp[kg(D, r, )/D],
a 2

(4.11)

50
I

IOO

~c (~s)

I

I 50 200

FIG. 2. The data of Fig. 1 replotted to show hP, vs r,
(taken from Moss et al. , with the permission of the author).
The solid lines are calculated from our Eq. (4.27) with
D =0.212 (upper line) and D =0.114 (lower line).

»
(4.5)

where P»(x) is the steady-state solution of the Fokker-
Planck-like equation (1.4) and is given by

N f dy[(ay bye)ID(y)]-
D(x)

(4.6)

Di(x) =D [1+(a 3bx )r, ], —

D 3 1 l bx
D2(x) = F ——,1;— + 1

1 —aw, 2' '2 a~, a

(4.7)

where N is the normalization constant. In (4.5) x is one
of the symmetric maxima of the distribution P„(x) and is
the solution of the relation D'(x)=ax bx obtaine—d by
setting P,', (x)=0. Note that x is shifted from the fixed
points +(a/b)' by an amount dependent on r, . It is
generally assumed that the mean first-passage time T is
an adequate measure of the mean sojourn time T, . The
four diffusion functions (1.6)—(1.9) to be compared reduce
in the system (4.1) to

where hg(D, r, ) is a doubly infinite series in D and r,
To leading orders in D and in r, one can evaluate b,P
analytically (cf. below) using suitable approximations on
(4.5). This level of approximation is consistent with the
empirical fit (4.4). Before doing so we anticipate the fol-
lowing important points.

(1) The diffusion functions Di(x), D2(x), and D~(x)
give the same hP to leading orders in D and r„claims to
the contrary notwithstanding. '

(2) The calculations of T using Di(x), Dq(x), and
D4(x) have been plagued by errors that have compounded
the confusion. ' When these errors are corrected one ob-
tains results that are consistent with experiments (cf.
below).

(3) The heuristic constant diffusion coefficient D& leads
to results different from those obtained with the other dif-
fusion functions. These results can at best be made quali-
tatively consistent with experiment by treating (x )„as
an empirical (D-dependent) quantity that must itself be
determined experimentally. These conclusions indicate
that the ansatz (1.8) is unnecessary for this problem.

To evaluate the leading contributions to b,P for small D
and r, we introduce one approximation in (4.5): noting
that for small D, P„(y) is sharply peaked and that the
peak lies at y =x, we replace the lower limit in the
second integral by zero and write

X xT= J dxexp —f"dy
0 D (y)

(4.12)

where F is a hypergeometric function;

D
1 —r, (a 3b(x )„)—

ar, & 1 (4.8)

(4.9) X a bs—I
&
—— dx exp — dy (4.13)

The mean first-passage time (4.12) is thus factored into
two independent integrals,

and

D
Dg ——

1 r, (a 3bx )—— (4.10)

Note that for additive fluctuations [g(x) =1] there i»o
distinction between Fox's two results, so that (3.17a) and
(3.17b) both lead to (4.10).

It should be noted that each of the state-dependent dif-
fusion functions can be used only within a limited range

I2 —— dz exp dy
ao 1 (ay —by' ) (4.14)

The contribution of the second integral to (4.12) can be
evaluated exactly in terms of cylindrical functions and
this is done subsequently. The first integral can be
evaluated using the method of steepest descents, as we will
show. Equation (4.11) can be written parametrically in a
form that parallels (4.4),
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(4.15)

so that

e = T(r, =0)= T(0)
a 2

=Ii(0)I2(0) (4.16)

and, using the notation h '(0)—:(dh /dr, ),

T'(0)
T(0)

I'i (0) Ip(0)

I, (0) I2(0)
(4.17)

Therefore one only needs to evaluate I; and dI; /dr, for
i = 1,2 at r, =0. One obtains (cf. Appendix B)

I&(0)=(mD/2a)' (4.18)

I
&
(0)=(a l2)(AD/2a)'~

For the I2 integral we obtain in Appendix 8,

(4.19)

2D~'/b '"
I (0)= e' &(—— (a /2—bD)'i )2 ~

T(0)=I~(0)Iq(0) = exp(a /4bD),
a 2

(4.21)

a result agreed upon by everyone. ' For I2(0) we obtain
in Appendix B

I2(0) &(—,, —(a /2bD)' )
=a +3(bD/2)'~, , (4.22)

I2(0) &(——,', —(a l2bD)' )

For a /2bD ~ 1 (which is valid for the experimental pa-
rameter values) an asymptotic expansion of the ratio of
parabolic cylinder functions in (4.22) is appropriate and
one obtains

I2(0) =a +0(D)
I2(0)

so that in (4.17)

(4.23)

a—=—+a+0(D) .
D 2

Collecting our results we obtain the final expression

(4.24)

a V'2 4bD 2
(4.25)

so that

bP= + aDr, +0(D r, )—a 3 2

4b 2
(4.26)

and the theoretical expression for the slope p in (4.15) is

P= —,aD+0(D ) . (4.27)

(4.20)

where N( —n ——,', —a) is the parabolic cylinder function

[cf. Eq. (B7)]. To leading order in x., expansion of the
parabolic cylinder function in (4.20) (see Ref. 9, formula
9.246.2, p. 1066) gives

It should be noted that the contribution to Ap or to p
of 0 (D ) has not been explicitly written because contribu-
tions of comparable magnitude have been neglected in the
replacement of the lower limit in (4.5) by zero and in the
evaluation of I

~ by the method of steepest descents.
Thus, although these contributions to I2 can easily be cal-
culated from (4.22), it would be inconsistent to retain
these terms while neglecting others of the same size. The
error introduced by neglecting these terms increases with
increasing D and may become substantial for the highest
values of D,„~,.

We end this section with a number of observations
about the implications of the above results. In the calcu-
lations of Appendix B there are no "corrections" of 0 (r, )

in D (x) if one uses Fox's diffusion function D4(x).
This in itself does not lead to any conclusions as to the
relative merits of D4(x) and the Sancho et al. and Lin-
denberg et al. diffusion function D2(x), since these
corrections do not contribute to the order retained in
(4.26). We do note that both D4(x) and D2(x) are re-
stricted to values of ~, & 1/a to avoid unphysical negative
regimes.

V. COMPARISON WITH EXPERIMENTS

The comparisor vf our theoretical mean-first-passage-
times results with the experiments of Moss et al. are
shown in Figs. 1 and 2. Although the theories are re-
stricted to the regime r, ~ 100 @sec (i.e., r, & 1/a in these
units), we observe that the quality of the fits remains good
even beyond this region. We note this effect without
necessarily implying that the theory presented is applic-
able for ~, & 100 psec.

In Fig. 1 the two solid curves represent the results of
Eq. (4.25) with a =b =1. The lower solid curve corre-
sponds to the choice D =D,„p, =0.114, while the lower
dashed curve is for D =0.10. Thus within a 10% range
(well within experimental variability) our theory brackets
the majority of the data points. Similarly, the upper solid
curve corresponding to the choice D =D, p&:0 083 and
the dashed curve with D =0.075 satisfactorily bracket the
corresponding data. We stress that the systematic down-
ward shift of the experimental D as r, decreases if includ-
ed in the theoretical calculation would increase the
predicted T at small ~, thereby further improving the
theoretical fit to experiments. The incipient deviations of
the data points away from the theoretical curves above
~, =100 psec can have at least two sources, both arising
from the extension of the above theory beyond its strict
range of applicability. The first is the neglect of terms of
0(D r, ) in the exponential function AP, and the other is
the extension of the results to regimes where the diffusion
functions used to calculate b,P become negative.

In Fig. 3 we compare our theoretical predictions of the
~, dependence of the mean first-passage time with those
of Hanggi et al. for a typical D,„p,. The solid circles are
the experimental results, and the solid and dashed lines
are our theoretical curves for D =0.114 and D =0.10,
respectively. The theoretical prediction of Hanggi et al.
using their calculated value of (x )„&,——0.86 V for
D„p, =0.114 gives the dotted curve. The comparison
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50 100
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150 200
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FIG. 3. Experimental and theoretical results for T vs ~, with

a =b =1. Closed circles, experiments of Moss et al. with

D,„~,=0.114. Solid curve, our theory [Eq. (4.26)] with

D =D,„~,=0.114. Dashed curve: our theory with D =0.10.
Dotted curve: theory of Hanggi et al. [their Eq. (9b)] with

D =D,„p, and (x')„),=0.86.

with the data in Fig. 3 clearly shows that the results of
Hanggi et al. lead to growth with ~, that is too rapid.
The region of validity given by Fox for his results is
7, (5 ps.

In Fig. 4 we compare the D dependence of T for a fixed
value of ~, as obtained from experiments and from the
various theories. The symbols for the data points corre-
spond to those in Fig. 1 ~ The solid curve is our theory
and the dashed curve that of Hanggi et al. The D depen-
dence of the curves obtained from Hanggi's theory is

clearly inconsistent with the data.
The same data for T that appears in Fig. 1 has also

been analyzed for 6(() and is shown in Fig. 2. Of course,
such a logarithmic analysis suppresses the large differ-
ences apparent in Figs. 3 and 4. Nonetheless differences
are still apparent. In particular, Hanggi et al. predict a
D independence or at most a weak (Dr, ) dependence of
b,P through (x ). The experiments clearly show that
b,P does depend on D, the slopes of the different curves
being determined by the D dependence of C,„~, in Eq.
(4.4). In Fig. 2 the two solid curves represent the results
of Eq. (4.26) with a =b =1 and D =0.212 (upper line)
and D =0.114 (lower line). Again we note that a small
change in these values of D (well within experimental un-
certainty ) would be sufficient to produce even better
agreement.

In Fig. 5 we compare our theoretical predictions for the
dependence of b, (() with those of others for

D D pt 0. 1 14. The solid circles are the experimental
results, the solid line is our prediction, and the line arises
from Hanggi et al.

VI. CONCLUSION

In this final section we reiterate and summarize the
salient results of this analysis.

(1) We have found that a Fokker-Planck-like equation
is sufficient to quantitatively describe the mean first-
passage time of a bistable process driven by weak colored
gaussian fluctuations with a short but finite correlation
time 7, .

(2) We have shown that the available analog data is in-
sufficient to distinguish among theories that have the
same form of D '(x) to first order in w, .

(3) The equivalence and accuracy of the predictions has
been obscured by calculational errors. Once these errors
are corrected, all theories with the correct small-~, x

35, I
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FIG. 4. Experimental and theoretical results for T vs D with
a =b =1 when &, =50 ps (corresponding to ~, =0.5 in dirnen-

sionless form ). Symbols: experimental results. Solid curve:
our theory [Eq. (4.26)]. Dashed curve: theory of Hanggi et al.
[their Eq. (9b)] with (x~) =0.85V .

~c (~s)
FIG. 5. Experimental and theoretical results for hP vs r,

with a =b =1 and D =D,„~,=0.114. Closed circles: Experi-
mental points. Solid line: our theory [Eq. (4.27)]. Dashed line:
Hanggi et al. [their Eq. (10)] with (x~) =0.84V~.
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dependence of the inverse diffusion function lead to quan-
titative agreement with experiments.

(4} The ansatz made by Hanggi et al. ' leads to a dif-
fusion coefficient whose small r, value is incorrect and
hence leads to predictions that do not agree with either ex-
periments or other theories.

(5} The digital simulations of Ref. 1 produce results
that disagree with analog experiments and with all
theories. These simulations should be repeated in view of
these results.

(6) There is excellent quantitative agreement between
the experimental results and our theoretical predictions
[Eq. (4.25)) of the increase of T with increasing r, and of
the decrease of T with increasing D.

Note added in proof. A penetrating projection
operator-based analysis of the interrelations among the
various techniques discussed in the present paper has been
given in two papers by S. Faetti, L. Fronzoni, and P. Gri-
golini et al. (unpublished).
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APPENDIX A

Consider the differential equation (3.6) divided through
by G(x),

s —G' ' — 1H'+ +~ H= —.
G g G

Define the auxiliary function

R (x,s) =exp f dy +s —G'(y) g'(y)
"o G (y) g (y)

H{x,s)

(Al)

g(x) G{xp} "d s
{A2)

and note that

g (x) G (xp) x sR '(x, s) = exp f dygxp6x xo G (y)
r

H '(x,s)+ + H(x, s)
s —G'(x) g'(x)

Gx gx

G(xp) SR(x,s) = f dz
2 exp f dy

g (xp ) ir G'(z} xo G (y)
(A5)

where K is a constant of integration. The solution of (A 1)
is then given by

(A3)
The lower limit x0 will drop out subsequently. In terms
of R(x,s), Eq. (Al) can be rewritten as

g (x)G (xp) ~ sR '(x,s) =
z exp f dy, (A4)

g (xo)G (x)

whence

H(x, s) = exp —f dy f dz exp f dy
g x "o Gy i~ G2(z) "o Gy

G(x) " g(z) X
dz exp — dy

g (x) & G'(z) G (y)

G(x) ~ g(z) x sf dz exp —f dy +H(O, s) .
g (x) o G'(z) G(y)

(A6)

F„(0)=aF„ i(0)

and therefore

F„(0)=a "g(0) .

The sum (3.2) then gives

oo n

H(0, r}= g =e"
n!

(A7)

(A8)

(A9)

and therefore

H(O, s) =
s —a

The value of the "constant of integration" H(O, s) must be
deduced directly from the recursion relation (2.8). Thus,
for example, if (as is often the case) G (x =0)=0 and
6' (x =0)=const =a, then

APPENDIX B

D '(y) =D '[1 r, (z —3by )]+0—(H) (B1)

obtained from (4.7} or (4.8) or (4.10). Thus doing the y in-
tegration in I

& gives
r

1 x' x4
I~ —— dx exp —— a —b

0 D 2 4

cx
(a bx ) +O(r, )—

(B2)

1. Evaluation of I~

To obtain Ii(0} and I'i{0) we only require the leading
contribution in r, to D '(y),
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mD

2a
1+ +0(r, )

2
(83)

Equations (4.18) and (4.19) follow from (83).

2. Evaluation of I2

In the interval (O, x ) the integrand attains its maximum
value at x =0. Applying the method of steepest descents
around this value gives

1/2 and

OO 1 az bzI2(0)=— dz expD D 2 4

1 a 2 b 4
&& exp ——z ——z

D 2 4

I2(0)=— dz 3b — z + z — z —1D 2D D 2D

(85)

(86)

Again with the diffusion function (Bl), Eq. (4.14) after
the y integration has been performed is given by

The integrals (85) and (86) can be expressed in terms of
the parabolic cylinder functions'

M( —n ——,', —a. )

I2 ———f dz[1 —r, (a 3bz —)+O(r, )]
e

—~/4 ~ n —1/2 zs —s 2/2ass e
I (n+ —,

'
) 0

(87)

Hence

1
)& exp

D
az

2

az4

4

2

(a —bz ) +O(r, )

(84)

where

Ir =a/(2bD)'~

Equation (85) gives

I ( —, )e (2D/b)'
I2(0)= &(——, , —tc) .

From Eq. (86) we obtain

(88)

(89)

1/4 ~ 1/2e~'/4 2D 2D
I2 (0)= —aI2 (0)+

2 b b

2

3b — 1 ( —,
' )W( ——, , —tc)

+ 2aI (
—', )N( ——,', —tr) —(2Db)' I ( —, )&(—2, —K) (810)

Repeated application of the recursion relation'

N( —n ——,', —tc) =

leads to the expression

—ic&( n+ —,',——a) —&( n+ —', , —a)—
( n+ —,

' )—
(811)

I2(0) N( —,', —tc)=a + 3(bD /2) '~
I2(0) &(——,', —Ic)

(812)
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