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Stochastic pathway to anomalous diffusion
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We present an appraisal of differential-equation models for anomalous diffusion, in which the
time evolution of the mean-square displacement is ( r ~(t) ) t r —with )« l. By comparison,
continuous-time random walks lead via generalized master equations to an integro-differential pic-
ture. Using Levy walks and a kernel which couples time and space, we obtain a generalized picture
for anomalous transport, which provides a unified framework both for dispersive {y ~1) and for
enhanced diffusion {y~ 1).

I. INTRODUCTION Bp(r, t) 8 p(r, t)
(2)

Large classes of dynamical processes in disordered
media display diffusionlike behavior. Such processes
differ, however, from the simple Brownian motion, a fact
manifested through the dependence of the mean-squared
displacement (r (t)) on time. Whereas for simple dif-
fusion (r (t ) ) —t, anomalous diffusion is characterized by

(r'(t)) tr—
with @~1. Examples for Eq. (1) are to be found in chaot-
ic dynamics, which generally leads to enhanced diffusion
(e.g., for turbulent motion y=3) on the one hand, ' but
also in systems with geometric constraints (doped crystals,
glasses, fractals), for which the diffusion is dispersive, i.e.,
y &1, on the other hand. ' ' The purpose of this paper
is to stress that both patterns of anomalous diffusion fol-
low from an integro-differential approach whose basis are
continuous-time random-walk (CTRW) models with cou-
pled memories. ' ' ' Our formalism connects the re-

gion y& 1, typical for chaotic dynamics and turbulence,
with the region y & 1, which obtains from previously dis-
cussed temporal and geometric constraints. Interestingly,
the need for an integral equation approach in the descrip-
tion of turbulence was noted long ago. Batchelor and
Townsend remark in Ref. 4, p. 360: "Turbulent diffusion
is not a local effect. . . , and a description of the diffusion
by some kind of integral equation is more to be expected. "
However, they did not pursue this formalism.

Here we start by analyzing the differential equations in
use, which lead to Eq. (1), and we subsequently introduce
the CTRW integrodifferential picture.

II. DIFFERENTIAL EQUATIONS

The diffusion equation for the probability distribution
p(r, t)

(where c) !c)r is the d-dimensional Laplace operator and
the diffusion constant D is set to unity) leads from an ini-
tial 5(r) form to Gaussian distributions:

p(r, t ) =C, t exp( r l2t ) —. (3)

For such expressions one has (r (t)) =Ct at all times.
Extensions which preserve the structure of Eq. (3) while
allowing for (r (t)) —t" with y&1 center mostly on the
form'

dp(r t) k(r, t) p(r, t) .
Bt Br

'
Br

(4)

Thus, in order to obtain @=3 Richardson introduced
k(r, t) =k(r) —r ~, whereas Batchelor ' used k(r, t)

k(t) —t .—Later Okubo and Hentschel and Procaccia
suggested mixed algebraic forms such as k(r, t) —tr ~ .
The d=3 solution for k(r, t) —t'r and a 5(r) source at
t =0 is given by' ' '
p(rt) —C t + )exp( C r gt +

)

where C& and C2 are independent of r and t. All forms
p(r, t) in Eq. (5) with 2a+3b=4 lead to (r (t)) —t3

Note, however, that distributions p(r, t) corresponding to
different (a, b) pairs are quite different, a fact which al-
lowed Sullivan' to decide experimentally in favor of the
Batchelor form (a =2, b =0) over the Richardson solu-
tion (a =0, b = —, ) for turbulence in Lake Huron.

Furthermore, as remarked by Monin and Yaglom, '

there is no compelling reason to use as differential equa-
tions solely forms related to Eq. (4). Another suggestion
is to try [Eq. (24.91), p. 576 of Ref. 1, Vol. II]

d p(r, t) t3 p(r, t)
t m c)r2

with m =3.
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To show the underlying idea, we revert to the Fourier-
Laplace space, (r, t)~(k, u). In this space the require-
ment (r (t)) —tr boils down to a simple condition on
p(k, u ) in the limit k~O, u~O.

Whereas the solution of Eq. (2) is

p(k, u)=(u+k )

ticles: For a discrete underlying space this leads to ran-
dom walks. '

Let tt(r, t) be the probability distribution of making a
step of length r in the time interval t to t+dt. The total
transition probability in this time interval is

tt(&) = g P(r, t) =P(k=O, t),
one finds by Fourier-Laplace transforming Eq. (6) the for-
mal expression

p(k u)=u '/(u +k )

and the survival probability at the initial site is

d&(t ) = 1 —f g(r)d r, (15)

( r'(u)) —1/u +', (10)

which is equivalent to ( r ( t ) ) —t, as may be shown by
Tauberian theorems. For m =3, the desired relation
( r (t ) ) —t follows.

The same argument can be used for the solutions of Eq.
(4). The Batchelor solution is

under the requirements of conservation of probability
p(k=O, t) =1 so that (d /Bt~)p(k=O, t)=0 for p & l.
Note that expressions of type (8) are purely formal, since
there is in general no guarantee that they correspond to
proper functions and that they satisfy all requirements for
probability distributions, such as nonnegativity. On the
other hand, for well-behaved functions, the mean-squared
displacement follows from

a2
(r (t) ) = f r p(r, t)dr = — p(k, t)

k a=o

where the right-hand side (rhs) may be found by an expan-
sion in k . Using now the expression (8) we obtain

so that

N(u ) =[I—g(u )]/u . (16)

In standard fashion one has for the probability density
q(r, t) of just arriving at r in the time interval t to t+dt

t)(r, t)= g f rl(r', r)g(r r', t r—)d—r+5(t)5 0 (17)
r'

in which the initial condition of starting at t=0 from
r=O is incorporated. Equation (17) leads to an integral
equation for the probability p(r, t) that the particle is at r
at time t, by observing that

p(r, t) = f ri(r, t r')4(r')d—r' . (18)

(19)

Reverting to the Fourier-Laplace space Eq. (19) is

With Eq. (18) and a change in the order of the integra-
tions, Eq. (17) is recast into

t

p(r, t) = g f p(r', r)P(r —r', t r)dr+ N(t )5—, 0 .
r'

p(k, t) =e
p(k, u ) =p(k, u )t(j(k, u )+C&(u ) (20)

1
p(k, u ) ———C

u u&+'
(13)

We now relate this expression to integro-differential equa-
tions, which appear naturally in the theory of random sys-
tems.

III. CONTINUOUS- TIME RANDOM WALKS
(CTRW)

Another way to treat the dynamics of stochastic pro-
cesses consists in following the trajectories of discrete par-

so that with Eq. (9) (r (t)) —t In the . small (k, u) limit
one has from Eq. (11)

1 k
p(k, u ) ———C (12)

u u

where again, as in Eq. (8), a term k /u appears. The
same holds for the Green's function of Eq. (4) as may be
readily verified by computing the Fourier-Laplace
transform of Eq. (5) in the small (k, u) limit. Summariz-
ing this section, we have deduced that in the (k, u) space
the requirement (r (t) ) -t translates into Eq. (12), and
that there are many differential equations whose Green's
functions obey this form. For general (r (t)) —t~, the re-

quirement is, of course,

with the solution

1 —g(u) 1

u 1 —f(k, u )
(21)

Before embarking on the discussion of Eq. (21), let us note
that Eq. (19) is formally equivalent to the generalized
master equation (GME) 6

p(r, t) = g f IC(r—r', t r)p(r', r)dr-—y

dt
(22)

when one takes in Fourier-Laplace space

g(k, u ) —P(u )

1 —P(u )
(23)

g(r, t) =k(r)g(t) (24)

obtains in special cases, such as ordered arrays. ' Fur-
thermore, many functional g(r, t) forms result from dif-
ferent types of disorder. '

The equivalence is immediate when transforming Eq. (22)
to (k, u) space and comparing to Eq. (23). Note that Eq.
(22) is an integro-differential equation.

Moreover, in Ref. 16 it has been shown that the ensem-
ble averaged transport through substitutionally disordered
media obeys exactly the CTRW equation (19), with a
probability distribution g(r, t) in which r and t are cou-
pled. Decoupling, i.e.,
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~e thus view Eqs. (19) and (21) in their general form as
the natural extension of diffusive processes to stochastic
media. Note that Eq. (19) guarantees that the p(r, t) stays
nonnegative, a requirement difficult to implement other-
wise.

Let us turn to Eq. (21) and look at the influence of the
moments

and

r) ——f dt t f P(r, t)dr

cr = f dt f r g(r, t)dr .

(25)

(26)

For finite r) and o Eq. (19) corresponds for small (k, u)
to a simple diffusion equation. One has

Q(k, u)-1 —r)u —k o. /2, (27)

g(k, u) —1 —C)ur —k cr /2 (28)

which inserted into Eq. (21) gives p(k, u)-(u+Ck )

with C =o /2r), i.e., Eqs. (7) and (2), from which
(r (t)) -Ct follows. Furthermore, when o is finite, but
r) is infinite, say

P(u)= f dt f dr/(r, t)e

—f dr r " ' f 6(r —t")e "'dt

t v(d —p —1 ) —Qt dt t —vp —Ql dt
52 62

(34)

1'(k, u ) —ttt(u) = f dt f dr[e'"' 1]tt—t(r, t)e

—k f f dr r p*+ 6(r t")e—"'dt

k2 t —HP* —2)e —utdt lc2I(u )
52

(35)

For v()M* —2) & 1 the integral I(u) exists even for u =0.
In this case, with finite ~] one has

where we set p' =p —d + 1, and indicated the lower
bound cutoffs by 6;.

From the requirement tt)(u =0)= 1 one must have
v(p —d+1)=v)M* & 1. Furthermore, for v()M —d+1)
= vp* & 2 one obtains a finite r). Calculating ttt(k, u ) we
find

with 0 & y & 1, and from Eq. (21) it follows that

y —1

p(k, u)= (29)

g(k, u )-1—r)u —C) k (36)

and we recover Brownian behavior, for which (r (t)) —t.
For v()ct* —2) & 1 we find that I(u) diverges for u =0.
Only for u & 0 the integral converges, and then

with C =cr /2C). Eq. (29) may be identified with Eq. (8)
by setting y=m, and hence, following Eqs. (9)ff one finds
(r (t ) ) —t ~, with y & 1, i.e., dispersive transport.

On the other hand, for finite ~1 but infinite o. , say

P(k, u ) —1 —r) u —C2 k ~

with 0 & P & 2, one has from Eq. (21)

1
p(k, u )—

u+Ck~

(30)

(31)

with C =C2/r). Now the second moment of p(r, t )

diverges, as is immediate by applying Eq. ('9)

p(k, t)- exp( Ck~t). If the eq—uality obtained in Eq.
(31), for f3= 3, d = 3 the function p(r, t ) can be expressed
in closed form [Monin and Yaglom, Ref. 1, Eq. (24.89)].
Then, indeed, (r (t ) ) is divergent for all t & 0.

In the same vein, for infinite ~1 and o. , say

ttt( k, u ) —lit( u )-—k u +P

such that

f(k, u) —1 —r)u —C)k u (37)

u v(2 —p*)+1
p(k, u )—

'T1u v(2 —p )+2+ ( 1

(38)

and hence

( 2(t ) ) tv(2 —p )+2 (39)

Turning now to the case of infinite ~1 we obtain from
Eq. (34) for 1 & vp* &2:

One may note the coupled form of Eq. (37), namely
that the first k term involves u. From Eqs. (21) and
(37) it follows that

p(k, u) —I —C, ur —C k~ (32) Q(u) —1 —Cu " (40)

P(r, t) =Cr "6(r t )— (33)

where, through the 6 function, r and t are coupled. Equa-
tion (33) allows steps of arbitrary length, but long steps
are penalized by requiring more time to be performed.
Or, stated differently, in a given time window only a finite
shell of points may be reached: hierarchically, nearer
points are no more and farther points not yet accessible.
Now,

one verifies easily that (r (t)) is again divergent for all
t & 0. Note that Eq. (32) always follows from a decoupled
picture ttt(k, u ) =A(k)g(u ) with infinite r) and cr .

In order to obtain finite (r (t)) which follow tr with

y & 1 it is thus imperative to use coupled P(r, t)
forms. ' ' A suitable function is

For v(p* —2) & 1 the integral in Eq. (35) is finite for
u =0.

Thus,

Q(k, u) —1 —Cu " ' —C)k (41)

(42)

p(k, u )— u vP —2

vp —1, ~ I 2 v(p —2) —1

u 2v —1

(43)

and we have (r (t) ) —t "p ', i.e., dispersive trans-
port. ' '' For v(p* —2) &1 the integral I(u) converges
only for u &0, and we recover Eq. (38). Now,

f(k, u) —1 —Cu " ' —C)k u

and thus,
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TABLE I. Behavior of (r (t ) ) as a function of v and of
p*=p —d+ I when the P(r, t) follows Eq. (33).

I(0)( oo

in Eq. (35)
vp* —2v) 1

I(0)= ao

in Eq. (35)
vjLc —2v ( 1

IV=
2

4

p =2/v

2v

p* =2+ 1/v

Hence (r (r)) —t . This is again our expression for
anomalous transport; for v & —, the transport is dispersive
while for v & —,

' it is enhanced.
The (r (t)) behavior in the different (v,p*) regions is

summarized in Table I. We note that the transitions be-
tween the regions are smooth, when abstraction is made of
possible logarithmic corrections.

A few remarks on Table I are in order. Keeping v fixed
while varying p* from large (p* »2/v) to small
(p* « 2/v) values permits to cover the region from
Brownian to anomalous behavior. The marginal value for
v is —,', for which one passes for p =4 through the central
point of the table. For v& —,

' the small p' behavior is
dispersive and one verifies readily that in the intermediate
p* region t"" ' is obeyed. For v& —, the diffusion is
enhanced for small p* values, and the intermediate

~ 1behavior is t " + . Two special cases for v & —, were

already discussed in Refs. 9 and 22: The value v= —,'cor-
responds to models for turbulence, whereas v=1 was
used to describe the behavior of chaotic maps.

IV. CONCLUSIONS

In this work we have shown that CTRW allows the
straightforward extension of Brownian motion to

anomalous transport, both in the dispersive and in the
enhanced cases. Whereas in the CTRW framework the
dispersive transport may also be obtained from decoupled
kernels, ' ' the enhanced diffusion can only be achieved
by using kernels which couple time and space, e.g. , Eq.
(33). In our opinion random walk models offer a series of
advantages over approaches which utilize extensions of
diffusion-type equations to mimic anomalous transport.
Firstly, random walks offer a dynamical picture of the
motion, which allows to follow the course of chemical re-
actions in complex situations, as we have already demon-
strated for dispersive motion. Second, the CTRW
description ensures that the time development of a delta-
pulse remains at all times a probabilistically well-defined
object (non-negative, integrable, and normalized), a feature
which cannot always be taken for granted when manipu-
lating partial differential equations. One may also note
that the introduction of time or distance dependent dif-
fusion coefficients in Eq (4) .renders the basic picture in-
homogeneous, whereas the CTRW Eq. (21) is homogene-
ous in space and time.

The particular kernel used, Eq. (33), shows a very rich
pattern. In the enhanced diffusion regime the chaotic
dynamics and also aspects of turbulent flow appear as
special cases: The transitions show an intermediate zone
between the Brownian motion and the fully developed
enhanced diffusion. Interestingly, an intermediate zone is
also found for dispersive transport, where the transition
between Brownian behavior and largest possible dispersion
is gradual. This finding is comparable to the transition
from Brownian to dispersive motion in ultrametric
spaces. '
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