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Connections between the static density-functional theory of the glass transition and the dynamic
mode-coupling theory of the glass transition are discussed. In three dimensions, some approximate
equivalences are established. These equivalences are made more precise by examining high-

dimensionality liquids and glasses.

The similarities with early static and dynamic mean-field

theories of the spin-glass transition are emphasized. Some speculations on the relationship between
structural glasses and Potts glasses are also included.

I. INTRODUCTION

The dynamics of glasses and of the glass transition are
some of the most interesting areas of investigation in
modern condensed matter physics. The field has been
marked by a proliferation of theoretical approaches rang-
ing from simple scenarios to attempts at full-scale micro-
scopic theories. A fully unified picture has yet to emerge.
In this paper we hope to narrow the range of discussion.
We will examine the connections between two recent mi-
croscopic approaches to the glass transition in simple
fluids. The particular system usually investigated by
these microscopic theories is a system of hard spheres on
which we also will concentrate. At first sight the two ap-
proaches are entirely distinct. One is a dynamical mode-
coupling theory (MCT);!~° the other’ is an equilibrium
theory based on the density-functional theories (DFT) of
freezing.>® We will show that the two approaches are re-
lated in a formal way. While in their approximate incar-
nations they are not precisely equivalent, the theories do
become equivalent for an infinite dimensional system. We
will also argue that in a certain controlled, perturbative
sense the theories are, in principle, both exact for the
infinite-dimensional glass.

The understanding of the relations between the theories
provides a new view of the validity of both theories for
finite-dimensional systems. A debate has been raging
about whether the glass transition is “static” or “dynam-
ic.” Although this cannot be settled by our analysis, the
present study does suggest the distinction may not be as
clear as some would wish. Similarly, there has been a
great deal of discussion of the possible analogies between
glasses and spin glasses. The mode-coupling theory of
glasses is rather close in spirit to the dynamical analysis of
spin glasses.!®~13 It is also related to the early dynamical
theory of Edwards and Anderson.'* The density-
functional theory is related to the mean-field approach of
Thouless, Anderson, and Palmer.!> The connections es-
tablished here help sharpen both the analogy and
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discrepancy between spin systems and continuous fluid
systems. The “discontinuous” nature of the fluid glass
transition in the approximate theories is the hallmark of
the differences. This discontinuous nature of the transi-
tion points to a closer connection with Potts glasses'®20
rather than with Ising spin glasses. Another feature of
the structural glass problem is that the spatial randomness
is self-generated rather than put in by hand as in the ran-
dom spin models. This suggests a connection with frus-
trated but regular magnetic lattice problems.?! The con-
nection of structural glasses with regular frustrated sys-
tems is the touchstone of the curved space approach due
to Nelson.?? The topological curved space approach is not
inconsistent with the theories we consider, but also does
not focus on the same relationships.

The organization of the paper is as follows. In Sec. II
we review the formal structures of density-functional
theory and mode-coupling theory. Although the mode-
coupling theory can be derived via dense gas kinetic
theory, we will show how it arises from a field theory.23
The nonlinearities in this field theory arise, in part, from
the nonlinearities of the equilibrium density functional.
We will argue that the mode-coupling theories are a
dynamical but perturbative treatment of the field theory
while the density-functional treatment is a static or classi-
cal treatment of this theory. A (Boltzmann-type) H
theorem for the kinetic theory®* allows one to connect a
dynamic transition with the existence of nontrivial mini-
ma of the free energy. In Sec. III we discuss concrete ap-
proximations made in the two theories. Both approximate
theories describe the glassy solid as systems of Einstein
oscillators. The stability criteria found in both theories
will be related. In Sec. IV the theories will be investigated
for high dimensionalities. In this limit for the relevant
densities an exact free-energy functional is known.?>26
(The glass transition is a “dilute” gas phenomenon in high
dimension.) Finally, in Sec. V we summarize our picture
and speculate on the connections with Potts glasses and
on the dynamics of finite-dimensional glasses.
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II. FREE-ENERGY FUNCTIONALS
AND MODE-COUPLING THEORIES

A. Basic equations of density-functional theory

The most systematic route to the calculation of the
structure of fluids begins from the free energy as a func-
tional of the inhomogeneous density n(x),F(n(x)). Re-
cently, free-energy functionals have been used as the start-
ing point for the theory of freezing.®® (A variety of ap-
proximate forms for the free energy of an inhomogeneous
fluid have been developed.) In the theory of freezing one
tries to find minima of a given free-energy functional cor-
responding to a nonuniform density field. Generally the
Euler-Lagrange equation 8F/8n =0 is a nonlinear in-
tegral equation. For ordinary freezing the analysis is sim-
plified through the consideration of solutions of the in-
tegral equation with specified periodicity. It is not obvi-
ous, however, that periodic solutions exhaust the complete
solution space. Other solutions would correspond with
aperiodic crystals—inhomogeneous densities which are
free-energy minima but which do not have any apparent
order. If the free-energy barriers between different
aperiodic solutions are extensive in system size we would
have true equilibrium phases. If the barriers are merely
very large, the solutions would still be relevant because the
dynamical transitions between different minima would be
very slow.

Freezing into an aperiodic crystal has been studied as a
possible origin of the glass transition.” A similar but dis-
tinct picture has been used to discuss freezing into quasi-
crystals.’” The search for generic aperiodic solutions of a
nonlinear integral equation is a demanding task. A
simpler approach has been used. Starting with a random
close packed structure an inhomogeneous density field is
constructed. This trial density contains a flexible parame-
ter which allows the description of both a uniform and a
nonuniform state. Since the free energy can be computed
as a function of this parameter, one can find the point at
which aperiodic inhomogeneous solutions become possi-
ble. Singh et al.” carried out this procedure using the free
energy obtained by expanding the solid-state free energy
around the uniform liquid. The low-order approximation
used was

Fln(x)]=Fo[n]+Fin[n], 2.1

with F, the ideal gas entropy term,

Folnl= [ dxn(x)[Inn(x)—1], (2.2a)
and Fj, the lowest-order-interaction term,
Fiulnl=—% [dx [ dx'n(x)C(x—x")n(x") . (2.2b)

In Eq. (2.1) we have neglected a constant term which con-
tributes to the uniform liquid free energy. For d— oo,
this constant is identically zero. These free energies have
been normalized with kg7, where kg is Boltzmann’s con-
stant and T is the temperature. In Eq. (2.2b), C(x) is the
liquid-state direct correlation function.’® In Fourier
space, C(gq) is related to the static structure factor

S(g)=1+nh(q), with h(q) the pair correlation function,

by nC(q)=1—1/S(q).

Other free-energy functionals have been proposed to
describe the liquid-glass transition. Here we concentrate
on the one given by Egs. (2.1) and (2.2), since it is most
directly related to the MCT of the glass transition.

B. Dynamic density-function theory

A dynamical theory based on the free energies given in
Sec. IIA can be derived from either kinetic theory or
from more phenomenological arguments.?>?° We will fol-
low the latter course here, noting that a concrete connec-
tion between the two possible approaches can be estab-
lished. The dynamic DFT given here can be used to
derive the MCT of the glass transition that is already in
the literature.

To begin we first note that in solving the static DFT
for glass transition one makes an Einstein oscillator ap-
proximation for the aperiodic solid. To make a connec-
tion with this theory we discuss here a dynamic DFT for
tagged or self-particle motion in a dense liquid. In this
description it is relatively simple to make approximations
analogous to those used in DFT. As a consequence, the
dynamic DFT given here leads to a MCT equivalent to
that given by Sjolander and Turski®® for self-particle
correlation functions. We base our description of the
dynamical theory of the glass transition on these equa-
tions which are somewhat different than the current MCT
of the glass transition.! “® Dynamic DFT can also be used
to derive these theories. Further, we argue below that
these two MCT effectively become identical in the limit of
large dimensions.

We first write down a set of hydrodynamiclike equa-
tions for the self- (or tagged-) particle number density
ng(x,t) and self-momentum density g,(x,¢). For simplici-
ty, and to make the connection with static DFT and the
usual MCT, we only keep nonlinearities in these equations
that arise from terms with the free energy. The basic
dynamical equations are’!

a,ns(x,t)—kiv-gs(x,t)zo (2.3a)
and
3,85l X,1) (x, 1)
18sal K1) = =15 (X, Ix, dny(x,t)
— V8ol X, 1)+ foo(X,1) . (2.3b)

The equations for the fluid density and fluid momentum
density g are (again, neglecting irrelevant nonlineari-
ties)?%°

a,n(x,t)-f——’:TV-g(x,t):O (2.3¢)

and

0 SF
9,8.(X,t)=—n(x,t) ax,, n(x.0)

_ f dx' Top(x—x')gg(X', )+ fo(x,1) .
(2.3d)
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In these equations m is the mass of the particles, f;,
and f, are Gaussian random forces, v is a bare relaxation
rate which for hard spheres is given by 2/3¢ with ¢z the
Enskog mean free time between collisions, and [,z is the
fluid dissipative kernel that is given elsewhere.’? In Eq.
(2.3b), Fy is the free energy for the tagged-particle—fluid
system. To leading order in an expansion around a uni-
form fluid,

8F,

—BIITX,T):’(BT Inng(x,t)

— [ dx, Cx—xpn(xp,0) - - -

(2.4)
C. Formal connections between DFT and a MCT

A formal connection between the static DFT and the
dynamic DFT or MCT can be established. To make the
connection, we first note that the most general way to
solve static DFT is to look for nontrivial solutions of the
equation

SF[n] _,
Sn(x)
for the density n(x) for a fixed number of particles.

Aperiodic solutions to this equation would then corre-
spond to metastable glassy states.

(2.5)

The dynamical MCT approach calculates the density
correlation function (dcf), (8n(x,7)6n(x)), where
8n (x)=n(x)—ngy, with ny the uniform fluid density, and
the angular brackets denote an ensemble average. A
glassy state exists if the dcf does not decay for t— oo,

tlim (8n(x,1)0n(x'))#0 (glass) . (2.6)
The most reasonable way to interpret Eq. (2.6) is that the
density field in the glassy state is not uniform. To make a
connection with Eq. (2.5) we note that the deterministic
version of Eq. (2.3), with f,=0, can be derived from the
nonlinear revised Enskog kinetic equation. It has been
proven®* that the only stationary solutions of this equa-
tion are specified by densities that must satisfy the equa-
tion,

SF[n] -0

v on(x)

(2.7

The gradient operator in Eq. (2.7) reflects the fact that the
gradient of the generalized pressure must be zero in a
(meta) stable state. Equations (2.5) and (2.7) are identical,
except possibly for a constant. If we assume the fluctuat-
ing forces in Eq. (2.3) will not modify this scenario, then
formally it appears that static and dynamic theories lead
to identical descriptions of the glassy state.

Finally, we remark that a purely dynamical transition is
also possible. Indeed, Das et al.*? have argued that in a
mode-coupling approximation a transition is also possible
in a theory with a quadratic free energy. We do not
dispute this claim, but wish to point out that the dynami-
cal theories can also be consistent with static DFT.
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III. CONNECTION OF NAIVE
MODE-COUPLING THEORY AND NAIVE
DENSITY-FUNCTIONAL APPROACH

The complete mode-coupling theories as well as the
complete density-functional theory lead to equations of
formidable complexity. Thus when the theories are im-
plemented further approximations are generally made. In
order to show the connections in a concrete way
equivalent approximations must be made in both theories.
The way we will choose to do this is based on an Einstein
oscillatorlike approximation in the density-functional
theory and a single-particle motion approximation in the
mode-coupling theory (which we will dub “naive” mode-
coupling theory). A mode-coupling theory along these
lines was originally put forward by Sjolander and
Turski,®® but our version is different in that self-
consistency is rigorously enforced leading to a sharp tran-
sition.

In the MCT theories this approximation is most natur-
ally implemented in a theory based on tagged- (or self-)
particle motion. The tagged-particle motion is coupled to
fluid fluctuations and to obtain a closed equation we will
use the Vineyard approximation®”3 to relate fluid density
fluctuations to tagged-particle density fluctuations. Such
an approximation is only valid at large wave numbers (ap-
proximately molecular scale wave numbers) and as a
consequence our approximation violates known long
wavelength properties of the fluid density correlation
function. For applications of MCT to the glass transition
this drawback is not serious since the mode-coupling in-
tegrals are approximately dominated by the large wave-
number behavior of the integrals. In fact, cf. Sec. IV, for
d — oo this approximation appears to become exact.

In examining these theories it is useful to bear in mind
the analogies to the older theories of spin glasses. The
naive mode-coupling theory is quite analogous to Edwards
and Anderson’s old dynamical treatment of spin glasses.'*
The simple version of density functional theory is rather
close to their early static work.>* These theories are now
known to be incomplete but they did identify properly the
occurrence of a transition in the mean-field limit. The
way in which the simple static and dynamic theories coin-
cide'* there is nearly reproduced in the structural glass
theories.

A. Naive mode-coupling theory

The fundamental mechanism for the glass transition in
the MCT is a feedback between slow density fluctuations.
In the naive MCT the basic object is the propagator
describing the decay of tagged particle fluctuations. This
decay is determined by the velocity autocorrelation func-
tion (VACF). Here we use Eq. (2.3b) to derive a mode-
coupling approximation for the VACF. In the glassy lim-
it this equation reduces to an equation appropriate for a
harmonically bound particle with a spring constant that
can be related to the spring constant obtained from DFT.

Equation (2.3b) immediately leads to an equation for
the tagged-particle velocity v,(¢). In a Fourier representa-
tion one obtains from Egs. (2.3b) and (2.4),



35 CONNECTIONS BETWEEN SOME KINETIC AND EQUILIBRIUM . .. 3075

L 99 0 cigin,(—q,0n(q,0)

( t ‘ V )US(I — ( 3
fsa(t) . (3.1)

Here we are interested in an equation of motion for the
VACF,

Csap(t) = (vgo()vp) 3.2)

where the angular brackets denote an equilibrium ensem-
ble average. In general, MCT will lead to an equation for
C, of the form

(8 +¥)Coaplt) + [, d75(1 —1)Caplr)=0. (3.3)

where 3(t) is a mode-coupling self-energy. It corresponds
to an additional friction mechanism arising from the exci-
tation of structural diffusion modes in the fluid.

The simplest mode-coupling approximation for X can
be calculated from Eq. (3.1) in the standard way. One ob-
tains®®

d
So(t)=—2— [ 29 42C%q)S(q)To(g, )T so(gs1) -
ol?) 3Bm f 2y 4 €95 solg rolgt)

(3.4)

Here I';(q,t)(I'f(g,t)) is the propagator for self- (fluid)
density fluctuations and the subscript O denotes lowest or-
der propagators. From Eq. (2.3) one obtains, as ¢—0,

—Dyq 2

o(g,t)=e , (3.5a)

with Dy=(Bmv)~! the bare self-diffusion coefficient. As
discussed above, Egs. (3.3), (3.4), and (2.3) are not yet
complete since I's(g,t) appears. In terms of propagators
the Vineyard approximation is*3

T r(g,0)=TY%(q,t)=T(q,1) . (3.5b)

Finally, the self-consistent MCT replaces the bare propa-
gators in Eq. (3.4) by exact self-density propagators.®
From Eqgs. (3.4) and (3.5b),

n 49 1.2 2
3(t)~ —=q°C(q)S(g)[Ts(gq,0)] . (3.6)
3Bmf(27r)3q q)S(g)[Ts(g,1)]
We note that in using Eq. (3.6), vertex corrections are
neglected.

We next use Egs. (3.3) and (3.6) to predict the existence
of a glassy state. First note that in the liquid phase,

[y(g, t—00)—0 (liquid) . (3.7a)

Physically this condition represents that the probability of
finding the tagged particle is uniform for long times in
the liquid phase. In a glassy state the tagged particle vi-
brates around an aperiodic lattice site and

I's(g, t— 0 )£0 (glass) . (3.7b)
If the glass is a harmonic solid then
[,(qg, t—>c0)=e 974 (3.8a)

with a a spring constant that can be related to the long-
time limit of the self-energy by

a=L" 50w .
2
From Egs. (3.8) and (3.6) the self-consistent equation for

ais

(3.8b)

a="2 [ 49_p2cgnigrexp(—g2/2a),  (3.9)
6 Y (@)
where we have used C(q)S(q)=h(q), with h(q) the
equilibrium liquid-phase pair correlation function.
Equation (3.9) is the naive MCT equation for the glass
transition. For low densities only the trivial solution,
a =0, is possible. For higher densities nontrivial solutions
are possible and a stable glass phase is predicted.>® In Sec.
III B we show that static DFT leads to similar equations
for the glass transition.

B. Einstein-oscillator approximation
in density-functional theory

1. Variational equations

The quantitative implementation of the density-
functional theory by Singh et al.” is based on a simple
one-parameter trial density function n(x). The motiva-
tion for this trial form is the picture that in a glass each
atom vibrates around a local lattice site in a quasiharmon-
ic fashion. Thus, in this theory there is an ideal, vibra-
tionless lattice whose structure resembles that of the dense
random packings which were first exhibited by Bernal.’’
We specify this aperiodic packing by a set of positions
{x:}.

Only the pair distribution function corresponding to the
set {x;} enters into the final variational criterion. We will
call this distribution g;;(x). It is tabulated for various
computer generated aperiodic packing.*®* The trial den-
sity function is a sum of Gaussians centered about these
aperiodic lattice positions:

N

n(x;a)= 3 ng(x—x;) (3.10a)
i=1
where N is the number of particles and
3/2
ng(x)= —:‘; e—ox? (3.10b)

If a is zero the trial density becomes a uniform one
with the same average density as the ideal lattice. If a is
fairly large each Gaussian can be identified with a single
particle and «a is inversely related to the mean-square dis-
placement of each particle. In this sense if a is large the
theory resembles an Einstein oscillator picture of an
aperiodic solid.

In Ref. 7 the variational analysis using this trial func-
tion was carried out numerically. In order to make for-
mal contact with the mode-coupling theories it is useful to
find explicitly the self-consistent equation for a. We will
analyze the free-energy functional given by Egs. (2.1) and
(2.2). The variational equation consists of two terms

O——a—F— 8F0 aFim

da da da 310
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In this approach the values of a obtained are large. As a
consequence the separate Gaussians do not overlap and

therefore

Fo 1

Ll . )—1

N-N fdxn(x)[lnn(x ]
~3me (3.12a)

2 7
and we have

0F,/N
of T _32. L (3.12b)
da 2 a

It is useful to write the interaction part of the free ener-
gy in Fourier space because of its convolution structure:

Fint(a)

.13
N (3.13)

=1 [ 29 ()| ns(@) |*S(q)

2f(27'r)3 q) | nc(q) | “Solq
Here ng(q) is the Fourier transform of Eq. (3.13) and is
essentially a Debye-Waller factor:

ng(q)=exp(—q%/4a) . (3.14)

The function Sy(q) in Eq. (3.13) is the structure factor of
the ideal aperiodic lattice

iq- o —
Selg)=—L 3 /TR (3.15)

14+nohy(q),
N Z ofolq
where the bar denotes that Sy(q) is determined by the dis-
tribution g, (7).** In giving Eq. (3.15) we have used that
the assumed glassy state is isotropic in indicating that

(g) is a function of |q| only. In this equation, hy(q) is
the ideal lattice correlation function. From Eq. (3.13) we
obtain

aFim/N

da 4a2 f 2C(q)So eXp(-q2/2a) .

(3.16)

Using Egs. (3.11), (3.12), and (3.16) the self-consistent
equation for a is
—q%/2a) .

a=+ [ —%;q2C(q)So(q)exp( (3.17)

(2
This equation for an effective spring constant a can be
compared with those derived by the dynamical theories.
Notice that this formula can be thought of as a fluctua-

AIrint
N
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tion formula for the spring constant since it is derived
from the equilibrium distribution about a lattice site.

The variational principle gives a self-consistent equa-
tion for the effective spring constant, Eq. (3.17), remark-
ably similar to the self-consistency condition of naive
mode-coupling theory, Eq. (3.9). Notice that the only
difference is a self-interaction term. We will see in Sec.
IIIB2 that an alternate route to a based on equilibrium
theory gives precisely the same result as the dynamical
theory.

2. Spring constant via response
from density-functional theory

While the result just derived for a is the unambiguous
result from the application of the variational principle, an
alternate expression for an effective spring constant can be
obtained from the density-functional theory. We call the
spring constant obtained in this way the dynamical spring
constant since it is obtained by calculating the response of
the system to a force acting to displace a tagged particle.

Consider an aperiodic packing with the centers of vi-
bration at {x;}. Single out a single atom at x; and exert a
force F on it. The atom will be displaced by an amount
6x; before mechanical equilibrium is re-established. We
can estimate the free energy involved in this change. If
the other atoms are not allowed to readjust their positions
the new density field is given by

N
n(x)=ng(x—x;—8x))+ 3, ng(x—x;) .
i=2

(3.18)

Equation (3.18) is a reasonable approximation if a is
large.***! Under the assumption that the a value is large
there is no change in the ideal gas part of the free energy
but the interaction part does change:

AFiy=— [ dxdx'[ng(x—x;—8x;)—ng(x—x,)]

N
XC(x—x') Y ne(x'—x;) .

i=1

(3.19)

Notice that the self interaction term
ng(x—x;—6x)C(x—x")ng(x'—x; —86x;)
does not contribute to AF;,, (it can be seen to vanish by a

change of integration variables). Next expand AF;, in
powers of 8x;:

N
= —fdxfden(;(x x,)-8x,C(x—x’ 2 (x'—x;)

fdxfdx VVng(x—x;):5%,8%;C(x— x)EnG X —x;)+

l

~5K:5x;6x;+ -

i=2

(3.20)
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Here we have used that the term proportional to 6x; van-
ishes since the initial lattice was assumed to be a
minimum of the free energy. Physically, the spring con-
stant K given by Eq. (3.20) should be related to the varia-
tional parameter a in Eq. (3.12) by ax =K /2, where ag
denotes the value for a determined via the response argu-
ment given above. From this and Egs. (3.20) and (3.14),
and using the isotropic glassy state, one obtains
ax=+ [ (—if);ﬁc:(q)noho(q)exp(—qz/za) . (3.21)
This spring constant differs somewhat from the one ob-
tained from the variational argument by a self-interaction
term. This discrepancy seems to be inherent in the use of
the Einstein oscillator trial function and will occur for
periodic crystals and for different routes to elastic con-
stants. It is not unusual for two different routes to ther-
modynamic properties to give different results when using
approximate free-energy functionals.

The dynamical spring constant from density-functional
theory agrees with the result of the naive mode-coupling
theory if one approximates hy(g) by h(q), the liquid-state
correlation function. In the DFT, the state into which the
liquid freezes is determined by hy(g).*° For the glass
transition problem considered here, hy(g) is determined
by the aperiodic or amorphous distribution of the {x;}.
In the MCT a search for an amorphous lattice is ensured
by using a liquid state 4 (q). Physically the replacement
of hy(q) by h(q) in the DFT for the glass transition is a
reasonable approximation. Technically this replacement
seems necessary to establish the connection between the
static and dynamical approaches in describing the glass
transition. In what follows we will assume that this ap-
proximation is not a crucial one.

IV. EXACT EQUIVALENCE FOR THE d — «
MODEL

In this section we examine the hard-sphere model and
show that if the differences between Sy(q) and S(g), or
ho(g) and h(q), are neglected then the spring constants
given in Sec. III become identical in the d — oo limit. The
basic idea is that the static DFT is clearly a mean-field
theory (MFT) and, in general, MFT become exact in the
limit of high dimensionality. In the dynamic approach,
vertex corrections are neglected in the naive MCT. One
would expect these corrections also to be negligible in the
d— oo limit.

We are also motivated by the recent work of Frisch
et al?>?® on the d— o hard-sphere gas. They have ar-
gued that the equilibrium statistical mechanics of hard
hyperspheres in d dimensions becomes exceptionally sim-
ple for a range of densities in the d — o limit. Using
their results we can construct an exact (at least in pertur-
bation theory) DFT to describe the hard-sphere fluid-glass
transition.

To proceed we first define the equilibrium statistical
mechanics of the hard hypersphere gas by the Mayer
function f;, for two spheres at x; and x, in a d-
dimensional space,

flzz—e(o'— IXI—X2| ) . (4.1)

Here o is the hard hypersphere diameter and ©(x)=1 for
x >0 and is zero otherwise. The ordering scheme used
for d — oo is most easily illustrated with an example: The
first few terms of the virial expansion of the pressure p in
the liquid phase, as d — «, are

n* . 80 (277 ,
ke = (|| [romd,
(4.2a)
and
. Mootn” (4.2b)
- T(1+d/2)’ '

and T denotes a gamma function. An important fact fol-
lows from Eq. (4.2). If the second virial term, ~n*, is fi-
nite or only algebraically large for d — «, then the third
virial term vanishes exponentially fast in the d — « limit.
It is not very difficult to show that for these densities all
higher-order terms also vanish exponentially fast. Fur-
ther, we show below that a phase transition occurs in this
system in the density range where the first two terms in
Eq. (4.2a) give exactly the liquid-state pressure in the
d— . The exactness of the first two terms in Eq. (4.2a)
has been emphasized previously.?>2¢ Technically one no-
tices that all loop diagrams in the virial expansion vanish
in the d— oo limit if the second virial coefficient is finite
or algebraically large.

In general all equilibrium quantities and equilibrium
correlation functions can be calculated in a loop expansion
(only tree diagrams survive in the d— oo limit). Of par-
ticular interest is the liquid-state direct correlation func-
tion?® C,, given in the d — o limit by

noCp=nof1, - (4.3a)
The Fourier transform of this function is given by
noCl@)= [ dix;—x)e " cy,
Ja(q0)
= —n*T(14d /20202222070 (4.3b)
(qo)

The free energy for an inhomogeneous system can also
be computed by expanding around the uniform liquid:

F= fdxln(xl)[lnn(xl)—l]
—% fdxl de2n(X1)C12n(X2) . 4.4)

Equation (4.4) is the usual starting point (cf. Sec. II) for
the application of DFT to describe phase transitions in
liquid-state physics. However, in previous applications,
Eq. (4.4) has been an approximate starting point since
higher-order direct correlation functions are neglected.
The important point here is that Eq. (4.4) is exact in the
d— oo limit.

We next show that Eq. (4.4) leads to a glass transition
in the density range where it gives exactly the liquid-state
free energy. We first use the variational approach given
in Sec. IIIB1. Define an aperiodic density in d dimen-
sions by
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d/2
—a(x——x,-)2

n(x)= e . 4.5)

a
T

I M=

i=1

We argue below that an aperiodic free-energy minimum is
only possible if ao?~0(d?), i.e., a is large in a d— o
aperiodic solid. With this we can use the approximations

given in Sec. IIIB1 to obtain an equation analogous to
Eq. (3.17). Replacing Sy(q) by S(q) yields

_ 1l r_d9 1,-¢*ra 4
a=—7 (27T)dq e C(g)S(q) . (4.6)

We next solve Eq. (4.6) for d— . First note that
C(g—0) <0 while a >0 for a stable solid. This is only
possible if the large q [go >d /2, cf. Eq. (4.3b)] regions in
Eq. (4.6) dominate the small g regions. This follows,
since for go >d /2, C(q) can be greater than zero. From
Eq. (4.6) we see that this is only possible if ao?~0 (d?).
Next insert Egs. (4.3c) and (4.3b) in Eq. (4.6). From
straightforward asymptotic analysis the following con-
clusions may be made.

(i) For small n*, Eq. (4.6) does not possess a solution.

(ii) For n* ~0(d) and ac*~0(n*?)~0(d?, Eq. (4.6)
does have a solution. This implies the existence of a
metastable aperiodic or glassy solid.

(iii) The self-part of S(q) in Eq. (4.6) leads to vanish-
ingly small contributions. As a consequence, Eq. (4.6) can
be replaced by

_29_ _dj__ 2 —q2/2a ’
a=-— [ e C(qh(q) . (4.6)

2myd !

The equivalence of Egs. (4.6) and (4.6") is the major result
of this section. The conclusion is that all of the spring
constants calculated in Sec. III become identical in the
d— « limit. Physically this is because the self-term is
less important when there are a large number of neigh-
bors. We also note that since the large g regions in Eq.
(4.6) are dominant, the Vineyard approximation used in
Sec. IIT A is “exact” for d— . As a consequence, the
naive MCT used here is in principle identical (for d — o)
to the MCT given elsewhere.! —¢
Under the conditions listed above, the solution of Egs.
(4.6) is
*2
ao?= n87r exp( —d?/4ad?) , (4.7)

with n* at least of O(d). The conclusion is that for
n* ~0(d) a metastable aperiodic solid is possible. Expli-
cit values for ao’=a* and n* where Eq. (4.7) first has a
nontrivial solution can be easily obtained from this equa-
tion. Denoting these critical values by a) and n.S, one
finds

d2
*——.—.
T 4 (4.8)
nt=dVv2me . )

Finally, one can compare this transition density with
the Roger’s bounds for close packed hard hypersphere lat-
tices in d dimensions.*? For d — o, the maximum pack-
ing fraction satisfies the approximate bounds,

d n* d
? < ? < W . (4.9)
From Eq. (4.9) and the arguments given above, it follows
that the glass transition occurs just inside the lower bound
for maximum crystalline packing in d — o dimensions.

V. DISCUSSION AND SPECULATIONS
ON THE STRUCTURE GLASS TRANSITION

The theories discussed in this paper are clearly not
completely correct treatment of the structural glass transi-
tion. Our goal has been to show their connections to each
other and to highlight their similarities with older treat-
ments of spin glasses. In this section we would like first
to contrast the results of present structural glass theories
with those of the spin glass. Following this we will use
our analogy along with our current understanding of spin
glasses to speculate on the nature of the glass transition in
real systems. These speculations may be of some value in
both designing more complete theories and in making ap-
propriate comparisons with experiment of the current
theories.

Both the dynamic and static approaches to the glass
transition predict sharp transitions. This is similar to the
situation in early spin-glass theories. Laboratory glass
transitions are not mathematically sharp. However, when
account is taken of the difference in temperature scales
they are not dramatically less sharp than those in labora-
tory spin glasses.

The present structural glass theories differ from the
early spin-glass theories in having a discontinuity in prop-
erties at the transition. They are, in some respects, first
order. The mean-square displacement has a finite max-
imum value. Because of the close connection of the
density-functional theory of aperiodic crystals with that
of ordinary freezing this behavior is almost to be expect-
ed. It is somewhat more unexpected in the dynamic
theory. More sophisticated mode-coupling theories do
have a more complex behavior.!~®* In these theories the
infinite mean-square displacement is discontinuous but on
the fluid side of the transition a continuous slowing down
does occur.

In making the comparison with spin glasses it should be
pointed out that the continuous nature of the transition in
Ising spin glasses is tied to the underlying symmetry of
the model. Spin models without this symmetry, such as
Potts glasses with more than three components or spin
models with p-spin interactions (p >2) do not exhibit
continuous transitions but again appear to be first order in
mean-field theory.'®=%° It should be noted that Monte
Carlo calculations of random Potts systems do exhibit
slow relaxations. Thus our comparison of mean-field
theories may indicate that it is the Potts glass and
structural glasses which should be considered as being in
the same class.

The more modern spin-glass ideas allow us to construct
a scenario for the structural glasses. The crucial realiza-
tion of the modern spin-glass theories is that one must
take into account the multiplicity of states into which the
spin system can condense and the relationships between
them. In sophisticated equilibrium theories this multipli-
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city is manifested by replica symmetry breaking.** In so-
phisticated dynamical theories the multiplicity is mani-
fested in a breakdown of the fluctuation-dissipation
theorem so that averaging over different macroscopic
time scales must be taken into account.*’ Further pro-
gress on the structural glass problem will require coming
to grips with the multiplicity problem. Again the analogy
with Potts glasses may be useful. The replica based
mean-field theory of the Potts glass due to Gross et al.'’
has many suggestive features. Here the order parameter is
discontinuous, just as for the structural glass but there is
no latent heat for the transition. This effect comes from
the singular behavior of the distribution of the valleys:
The number of valleys that overlap and have a nonzero
(and discontinuous at 7,) Edwards-Anderson order pa-
rameter is of measure zero at the glass transition tempera-
ture.?’ For the infinite range Potts glass model the heat
capacity is discontinuous which is not precisely the case
for structural glasses, which show rather an extremely ra-
pid change from the heat capacity of the liquid to that of
the glass. Another suggestive feature of the Potts glass is
the appearance of lower-temperature transitions.!” This
again often happens in structural glasses.*®

On the basis of the aperiodic crystal picture it is clear
that multiple minima of the free-energy functional exist.
Many different random close packings have been con-
structed and different ones can sometimes be distorted
into each other. Stillinger and Weber’s* studies of energy
(as opposed to free energy) minima also show many states.
The crucial question is the height of the free-energy bar-
riers between these states.*’ In the mean-field spin glasses
these barriers are macroscopically large. It is unclear
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whether the barriers are macroscopic in the finite range
spin glass. It is likely that in the structural glass some of
the barriers, at least, are very large but not necessarily
macroscopic. Thus interconversion between the states will
be a slow process giving rise to the observed hysteretic
phenomena at glass transitions. A reasonable guess is that
the simple mean-field theories signal the existence of such
states and that the sharp transition is smoothed out by the
transitions between these states.*’ In the glassy region
transport would also occur by these activated transitions.
Thus the mean-field-theory transition point should prob-
ably not be identified with the so-called ideal glass transi-
tion temperature (which enters into the Vogel-Fulcher re-
lation) but rather with a temperature near to the laborato-
ry glass transition at which a change of slope in the Ar-
rhenius plot of the transport properties occurs. This as-
signment seems most reasonable even bearing in mind the
dependence of that transition point on a laboratory time
scale. How to consistently include these transitions in a
real microscopic theory on both sides of the transition is
far from clear at the moment.
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