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We apply renormalization-group and Monte Carlo methods to study the equilibrium conforma-
tions and dynamics of two-dimensional surfaces of fixed connectivity embedded in d dimensions, as
exemplified by hard spheres tethered together by strings into a triangular net. A continuum descrip-
tion of the surfaces is obtained. Without self-avoidance, the radius of gyration increases as VlnL,
where L is the linear size of the uncrumpled surface. The upper critical dimension of self-avoiding
surfaces is infinite. Their radius of gyration grows as L, where Flory theory predicts v=4/(d +2),
in agreement with our Monte Carlo result v=0. 80+0.05 in d =3. The Rouse relaxation time of a
self-avoiding surface grows as L' .

I. INTRODUCTION

The large number of papers, reviews, and other publica-
tions testify to the growing importance of polymer
research during the past few decades. ' A linear polymer
can be regarded as a one-dimensional manifold in a three-
dimensional space. It is then natural to inquire into the
behavior of two-dimensional manifolds embedded in
higher-dimensional space, and in this paper we present a
theory of two-dimensional "sheet" polymers. We investi-
gate the static conformations as well as the dynamics of
these objects. Some of our conclusions (mostly related to
static conformations) have been summarized elsewhere.
Here we give a more detailed exposition, as well as some
new results.

Recently there have been many studies of random sur-
faces. However, in contrast to polymers, there is not a
single universality class encompassing all types of sur-
faces. Most studies have focused on random surfaces re-
lated to high-temperature plaquette expansions of lattice
gauge theories. ' In such models, surfaces of planar to-
pology are built on a lattice (sometimes more complicated
topologies are also used), and the statistical weight W at-
tributed to a configuration depends only on the total sur-
face area S. Since these surfaces are usually treated in a
manner allowing the total surface area to vary, while the
statistics is controlled by 8'(S), the statistical problem is
often called the "canonical ensemble. " The resulting sur-
faces are highly ramified, and closely resemble branched
polymers. ' ' Here, on the other hand, we are interested
in modeling sheets of covalently bonded atoms, or polym-
erized lipid surfaces, for which a natural starting point is
to consider possible deformations of a fixed network of
plaquettes, ' or of particles placed at the sites of such a
network. Since the number of plaquettes in such a surface
does not vary, this statistical problem is frequently re-

ferred to as the "microcanonical ensemble. " Such nomen-
clature is very misleading since it implies that they
represent two different ("canonical" and "microcanoni-
cal") points of view for the same object. Actually, the two
types of surfaces only share the same (planar) topology,
but their thermodynamic behaviors belong to different
universality classes. The most important property of the
sheets of atoms considered here is their fixed internal con-
nectivity (e.g. , a sixfold triangular network). To distin-
guish them from other types of surfaces they will be re-
ferred to as "tethered, " or "fixed-connectivity" surfaces.
If there are mobile disclinations (i.e., points of fivefold
and sevenfold coordination in a triangular net, or three-
fold and fivefold coordination in a square net), then the
internal structure of the surface will be "liquid" and it
may resemble more the canonical random plaquette sur-
faces.

Surfaces without mobile disclinations are "quasi-
isometric, " in the sense that the shortest path between any
two sites typically traverses an identical number of bonds,
regardless of configuration. It is interesting to note that
the local Gaussian curvature of a rigorously isometric sur-
face is unchanged by arbitrary bending and crumpling. '

Here, the constraint of invariant local Gaussian curvature
is imposed only approximately: For the discretized tri-
angulated surfaces studied in this paper, the local Gauss-
ian curvature can be approximated by the deviation of the
coordination number from six;" sites of fivefold coordi-
nation will have on average a positive curvature, while
sevenfold sites will be hyperbolic. In this paper we shall
restrict our attention to six coordinated surfaces whose in-
trinsic Gaussian curvature is therefore constrained to be
approximately zero everywhere. Only the extrinsic curva-
ture fluctuates strongly in a quasi-isometric surface.

A simple example of fixed-connectivity surfaces is a
collection of hard spheres tethered by strings of finite ex-
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tension into a 2D triangular net, embedded in d-
dimensional space. In the absence of self-avoiding restric-
tions, we find that at large distances the surface behaves
elastically, due to entropic effects. The analogous result
for polymers follows from simple random walk ideas. '

For tethered surfaces, we demonstrate this important re-
sult in Sec. II via a real-space renormalization-group pro-
cedure, and by direct numerical Monte Carlo (MC) simu-
lation. We show that in the absence of self-avoidance the
radius of gyration RG grows with the linear (uncrumpled)
size of the surface I. as RG -lnI. Results of this section
enable us to obtain a continuum description of tethered
surfaces. In Sec. III we analyze self-avoiding surfaces and
show that their radius of gyration increases as RG -L".'
We generalize the Flory argument for polymers' to obtain
the estimate v~ ——4/(d +2) for surfaces, a result which is
in good agreement with our numerical simulations of the
network embedded in three dimensions (3D). Since the
mass (area) of the surface grows as L, the exponent v is
related to the fractal, ' or Hausdorff, dimension by
df ——2/v. The Flory-theory prediction is then
df.g ——d /2+ 1.

The nonlinear couplings generated by self-avoiding re-
strictions produce a complicated dynamic scaling
behavior, discussed in Sec. IV. We make theoretical pre-
dictions for the case of Rouse dynamics that can be
checked by our MC simulations. The inclusion of "back-
flow" effects, and long-range interactions for surfaces in
fluids leads to new hydrodynamic relaxations. Unlike po-
lymers, ~here hydrodynamic and self-avoiding interac-
tions both cease to be relevant above d & 4, surfaces have a
range of dimensionalities (d & 6) where self-avoidance still
dominates, but hydrodynamic interactions are unimpor-
tant. Our simulations are used to probe the nontrivial
Rouse dynamics which remains when the hydrodynamic
effects are excluded. Section V describes the results of a
"table-top" experiment of actually crumpling sheets of
foil. Even such a crude procedure leads to a nontrivial
fractal dimension which, surprisingly, coincides with the
Flory prediction. Finally, in Sec. VI we discuss the appli-
cability of our results to various physical systems such as
network glasses or polymeric surfaces. Various curious
coincidences, and possible avenues for further research in
this intriguing subject are explored.

II. PHANTOM SURFACES

We consider a system of particles connected to form a
triangular 2D lattice, and embedded in d-dimensional
space (the precise 2D lattice is not important, as long as
the connections between its sites are fixed). Each particle
is labeled by a 2D internal coordinate x=(x&,x2) with
discrete x~ and x2 (in some orthogonal basis) denoting its
place on the network. For our triangular lattice, it is con-
venient to choose two primitive vectors Ia"';a' 'J of
equal length a, making an angle of 60'. The locations of
the atoms in terms of the internal coordinates will be
given by

x=(m, + —,
' )a"'+(m + —, )a' ', (2.1)

where m s are integers. (The reason for the shift of coor-
dinates by —,

'
will become apparent in Sec. IV.) The actual

location of the atom in the embedding space is described
by the d-dimensional external coordinate r(x &,x2). The
Hamiltonian with pairwise nearest-neighbor interactions
1S

V[
~

r(x) —r(x')
~ ] .

kgT ( ~)
(2.2)

(2.4)

Since the self-avoiding restrictions between distant parts
of the surface are ignored at this stage, Eq. (2.2) describes
a phantom network. The statistical mechanics associated
with Eq. (2.2) can be solved exactly for a Gaussian poten-
tial V(r)=(KO/2)r . For

~

x —x'
~

&&a, the mean value
of

~

r(x) —r(x') ~, for example, is given by

(
~

r(x) —r(x')
~

) = ln(
~

x —x'
~

/a) . (2.3)
3ICO

Gross and others have studied a related model with an
elastic energy associated with changes in the areas of ele-
mentary triangles. Since the correlations in the latter
model also grow logarithmically the two models appear to
be in the same universality class.

The radius of gyration can be defined, in analogy to po-
lymers, by

RG= 2
d X d X I X —I X

1

where the integrals extend over a surface with area S. For
a Gaussian phantom surface like that discussed above of
linear size L, we have RG -lnL, i.e., the squared radius of
gyration scales with the system size in the same way as
(

~

r(x) —r(x')
~

) evaluated with x and x' on opposite
sides of the surface. This alternative measure is analogous
to the end-to-end distance in a polymer.

Although the Gaussian potential is easily solvable, it is
nevertheless useful to observe the following analogy with
electrostatics: The procedure of calculation of
(

~

r(x) —r(x')
~

) is formally identical with the calcula-
tion of the resistance A'(x, x') between two points of a tri-
angular resistor network, ' built of elementary resistances
I /ICO, and therefore (

~

r(x) —r(x')
~

) =d&(x, x'). In
particular, the logarithmic divergence mimics the
behavior of an electrostatic potential of a charge in 2D.
Similarly, on length scales comparable to the lattice spac-
ing a there are deviations from the logarithmic behavior,
exactly in the same way the 2D electrostatic potential de-
viates from a logarithm on a discrete lattice.

The continuum limit of the Gaussian spring network is

d V (2.5)k~T 2

where (V'r) =—(Br/Bx~) +(Br/Bx2), and the continuum
force constant XC is related to the discrete force constant
of the triangular lattice by K =ICov 3. Although it leads
to an easily solved continuum limit, the discrete Gaussian
potential differs significantly from any realistic two-body
potential, and the large length-scale behavior for other po-
tentials V(r), is less obvious. For (linear) polymers the
Markovian nature of the chain enables calculation of the
long wavelength properties of arbitrary V(r). ' Because
fixed-connectivity surfaces cannot be solved in a similar
manner (even for the phantom networks), we must resort
to more approximate techniques.
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—2V(
I
ro —rq )] (2.6)

One such method is to construct an approximate renor-
malization group via the Migdal-Kadanoff bond-moving
approximation for integrating out the intermediate parti-
cles. ' %'e first "move" the interactions as shown in Fig.
1 to produce an isolated one-dimensional set of degrees of
freedom. This approximate "bond-moving" step co-
ser'es the number of bonds in the original problem, and
all yaws exact decimation of a subset of particles. Upon in-

tegrating out these one-dimensional degrees of freedom we
cotain a new potential for a triangular lattice with lattice
;onstant b =2, namely

V'(
I ri —r2

I

)= —ln J d ro exp[ —2V(
I
r, ro—

I
)

transformation necessary to approach the Gaussian fixed
potential defines a persistence length g for the surface.
From Fig. 2(a) one sees that after three rescalings we ob-
tain a result which is barely distinguishable from a Gauss-
ian, and therefore /=8. We can extract a renormalized
spring constant Kz from the fixed-point weight function
W'(r) via the definition

W (r)—= exp( —2KRr ) .1 2 (2.7)

The renormalized spring constant provides a measure of
the large distance entropy-generated elasticity. In this ap-
proximate rescaling procedure we get Kz -0.7.

The successive iterations of a rigid rod potential are de-
picted in Fig. 2(b). This time the convergence is some-

The above procedure can be clearly repeated with any re-
scaling factor b. Since the decimation in Eq. (2.6) is a
convolution of weight functions, the results can be more
compactly written in terms of the Fourier-transformed
weight function W(q) =f d r e'q'W(r), where
W(r) ~exp[ —V(r)]. For a rescaling by factor b in the

bond-moving step W(r)~ W;„,(r) = [ W(r)], and in the
decimation stage W'(q)=[W, „,(q)] . Thus the Migdal-
Kadanoff rescaling by factor b is obtained by raising the
weight to the power of b in the real space, and then in the
Fourier space. One advantage of this procedure is that it
is exact on certain realizable "hierarchical" lattices. '

Thus if we start with any positive normalizable initial
weight W, it will remain positive and normalizable under
subsequent renormalizations.

It can be verified analytically that any Gaussian poten-
tial is exactly invariant under this transformation [Eq.
(2.6)], indicating a fixed line. We found numerically that
a variety of potentials, including the "rigid rod" potential
which forces the neighboring points to remain at a fixed
distance, and the hard-sphere and -string potential, con-
verge to Gaussians under renormalization. The latter po-
tential represents behavior of a system of hard spheres (in
our simulations they were of unit diameter) tethered into a
triangular network by strings of maximal extent V3 [i.e.,
V(r) =0 for 1 &r & v'3, and ac otherwise], embedded in
three dimensions. Figure 2(a) depicts the results of
Migdal-Kadanoff rescaling of such potential. The origi-
nal weight function W(r) limits the distance between
neighboring atoms to a small interval between 1 and v'3.
However, already after the first rescaling we obtain a
weight function which is closer to a Gaussian than to the
original weight function. The number of iterations of the

W(r)

W( r)

(a)

(b)

FICz. 1. Migdal-Kadanoff rescaling procedure for a triangu-
lar lattice: The approximate bond moving step, which produces
isolated one-dimensional degrees of freedom, is followed by ex-
act decimation.

FIG. 2. Migdal-Kadanoff rescaling of the (a) hard-sphere
and -tether and (b) rigid rod potentials. The curves show the
dependence of the renormalized weight function 8'(r) on the
interparticle distance r. A constant is added to V ( r ) to insure
that 8'( r) tends to unity at r =0 after many iterations. The
numbers near the curves indicate how many times the rescaling
transformation has been applied. The label 0 corresponds to the
original weight function; oo the limit to which the weight func-
tions converge under rescaling. [The vertical line (0) in (b)
represents a 6 function. ]
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what slower: After one rescaling, the original weight
function W(r)-5(r —1) produces a singular (but normal-
izable) weight function W'(r) —1/r, for r &2, and 0 oth-
erwise. The following iterations produce results which
start resembling a Gaussian. Finally after six iterations
the result is already barely distinguishable from the
asymptotic Gaussian shape.

Going beyond the approximate rescaling of the poten-
tial, the asymptotic Gaussian behavior was confirmed nu-
merically by a MC simulation of the system. Our hard-
sphere and -string model of the surface closely resembles
the standard models used to simulate linear polymers. '

Since our potentials do not introduce an energy scale into
the problem, the results are independent of temperature,
and the free energy is solely due to entropy effects. Such
potentials may be expected to generate small persistence
lengths, and thus reduce the crossover effects. Another
advantage of this potential lies in the simplicity of MC
procedure, since the statistical weights are either 1 or 0.

We sampled the configuration space using the "Browni-
an dynamics" method during a "MC time unit" we at-
tempt to update the position of each atom by adding a
vector of length s with randomly chosen direction to its
current position. For a single isolated atom this corre-
sponds to a Brownian motion with diffusion coefficient
Do ——s /(2d). In the simulation each such attempted
move is accepted only if the new position of the atom is
allowed by the potentials. (We used s =0.2, for which
about half of the attempted moves are accepted in the case
of self-avoiding surfaces, which will be discussed in Sec.
III.) The procedure is a simplified version of the general
Brownian dynamics algorithm. It satisfies the detailed
balance conditions, ' and therefore we may expect that
after a sufficient time the surface approaches equilibrium.
We perform the MC simulations for L &L parallelograms
(here L measures the number of atoms) with free edges,
cut out of a triangular lattice with L ranging from 2 to
16, as depicted in Fig. 3. The internal coordinates of the
atoms are given by Eq. (2.1) with m; =0, 1, . . . , I =L —l.

Because the MC procedure generates a highly correlat-
ed sequence of configurations, the actual sampling of con-
figurations (for the results reported in this and next sec-
tions) was made only every ro L /s time ste——ps, and the
total length of each simulation was 100~O. It will be
shown in Sec. IV, that the time wo is approximately equal
to the Rouse relaxation time rrt(L) of the phantom sur-
face, during which the free surface "forgets" its initial
configuration. Thus, for phantom surfaces we sampled
completely independent configurations. The computation
time per ro increases as L (r&&-L, and during each MC
time unit we try to update the positions of L atoms).
The largest (L = 16) surface required 8 h of CPU (central
processing unit) time on Apollo DN460 computer.

The average RG of such a surface is depicted in Fig. 4
as a function of its linear size L. The initial slope of the
graph is somewhat large, because the hard-sphere repul-
sion between the nearest neighbors still has a noticeable
effect on the overall behavior. Eventually, the curve ap-
proaches a simple logarithmic behavior as in the Gaussian
model. To facilitate the comparison of the tethered sur-
face with a Gaussian surface, we performed an exact cal-

culation of RG ', the radius of gyration of a discrete
Gaussian surface with spring constant Ko ——1, which has
the same connectivity and shape as our surface. Both sur-
faces have similar lattice and finite size effects. The ratio

Keff = [RG '(L )/RG (L )] (2.8)

should then smoothly approach E~ as L tends to infinity.
As shown in Fig. 4, this ratio does indeed approach a con-
stant for large L, with effective coupling Ez-0.63, re-
markably close to the Kz -0.7 obtained from the approx-
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FIG. 4. Semilogarithmic plot of R~ of the free surface (0),
and of K~() versus L.

FICx. 3. Triangular tethered surface with L =6. The picture
in the lower right corner depicts the topology (connectivity) of
the system. Positions of the atoms on the surface are deter-
mined by two-dimensional internal coordinates x [see Eq. (2.1)].
The actual positions of the atoms as shown in the main figure
are the three-dimensional external coordinates r(x). (Bonds lo-
cated at the boundary of the parallelogram and corner atoms are
shown in black. )
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imate Migdal-Kadanoff rescaling. The persistence length
is again about 8.

Higher-order interactions, such as those embodied in
bending energies, ' complicate both the rescaling calcula-
tion and numerical simulations. On the basis of univer-
sality, however, we expect that these factors simply intro-
duce a new (possibly temperature dependent) persistence
length and modify the force constant. Provided the per-
sistence length remains finite, we do not expect such
modifications to alter the appearance of entropy-generated
harmonic forces at large distances in phantom fixed-
connectivity surfaces.

III. SELF-AVOIDING SURFACES OF FIXED
CONNECTIVITY

Our next step is to consider more tangible surfaces,
with self-avoidance. We first attempt a continuum
description of the problem, by generalizing the Edwards
model for polymers. The partition function Z is ob-
tained by summing over all configurations of the surface
r(x) (the 2D internal coordinate x is now continuous),
with a Hamiltonian, similar to (2.5), to which a term ac-
counting for the excluded volume interaction has been
added.

Z = rexp —— d ~ 7'r
2

——f d x f d x'6 (r(x) —r(x'))
2

d/2
dlnL ~ v K
~K 8 2

4

(1~~)1+d/2 (3.2)

Up to an unimportant coefficient the cutoff length L' is
equal to L. The distance increases with v as expected, but
the coefficient of v diverges for large L'-L. By contrast,
in a similar expansion for polymers the coefficient decays
with L above d =4, ' allowing a systematic expansion
in @=4—d. Equation (3.2) suggests that self-avoidance
can only be neglected for elastic surfaces when d = ~, in
agreement with the observation of Gross that the fractal
dimension of the noninteracting surface is infinite.

Divergent perturbation theory implies a nontrivial scal-
ing that can by studied by a Flory-type approximation. '

Consider a surface of internal size L, occupying a region
of size RG in d-dimensional space. According to Flory
we may approximate the free energy to

(3.1)

where the interaction v measures the "excluded volume"
as in the case of polymers. ' Hamiltonians of this kind
can, in principle, be treated by renormalization group
methods. ' Here, however, we limit ourselves to the in-
vestigation of more elementary properties of the surfaces.
First we carry out a perturbation expansion in v about
the phantom surface. As shown in the Appendix, the
mean value of the squared distance between two points x
and I', separated by L along the internal coordinates is, to
leading order in v,

(
~

r(x) —r(x') )

~ = —,'KRG+ —,vL /RG. The first term represents the
elastic (entropic) energy of a phantom surface (up to a
term lnL, which has been replaced by a constant), while
the second term is a mean-field estimate of the repulsive
interaction energy [(volume) )& (density) =L /RG ]. By
minimizing ~ we find RG —(v/K)'~'" + 'L, with

v~ =4/(d +2), (3.3)

or dI.~ ——d/2+1. (For a related calculation see Ref. 23.)

Somewhat more formally we can determine v~ from (3.1)
by requiring, ' that the rescaling factors of the internal
coordinate x and the external coordinate r would be relat-
ed in such a way that the ratio between the two terms in
the integrand of (3.1) will remain unchanged under the re-
scaling. In any case, we expect the exponent v to be
bounded from below by 2/d (maximally compact surface),
and from above by 1 (maximally stretched surface).

Despite its numerous deficiencies, Flory-type theory
produces remarkably good estimates of v for linear poly-
mers. Note, that in the case of surfaces (as in the case of
polymers) it produces correct results in the lower (d =2,
where v= 1) and the upper (d = oo, where v=0) critical
dimensions. However, considering the large range be-
tween the critical dimensions compared to 1 and 4 in the
case of linear polymers, we may wonder about the effec-
tiveness of such an interpolation.

To test these predictions, the MC simulations were re-
peated for the tethered sphere surfaces described earlier
but with self-avoiding restrictions (the centers of any two
spheres cannot come closer than their diameter). The
maximal string extension of V'3 now ensures complete im-
penetrability of the surface. The equilibration of self-
avoiding surfaces requires significantly longer times than
the corresponding phantom surfaces. We started from a
configuration in which all the atoms were in one plane,
equilibrated the surface for 100~O, and performed various
measurements during the next 100'ro (1507 p for L = 11),at
every time interval ~o. As will be shown in Sec. IV, the
Rouse relaxation time rR(L) now scales like L ' . Since
7 o L, the number of statistically independent configura-
tions decreased with increasing L. While for L =4 all
100 configurations were independent, for L =8 we had
only few such configurations, and for L =11 (the largest
surface used) the total simulation time was equal to
rz(L). Since the number of operations per MC time unit
(for small surfaces) increases as L (L atoms are moved,
and each attempt requires L excluded volume checks
with other atoms), the total simulation time per rz(L) in-
creases as L . (For sufficiently large surfaces a more ef-
ficient algorithm, not requiring L excluded volume
checks, can be used. Thus, eventually the time will in-
crease "only" as L . However, our surfaces are not yet
sufficiently large. ) The total CPU time per r~ (L =11)
on the Apollo DN460 computer was 140 h. Thus as sig-
nificant additional increase of surface sizes is beyond our
present capabilities.

A typical configuration generated by the simulation is
plotted in Fig. 5(a). The particles in this perspective
drawing have the correct ratio of the radius relative to the
maximum possible separation of their centers, In Fig.
5(b), we show the same configuration, with the particles
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(a}

FIG. 5. (a) Shape of the self-avoiding surface for L =11. Sphere sizes indicate the range of the repulsive potential. (b) "Skeleton"
of the same surface: For clarity, the sizes of the atoms were taken to be —,

' of the actual range of the hard-core potential. Bonds indi-

cate the nearest-neighbor atoms between which the string potential acts. Bonds located at the boundary of the parallelogram and the
corner atoms are shown in black.

now drawn —,
' of their actual size to better illustrate the

crumplings involved. To study the scaling properties of
these surfaces, the mean-squared radius of gyration (Fig.
6) has been calculated as a function of L. We find a nice
power law dependence with v=0. 83+0.03. To check the
validity and the accuracy of the procedure, we repeated
the MC calculation for a single chain of atoms (i.e., a po-
lymer). The results of that simulation are also shown in
Fig. 6. For the polymer we obtain v=0. 64, which overes-
timates the known value of v, but is reasonable in view of
the short chains considered.

The surface appearing in Fig. 5 is very nonspherical.
We obtained a quantitative estimate of departure from
sphericity, by calculating the mean values of the ratios of
the principal moments of inertia (eigenvalues of the tensor
of inertia) for the surfaces. Those ratios are depicted in
Fig. 7. They appear to be almost independent of the size
of the surface. The ratio between the smallest and the
largest principal moments =0.16, and the ratio between
the intermediate and the largest moments =0.45. (Analo-
gous ratios for phantom surfaces slowly increase with L
and reach the respective values 0.47 and 0.63 for L =16,

20—

10—

5—
RG

0.5—
16

FIG. 6. Logarithmic plot of RG of the self-avoiding surface
(~ ) versus L. Error bars indicate the standard deviation of the
RG. Analogous results for a linear self-avoiding chain are also
shown (0 ).
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FIG. 7. Semilogarithmic plot of the mean ratios between the

principal moments of inertia ( 0, smallest/largest;
intermediate/largest) versus the size L of the surface.
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In analogy with polymer systems, ' we expect that the
structure factor satisfies the scaling form
S(k,L) =S(kRG ) =S(kL ). ' Indeed, as indicated in Fig.
8, the measured S(k,L) for different values of L all col-
lapse into a single function, when plotted against the scal-
ing variable q =kL with v=0. 83+0.03. This "data col-
lapse test" is essentially identical to the direct measure-
ment of v from Fig. 6. The good data collapse even on
short length scales means that g= 1, i.e., the bare parame-
ters of our Hamiltonian are close to their asymptotic
values. The structure factors in Fig. 8 have the following
characteristic features: For small q(k &RG ') all curves
have identical parabolic behavior, since S ( k ) = 1

3 k RG + . = 1 —const)&q + . -; for k —1 we see
the typical short length-scale structure (oscillations) of a
hard sphere gas; for k »1 the oscillations decay and
S(k)=1/L . To satisfy the latter condition for large L,

i.e., the phantom surfaces are considerably more spherical.
This is different from polymers in which self-avoidance
does not appreciably change the ratios of principal mo-
ments of inertia. ) For linear polymers, those ratios are
in fact universal numbers. For surfaces we may expect
that those ratios do not depend on the small scale details
of the surface (such as a particular choice of a lattice, or
potential), but they may depend on the overall shape of
the surface in internal space.

The main source of the possible errors in the simulation
of such small surfaces are not the statistical errors, but
rather "systematic errors" which appear since we are not
in the asymptotic regime. Thus it is useful to have two
distinct ways to estimate v, e.g., directly from the two-
point (density-density) correlation function and from the
"mass versus radius of gyration" curve. Differences in
the exponents obtained by those methods provide an esti-
mate of the "systematic error. " We examined the Fourier
transform of the two-point correlation function (or struc-
ture factor)

we must require S(q)-q for intermediate q, and
indeed this behavior is obtained in Fig. 8. From the slope
in Fig. 8 we estimate v=0. 77+0.03, providing us with an
alternative estimate of the critical exponent. Our overall
estimate is a value of the critical exponent is

v=0. 80+0.05, (3.5)

or fractal dimension df ——2/v=2. 5+0.15, where the error
bars indicate our subjective assessment of the possible sys-
tematic errors. This result is in good agreement with the
value of vF ———', , thus confirming the accuracy of the Flo-
ry approximation and the physics embodied in Eq. (3.1).

IV. DYNAMICS OF TETHERED SURFACES

Most of the dynamical aspects of linear polymers in a
solvent are fairly well understood. ' In this section we
present the generalization of some of these results to the
dynamics of surfaces.

The simplest possible model of polymer dynamics has
been introduced by Rouse. In this model the (usually
important ) long-range hydrodynamic interactions be-
tween different parts of the polymer are ignored. Each
part of the surface is assumed to move under the influence
of the surface forces (surface stretching due to near-
neighbor and excluded volume forces due to distant neigh-
bors), and a random force representing thermal noise.
The dynamics is assumed to be purely diffusive, since the
contribution of the inertial terms can be neglected for suf-
ficiently long times. While such a model may not be real-
istic in most experimental situations, it nevertheless is im-
portant for the following reasons. (a) In some cir-
cumstances, such as motion of a polymer through a solid
matrix (via vacancy diffusion), this may actually be the

FIG. 8. Logarithmic plot of the structure factor S as a func-
tion of q =kL", with v=0. 83. (Some overlapping data points
have been omitted for clarity. )
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correct description of the process. (b) The Brownian
dynamics method used in the MC simulation actually cor-
responds to Rouse dynamics, and it is important to know
various time dependent quantities: e.g., to obtain mean-
ingful static results we must know the "waiting times" be-
tween two statistically independent configurations. (c) We
also notice that the hydrodynamic interactions are
relevant only in the case when df &d —2. In this case
the hydrodynamic flow does not penetrate the object, and
it behaves as a solid sphere. For df &d —2 the hydro-
dynamic flow penetrates the object, meaning that the dis-
tortion of a flow by a single monomer is limited (not suf-
ficiently long ranged), and therefore those interactions can
be disregarded. Assuming df ——d/2+1, we find that the
hydrodynamic interactions become irrelevant for d &6.
Note that this is quite different from the case of regular
polymers: For a linear polymer the hydrodynamic in-
teractions are irrelevant for d ~ 4, i.e., at the same dimen-
sions where the excluded volume interactions can be
neglected, while in the case of surfaces at d ~ 6, we cannot
neglect the excluded volume.

We start our analysis by considering the simplest case
of Rouse dynamics of a phantom surface of linear dimen-
sions L )&L, in the continuum limit. Motion of the sur-
face is described by a Langevin equation

=K'V r(x, t)+g(x, t),1 Br(x, t)

p Bt
(4.1)

2k' T
(g (x, t)gp(x', t') ) = 5 (x—x')5(t t')5~p, —

p
(4.2)

where ( ) denotes the average over the noise ensemble. It
can be checked that the Fokker-Planck equation associat-
ed with (4.1) relaxes to the probability distribution associ-
ated with Hamiltonian (2.5). As in the case of a linear po-
lymer, ' Eq. (4.1) separates in Rouse coordinates (or
normal modes) which, in the case of the surface, are the
2D cosine transforms in the internal coordinates x of the
surface of the external position vector r:

2

u(Q, t) —= f g (dx; cosQ;x;)r(x, t),
L 2

(4.3)

where Q=(n L/)(n~, nq) (n; =0, 1,2, 3, . . . ) is the 2D
wave vector. We prefer the particular form (4.3) to more
standard Fourier transforms (suitable for periodic boun-
dary conditions), since, as will be shown in the discussion
of discrete surfaces, the pure modes (4.3) satisfy more
physical boundary conditions. Applying the cosine
transform to Eq. (4.1) we obtain

= —K'Q u(Q, t)+g(Q, t),
p Bt

(4 4)

where g(Q, t) are the cosine transforms of the original

where p is the mobility of a unit surface area, which is re-
lated to the diffusion constant D by D =@kgb T, and
7 r=—8 r/Bx&+8 r/Bxz. The first term on the right-
hand side of Eq. (4.1) represents the force exerted on a
given point by the neighboring points, connected to it by
Gaussian springs, with spring constants K'=Kk&T. The
second term represents the random (Brownian) force,
whose autocorrelation function is

noise functions satisfying

2k~ T
(g (Q, t)gp(Q', t'))=, 5QQ'5(t t )5 pfQpL

(4.5)

where fQ is —,
' to the power of number of nonzero com-

ponents of the vector Q. By solving the Eq. (4.4) we can
find the autocorrelation function of the Rouse modes:

(u (Q, t)up(Q', t')) =5 p5QQ' 2 ~
e

K'Q L

(4.6)

This solution is only valid for Q~O. The Q=O Rouse
mode is exactly the coordinate of the center of mass of the
surface, which diffuses as a simple particle, with mobility
p/L . The slowest nonzero internal relaxation mode of
the surface has Q =sr /L; it follows from (4.6) that its
relaxation time is

rR(L) =
m K'p ~KD

(4.7)

In our MC simulation we used a triangular lattice with ef-
fective force constant Ko-0.63, corresponding to a con-
tinuum coupling K =V 3KO = 1. Recall that the diffusion
constant of a single atom is s /6, where s =0.2 is the dis-
tance an atom can be moved in one MC time unit. This
diffusion constant has to be divided by ~3/2 (surface
area per atom) to obtain the continuum diffusion constant
D. Substituting these values into (4.7), we find
7z -L /s =~o, i.e., the time unit used to determine the
length of our MC simulation was of the order of the
Rouse relaxation time of our model. (The nonsquare
shape of our sample modifies this estimate by a factor of
order unity. ) The general expression for the relaxation
times of the Rouse modes of a rectangular surface of size
L&)&L2 is given by

~R(n), n2)= m K'p ni

Li

2
n2+

2

(4.8)

It is worth noting that the L dependence of the slowest
internal relaxation time of the phantom surface coincides
(up to a logarithmic correction) with the time during
which the center of mass of the surface diffuses a distance
equal to its radius of gyration. This relation for phantom
surfaces, also follows from the general scaling considera-
tions. It is believed to be valid in general, both for poly-
mers with self-avoiding restriction, and in the cases where
the dynamics is governed by hydrodynamic forces.

Introduction of a discrete surface (as opposed to the
continuum model treated above) does not modify our re-
sults in any significant way: Consider, for example, a
square lattice with lattice constant a, in which the internal
coordinates of atoms are given by a(m~+ —, ,m2+ —, )

(m;=0, 1, . . . , 1=L —1). The appropriate wave vectors
will be Q=(m/La)(n, , n2) (n; =0, 1, . . . , 1), and the
Rouse modes will be given by a discrete version of Eq.
(4.3):
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1 2

u(g, t) = g Q cos
m&, m2 ——0 i =1

T

em;(m;+ —, )
~~ = I/(p„,K„,) =L RG/(p, kgT)-L +

R 2+2/v
G (4.10)

As in the case of the phantom surface, the relaxation time
is equal to the time required for the surface to diffuse its
radius of gyration. In polymer physics it is customary to
introduce the dynamical exponent z, describing the relaxa-
tion processes, defined by ~z-RG. Thus in our case
z =2+2/v. An analogous expression for (linear) poly-
rners would yield z =2+1/v. Notice that the coefficient
of I/v indicates the dimensionality of the polymer (1 for a
linear polymer, 2 for the surface). We observe that while
the behavior of a self-avoiding (linear) polymer barely
differs from the behavior of a Gaussian chain (r~-L '

instead of L ), in the case of surfaces we expect a major
difference (rz -L instead of L ). Figure 9 depicts the
evolution of an L = 11 surface during 150T0 7 g
(L =11), as viewed from a fixed direction. During that
time the surface both rotates an appreciable angle, and
"unfolds. " Comparing the large length-scale features at
the "snapshots" taken every 507p we observe strong corre-
lations. The short length-scale features appear to be com-
pletely independent, since their correlation times are
shorter that 507 p.

A different relaxation mechanism, namely reptation, '

occurs for polymers in the presence of fixed obstacles, and
is easily generalizable to surfaces. Consider a surface try-
ing to diffuse out of a confining cage, consisting of two
frozen boundaries built along its two sides. The cage re-
stricts the surface particles to longitudinal motions (i.e.,
along the walls of the cage). The fact that the surface is
crumpled in the space becomes irrelevant, and we may
think of it as moving in a 2D plane, and the "escape from
the cage" is equivalent to diffusing a distance L. The
time it takes for a surface, with diffusion constant propor-
tional to 1/L, to move distance L is proportional to L .
We might expect that the relaxation process of a free (not
confined) surface will be considerably faster and hence L
provides us with an upper bound. The exponent zv has
thus a lower bound of 2 coming from the relaxation of a
phantom surface, and an upper bound of 4 corresponding
to reptation from a confining cage. The value
z v =2+ 2v =3.6 given in Eq. (4.10) indeed satisfies these
bounds, and is close to its upper limit.

We checked the validity of Eq. (4.10) in our MC simu-
lation. It is important to realize that the above derivation
of the dependence of ~z on the radius of gyration can be
performed even in the case of a completely rigid object,
and the resulting time simply indicates how long it takes
for an object of a given size to rotate, say, by 90', or to
diffuse its own RG, even though the internal degrees of
freedom are completely "frozen. " The real check of the
scaling argument does not come from the measurement of
the L dependence of the slowest relaxation '.imes, but
from the fact that relation (4.10) holds also on length
scales smaller than the size of the surface. We therefore
examined relaxation of the Rouse modes in our surfaces
and checked whether the relation rz —Q

' holds for all
modes (and not just the slowest ones). During our MC
procedure we calculated the Rouse modes at each instance
and studied the autocorrelation functions

(4.9)&&r(m, , m~) .

The only change in the continuum equations will be the
replacement of Q in Eq. (4 4) by
(2/a )(2—cosg&a —cosg2a). Clearly, this modification
does not change the results for Q «1/a. In principle,
Eq. (4.1) must be supplemented with the boundary condi-
tions, although these are not very important for the modes
with Q &&1/(La). The natural choice, corresponding to
the physical situation, is that of free boundaries. The
Rouse modes defined in Eqs. (4.3) and (4.9) satisfy these
boundary conditions: The periodicity of the Rouse modes
is such that the boundary atoms satisfy relations of the
type r(m&, m2 ——l)=r(m~, mz ——1+1), etc. (The shift of
the coordinates by —, was made to assure this property. )

Thus, we may think of our surface as a part of a larger
surface, on which the positions of the atoms are chosen in
such a manner that a boundary atom of the original sur-
face is located at the same point as its nearest neighbor
from outside the surface. Therefore no force is applied at
the boundary atom by the atoms outside the boundary,
and the solution corresponds to free boundaries.

In the case of a parallelogram-shaped surface cut out of
a triangular lattice, which is used in our simulations, it is
convenient to choose the basis vectors [a"',a' 'I, which
were defined in Sec. II. Although now we have a nonrec-
tangular coordinate system, we still may use the definition
(4.9), where m s will be interpreted as coordinates of
atoms expressed in [ a"';a' 'I basis vectors, while urn; /La
will be the coordinate of the wave vector in a reciprocal
coordinate system [b"';b'2'I in which (b" I) =(b' ')
= —2b"'.b' '=4/(3a ). In this basis the squared length
of a vector is Q =(4~ /3L a )(n&+nz n&n )2.

—Unfor-
tunately, the Rouse modes of the triangular lattice defined
in this manner no longer satisfy the free boundary condi-
tions. (The argument applied to the square lattice is no
longer valid since the boundary atoms have two nearest
neighbors from outside the boundary. ) We will neverthe-
less retain the notation as the most convenient nomencla-
ture for Rouse modes on a triangular lattice.

The self-avoiding restrictions considerably modify the
relaxation times of the tethered surface. We cannot solve
the problem as explicitly as it has been done for the phan-
tom surface. (However, problems of this type can be
treated within the renormalization group framework. ')
We shall, however, present a simple scaling argument,
adapted from a discussion of the analogous problem in
polymer physics. ' It can be shown by a direct calcula-
tion that the force constant of a polymer whose equili-
brium radius of gyration is RG is given by
Ktp, =k&T/RG. We shall assume a similar result for
self-avoiding surfaces. Since the mobility of the entire
surface in rouse dynamics is simply ptpt p/L, we can
treat the entire system as a simple (overdamped) oscillator
satisfying (1/p„, )(Br/Bt) = —K„,r. This leads to a
characteristic relaxation time
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50&

100» 150&o

FIG. 9. Time evolution of L =11 surface during one 7 g 1507O.

C&(t r'): (u(Q, t).u(Q, t ') ) .—Of—course, we can no
longer expect C&(t) to be a simple exponential, as in
phantom surfaces, because these are no longer the eigen-
modes of the self-avoiding surface. However, we may ex-
pect to be able to extract a reasonably well defined time
for each Q. Figure 10 depicts the autocorrelation func-
tion of several Rouse modes in the L =8 surface. The
averaging was performed over the time span of 100&o.

Figure 10(a) shows the three slowest modes of the sur-
face. (Note, that the [1,0], [O, l], and [1,1] modes corre-
spond to the same value of

~ Q ~

. ) We immediately see
the strong effect of the finite size (boundary), on the relax-

ation times. The decay of correlations in the [1,1] mode is
by an order of magnitude faster, than in the other two.
The shape of the surface affects the correlations in dif-
ferent ways: [1,0] and [0,1] wave vectors are perpendicu-
lar to the boundaries of the parallelogram, while the [1,1]
wave vector is directed along the long diagonal. The ef-
fective width of the surface in the direction perpendicular
to the [l,l] wave vector is smaller and therefore the corre-
lations decay faster. The second observation is that the
autocorrelation functions of [1,0] and [0,1] modes do not
coincide for t &75000, despite the fact that (by symme-
try) they should be identical. This is a direct result of the
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finite simulation time: Values of C(t) have been obtained
by averaging over 1007O=160000. Since the relaxation
time of the mode is about 80000 (the exact value depends
on the definition) we actually sampled only about two in-
dependent configurations. We therefore may expect that
the size of the "statistical noise" will be almost of the or-
der of C(0). Indeed the departure of the two graphs ap-
pears when the value of C(t) decays to —,

' of its initial
value. The example of Fig. 1(a) provides us with an esti-
mate of the region where the results of the statistical aver-
age can be trusted. The results depicted in Fig. 10(b),
show that most of the problems of small-Q modes disap-
pear, when we go to the range of intermediate Q's. First
we see that the C(t) curves of equivalent (from the point
of view of boundary conditions) Rouse modes coincide
over most of the decay, since the sampling times are now
much longer than typical correlation times. In addition,
we see that both pairs of modes have a very similar
behavior. Indeed all four modes have the same

~ Q ~, in-
dicating that for sufficiently large Q s the behavior de-
pends only on the absolute size of Q, and not on its orien-
tation relative to the boundaries of the sample.

The shapes of the C(t) curves can be reasonably fitted
by a sum of two exponentials with a ratio of decay times
approximately 2:1. Since the curves are rather noisy, we
did not attempt to use this method, and, instead, defined
the characteristic decay time r~(Q) as a time during
which C(t) decayed to 1/e of its initial value. For fast
(large Q) modes we obtained 10%%uo accuracy. For the
slowest modes of the L =8 and 11 surfaces, however, we
could only estimate the time, and the errors may be as
large as 50%. This, however, did not influence signifi-
cantly our conclusions, since the data points range over 4
orders of magnitude in time. Results for relaxation times
of all Rouse modes of all surface sizes are depicted in Fig.
11. The true scaling regime is very small even for the

0.00005

I

0 800 400

0

800
q-3.3

(b)

FIG. 10. Semilogarithmic plots of the autocorrelation func-
tions of Rouse modes of L =8 surface. Numbers [ni, n2] indi-

cate the particular mode selected. (a) Slowest mode of the sur-

face. All three modes have the same
~ Q ~. The differences be-

tween the equivalent modes [1,0] and [0,1] demonstrate the

noise (finite simulation time) effect. Significantly different
behavior of [1,1] mode indicates the strong effect of the boun-

daries. (b) Intermediate modes of the surface. All four modes

have the same
~ Q ~. Noise and boundary effects are much

smaller than in (a).

/Xl~ ~ ~

o.i 0.5 i 5 io

FIG. 11. Logarithmic plot of the relaxation times of all
Rouse modes of surfaces of all sizes versus Q (in lattice units).
The straight line indicates the behavior which was predicted
from the scaling considerations.
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largest (L =11) surface, since for small Q's we have
strong boundary effects, while for large Q's the discrete-
ness of the surface is being felt. Thus, we cannot expect
to obtain a very good estimate of the exponent. The
straight line in Fig. 11 is just a guide to the eye, indicating
that the exponent zv=3. 6 is consistent with the data.
From the large scatter we can only estimate the possible
error to be +0.5.

A more quantitative estimate of the exponent zv can be
obtained only from considerably larger surfaces, which for
the reasons explained in Sec. III, cannot be simulated at
the present time. In principle, it is also possible to calcu-
late the exponent z from the observation of the behavior
of the surface in the real space. Just as in polymeric sys-
tems, it can be shown that at time scales shorter than
the largest relaxation time of the surface, a typical particle
displacement (

~
r(x, t) —r(x, 0)

~
) grows algebraically as

t ', while beyond that time it crosses over to a regular
diffusion (identical with diffusion of the center of mass of
the surface). We did not attempt to analyze our data in
this manner, since it is essentially equivalent to the
method we use, but produces "smoothening" of the data,
hiding the actual large scatter of the points, as revealed in
Fig. 11.

The exponent z depends on the dynamics imposed on
the system. If hydrodynamical interactions are taken into
account, we will get a very different result. We still may
use the arguments which lead us to Eq. (4.10), except that
the mobility of the surface will now be determined by hy-
drodynamic interactions: For df & d —2 (i.e., when d & 6)
the surface is not transparent to the hydrodynamic flow
and behaves as a solid sphere of radius RG. In this case
pt„-RA, and consequently ri,„~„,(L )-R G -L"'

2d/d~-L f, or z=d. Note, that when df ——d —2 (or d=6),
this result coincides with rz of Eq. (4.10), which was cal-
culated neglecting the hydrodynamic effects. Beyond that
point (for larger d's) the behavior of the surface is given
by the Rouse dynamics.

VI. DISCUSSION

There are a number of extensions and possible applica-
tions of the results presented in this paper.

(1) Our results for the statics naturally imply that a

50-
+ Wrap paper
0 Aluminum Foil

L, and proceeded to crumple them into approximately
spherical balls. The measured diameters of the balls are
depicted in Fig. 12 as functions of the uncrumpled linear
size L. As this figure indicates, the diameter scales as L
with v=0. 8, or df -2.5, which coincides with the Flory
exponent for the statistics of tethered surfaces in equilibri-
um.

Although the crumpling procedure of this experiment is
rather ill defined and appears quite haphazard, we would
like to point out that the "random crumpling" process is
very strongly constrained by the surface connectivity and
the choices of a particular crumpling procedure are quite
limited. Although we did not specify the force with
which the final crumpled surfaces have been compressed,
the compression process is very nonlinear and beyond a
certain compression the diameter of the surface does not
change appreciably. (The amplitude of the power law in
Fig. 12 will decrease slightly with increasing force, but the
exponent is probably unchanged. ) Clearly, the physics of
the crumpling process differs significantly from the
thermal equilibration of surfaces. Nevertheless, the iden-
tity of v's in both processes, may be more than a pure
coincidence, since the random crumpling "explores the
configuration space" in a way which somewhat resembles
the behavior of equilibrated tethered surfaces. To fully
understand this result we need a better understanding of
the energetic and topological roles played by the creases
on the surface, and their intersection points.

V. CRUMPLED SURFACES

We stated in Sec. III, that the lower bound on the value
of v is 2/d, which corresponds to a compact packing.
Surfaces which actually achieve this bound are far from
trivial, since the numerous constraints of a fixed-
connectivity surface restrict the possibilities of folding.
The reader is invited to try to fold an L)&L surface of
thickness h into a cube of linear size L ~ h '~ . If the sur-
face can be stretched only by a certain fixed percentage (a
quasi-isometric surface) then most of the simple foldings
will not allow compactification of the surface for suffi-
ciently large L. If the surface is elastic, then we will find
that simple foldings require energy which increases faster
than the surface area. Nevertheless, we know of at least
one folding which allows compactifying the surface.

Considering the difficulties associated with finding an
"intelligent" compactification procedure, it should not
come as a surprise that randomly crumpled surfaces are
not compact. We carried out a "table-top experiment" by
actually randomly (and irreversibly) crumpling sheets of
foil. We started with square pieces of different linear size

—i00

10—
50
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5 10
Linear gime (incheg)
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FIG. 12. Logarithmic plot of the external diameter of crum-
pled surfaces versus their original (uncrumpled) linear size. The
error bars indicate the variability of the diameter (departure
from sphericity).
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straight line of length l drawn on the fully extended sur-
face will occupy a volume of size I ~, while a self-
avoiding walk on the extended surface, occupies a region
of size l ~ . Upon crumpling into d dimensions, the walk
will extend over a size (l ~ )'-l ~' + ', which, remark-
ably, coincides with the Flory prediction for polymers in
d dimensions (d &4). This is a more general property of
Flory-type theories: If we have a D-dimensional (self-
avoiding) object in d-dimensional space then Flory theory
predicts

v(D, d) =(D+2)/(d +2) . (6.1)
If we have three different dimensionalities, d&, d2, and
d3, then

v(d~, d2)v(d2, d3) =v(d~, d3) (6.2)

Another application follows from regarding a 3D self-
avoiding walk, with Flory exponent v(1,3)= —,, as in-
scribed on a three dimensional "surface" embedded in
four dimensions. Crumpling of the 3D surface into four
dimensions is controlled by the Flory exponent v(3, 4) = —,,
so the exponent of the 3D self-avoiding walk crumpled in
four dimensions is the mean-field result v= —,'—,' = —,'. It
would be interesting to know whether the "transitivity" of
Eq. (6.2) is valid beyond the Flory approximation. In any
case, it is clear that a 3D self-avoiding walk created by a
crumpling of a 2D surface with a 2D self-avoiding walk is
not identical with a regular 3D walk. This can be clearly
seen if the walk on the 2D surface forms a closed loop.
When "crumpled into the third dimension" it will gen-
erate a loop without knots. Thus the ensembles are not
identical, but it would be interesting to find whether such
constructions could be used to investigate effects of topo-
logical constraints.

(2) For a strip of width w and length l, we may observe
a crossover from self-avoiding polymers to tethered sur-

faces. For w &1 we expect to get RG-w ' 'I ', where v~

and v2 are the respective exponents for linear polymers
and surfaces. Within the Flory theory this result has (for
d &4) the form RG-(wl )' ' +

(3) Laboratory examples of surfaces discussed in this
paper are provided by 2D polymer networks (2D gels').
Some lipid molecules polymerize into sheets with multiple
crosslinks upon exposure to ultraviolet radiation. A bi-
layer of this kind with the polar head groups facing out
would presumably enter an aqueous solvent and provide
another example of the surfaces studied here. Spherical
vehicle bilayers have already been polymerized in this
way. Light-scattering experiments from dilute solutions
would yield direct information on the exponent v and the
dynamical fluctuations of individual surfaces. In dense
solutions, surfaces do not interpenetrate and (unlike regu-
lar polymers) are far from ideal. The situation is some-
what like a dense polymer melt in two dimensions. Our
results may also be relevant to 2D network glasses, such
as As2S3 or B2O3. Just above the glass transition, the
liquid presumably consists of many crumpled sheets of
covalently bonded molecules. Understanding the statisti-
cal mechanics of an isolated sheet is a first step towards
dealing with this problem. The large increase in volume
(about 30%) of molten B2O3 relative to its crystalline
form may be related to the swelling of an isolated surface

discussed here. Of course, a covalently bonded sheet of
B203 need not have the simple planar topology assumed
in this paper.

(4) Charged polymers, or polyelectrolytes, are known to
have drastically different behavior than the ordinary poly-
mers, when the Debye screening length exceeds the radius
of gyration. In less than four dimensions electrolytic
polymers are fully stretched (i.e., v= 1). As has been
pointed out in Ref. 40, in the case of a charged polymer
the renormalization group provides an exact value of the
exponent v. Application of that technique to the tethered
surfaces shows that for d &6 charged surfaces are com-
pletely stretched, while for d & 6, we have '

v=4/(d 2), (6.3)

which differs from the Flory estimate v=3/d for d )3.
(5) It is interesting to note that the fractal dimension

df ——2.5 of a self-avoiding surface is the same as the set
on which strong velocity fluctuations are concentrated in
models of intermittent, fully-developed turbulence.
The fact that these fluctuations do not occupy all of space
(i.e., df & 3) leads to deviations from the famous Kolmo-
gorov spectrum E(k)-k, and to nontrivial behavior
of higher-order velocity cumulants. Our results for
self-avoiding surfaces suggest that it may be possible to
model turbulence by crumpled sheets of vorticity in an
otherwise quiescent fluid.

We hope that the results and speculations presented in
this paper will lead to further investigations into the phys-
ics of tethered surfaces.

ACKNOWLEDGMENTS

We would like to acknowledge conversations with R. C.
Ball, G. Blackburn, M. E. Cates, J. H. Fendler, M. Freed-
man, P. Ginsparg, K. Kremer, D. Turnbull, and T. A.
Witten. We are indebted to D. Vanderbilt for help on the
graphics and other features of the Apollo computer. This
research was supported by the National Science Founda-
tion through the Harvard University Material Science
Laboratory and through Grant No. DMR-85-14638, and
through the Grant No. DMR-84-18718 at Massachusetts
Institute of Technology.

APPENDIX: PERTURBATION THEORY
FOR RANDOM SURFACES

x,
Ql)

FIG. 13. geometric meaning of the integration variables in
the Appendix.

In this Appendix, we show how to calculate surface
correlations perturbatively in the excluded volume param-
eter U. Instead of the partition function (3.1), consider the
generating function

(A 1)
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d x V'rx
kgT 2

+ —f d x J d x'5 (r(x) —r(x')) .
2

(A2)

where the average is taken with respect to the Hamiltoni-
an associated with (3.1), namely

Here we leave implicit the vector character of the two-
dimensional variables such as x&, x2, x, and x' in order to
distinguish these quantities from the d-dimensional exter-
nal vectors such as p, r(xi ), and r(x2).

To the lowest order in U, we can write

2
—(5"{r(x)—r(x')))o(e ' ' )0]+O(v ), (A3)

where (~ )o means an average with respect to the unper-
turbed Hamiltonian,

(~ )p ——
f Nr(x)oexp ——,'K J d x

I
Vr

I

r

f ~r(x)exp ——,'K f d x
I
Vr

(A4}

In what follows we shall often have to evaluate averages
of the form

exp i gp r(x )
a

with g p =0, for which it can be shown straightfor-
wardly using (A4) that

(
1

exp i gp r(x ) =exp —g p .ppG(x —x~)
a a(P

(A5)

I

averages in (A3). Using an integral representation of the 5
function, we have, for example,

d'~
( 5&(r(x ) r(x ) ) ) f 7 (e iq [r(x)—r(x')] )

(2m. )"

exp — G (x —x')cE q
(2m. }~

(A8)

and

q ip [r(x) ) —r(x2)]+iq. [r(x)—r(x')]
~

~ ~
d

(2m)

pdq p2
exp — G(x, —xz) — G(x —x')q

(2m. }" K

where G(x) is a Careen's function in the internal space
satisfying

+ 2 (xi,x2,'X,X ) (A9)

V G(x)=5(x) .

For large x we have

G(x)= ln Ix I

1

27K

(A6)

(A7) —G(x2 —x)+G(x2 —x') . (A10)

where the function A (xi,x2,x,x') appearing in (A9) is
given by

A (xi,x2', x,x') = G(xi —x) —G(xi —x')

We are now in the position to evaluate the different Combining the terms in (A3) together, we have

C (x, ,xz)= exp — G(xi —x2)P K

d 2

1 —— dx dxU 2 2 exp — G(x —x ) exp A(x),xz,x,x ) —1 +O(v )2

2 (2m. )" K

(A 1 1)

The algebraic expressions above have a simple interpretation in terms of the statistical mechanics of vector charges in-
teracting with logarithmic potential in two dimensions. As summarized in Fig. 13, for example, Eq. (A9) can be regard-
ed as probability of a complexion of charges with fixed charges +p at x& and x2 and variable charges +q at x and x .
This analogy is useful, because one can now adapt techniques developed for vector Coulomb gas models of two-
dimensional melting to the statistical mechanics of random surfaces. Although the final results are different, similar
approximations can be made in both problems.

We now focus our attention on the second moment of C~(xi,x2) and calculate (
I
r(xi )—r(xq)

I
). Upon expanding

both sides of (Al 1) in p, and equating terms of order p, we obtain
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r(x2)1 ) G(xl x2)2 =2d
K

+ f q
q f d x f d x'exp — G(x —x') [A (x1,x2,x,x')]

2@2 (2sr)d
(A12)

We assume that x1 and x2 are widely separated, and that the dominant contribution to the integral in (A12) comes from
situations where x and x are close together. The function A (x1,x2,x,x ) can be simplified by eliminating x and x in
favor of center-of-mass and relative coordinates

X = —,(x +x'),
(A13)

and expanding in y. To lowest order in y we have

A (x1,x2,x,x') = (y.V» )[G (x1 —X)—G (x 2
—X)],

and the integrals over x and x' in (A12) become

2

f d x f d x'exp — G(x —x') [A(x»X2,'X,X')]

(A14)

2

dyexp — Gy dx y V'~ G x] —x —Gx2 —x . A15
K

This expression simplifies further upon carrying out an angular average over y, doing the X integration by parts and us-

ing

Vx[G (x1 —X)—G (x2 —X)]=5(X1—X)—5(X2 —X) .

Upon substituting in Eq. (A12), we obtain

(A16)

2d ~U d gG(X1 —X2) 1+ f d
I y I iy I

' f q'exp—
K 2' (2m ) K

(A17)

The integral over y runs from a minimum internal dis-
tance a across which surfaces can interact to a maximum
internal distance L' which is comparable to the system
size if x& and x2 are at the edges of the surface. Because
the integral is strongly divergent at large distances the
precise relationship between L and L' depends on the
shape of the surface.

We can now easily complete the calculation. Carrying
out the integrals over q we have

The remaining integral over y is badly divergent, and
dominated by the upper cutoff L'. Taking the separation

I
x1 —x2

I
to be the system size L, our final result is

(X2)

n
I
x1 —X2 I

aK

L'
3

d'
d y y q exp — Cy

~U E
X 1+

8 2

d/2 L'
(A19)

(1~t
)
1+d/2

„(2~rC)'+'"
2d+1 /2

xf dlyl lyl' dr . (A18)
a

which agrees with Eq. (3.2). Note that there is an addi-
tional power of lnL' in the denominator of the second
term in Eq. (A19) multiplying (lnL') r which is expected
from naive dimensional analysis.
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