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Mode locking in an infinite set of coupled circle maps
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We show that the mode locking in coupled circle maps with random phases is very different from
that in a single circle map. A finite nonlinearity E, is needed for a step to appear. The width of the
step behaves as (E —E, ) . The complete mode locking (at %=1 for uncoupled maps) behaves
singularly as the coupling is turned on. We argue that our model describes the mode locking in
charge-density-wave materials. Our results are in qualitative agreement with the experimental ob-
servation by Sherwin and Zettl that only few true steps exist in the I- V characteristics and that in
addition to these there are some "incomplete" steps.

I. INTRODUCTION

1R = lim
2% n —+oo

&n —&0
(2)

If the rotation number is a rational P/Q, the variable
y„=x„(mod 2m) has only Q distinct values (asymptoti-
cally), whereas if R is irrational the points y„are dense on
[0,2'). The motion is said to be mode locked if the rota-
tion number is constant (which can be only a rational) in a
region of nonzero area in the parameter (Q,K) space. The
mode locking is complete on a curve K =IC(Q) if
throughout the curve, except on a part of length zero, the
motion is mode locked and for infinitely many R =P/Q
there is a curve segment of mode locking which has a
nonzero length.

Circle maps shows universality in both the complete
mode-locking structure' and in the onset of chaos through
quasiperiodicity. ' Period-doubling bifurcations, onset of
bistability, and chaos in regions of mode locking are in-
dependent of the specific form of the mapping, too. '
The transition from a mode-locked state to a quasiperiod-
ic motion is through a tangential bifurcation and hence
universal. The mode-locking structure, the so-called set
of tongues, is characteristic in these systems and mode
locking to all rationals is obtained with an 'infinitesimal
nonlinearity (IC). Some higher-dimensional continuum
dynamical systems are observed to share the universal
behavior of circle maps at and below the curve of the
complete mode locking. The best-known example is the
dynamics of the Josephson junction studied both with di-

Circle maps are an interesting and important laboratory
for studies of nonlinear dynamical phenomena. A circle-
map dynamics is an iteration of the form

xn + ) =x~ +Q + Kg(x~ ),
where the function g is periodic in x:

g(x+2m)=g(x) .

The quantity of central interest in studies of circle maps is
the rotatton number, which tells the average rate of
change in the variable x in units of the period of g(x):

gital simulations and with analog devices. (Experiments
on subharmonic mode locking in Josephson junctions
have so far turned out to be very difficult. ) The
equivalence holds in many cases even to systems with an
infinite number of degrees of freedom. This is because
the nontrivial behavior (e.g., changes in the stability) is re-
stricted to a small subspace of the infinite-dimensional
state space: In the linearized stability problem the
Lyapunov exponents which change sign at the bifurcation
span a low-dimensional eigenvector space.

In this paper we study the mode-locking structure of a
system with a large number of degrees of freedom, each
evolving through a circle map, and coupled linearly to
each other. This dynamics is interesting in its own right
as a step towards understanding nonlinear dynamical phe-
nomena in many-body systems. The dynamics may be
realized in charge-density-wave (CDW) materials under
an oscillating external voltage.

The dynamics of impurity-pinned CDW s, which has a
natural description in terms of circle maps, does not, at
least in all respects, fall into the same category with one-
dimensional circle maps. In particular, the depinning of
the CDW by electric field is experimentally observed to
have a critical behavior different from that of a simple
tangential bifurcation. ' This bifurcation, which is the
unlocking transition of the 0/l step, can be understood
only if infinitely many degrees of freedom are taken into
account.

The Hamiltonian governing CDW motion is"

z
(y(i) y(j))2

2Z =i =1j=1
N

g f cos(P(l)+/3(&)) g E(t)P(l)

Here P" are the phases of the CDW at impurities i, P"
are the pinning phases distributed randomly on a circle, J'
the elastic coupling constant, f the pinning strength, and
E(t) the external voltage periodic in r=2~/co. The
second summation of the first term is restricted to the z
nearest neighbors of point i. The dynamics is assumed to
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be noiseless:

(3b)

where the parameters Q, E, and J and the function g are
functions of f and J' and functionals of E(t). Note that
we have neglected the velocity return map
P„'+& F(P'„~',——P'„J'), which in the limit of small m is ir-
relevant.

The connection between the dynamics of Eq. (3) and
Eq. (4) is not simple: It is known that if m =0 and J=0
the continuum version does not have subharmonic mode
lockings, whereas Eq. (4) has for almost all functions g fi-
nite intervals of fl with subharmonic lockings. Even
though the value of the mass parameter m is estimated to
be small' the description in terms of circle maps is
relevant because the experiments show a rich mode-
locking structure. ' In this paper we study whether in the
coupled case, J&0, the qualitative features of Eq. (4) and
the CDW dynamics are the same. ' We find this to be
true indicating that the limit of vanishing J is singular.

~From now on we choose g(x) = —sin(x) in Eq. (4) and,
encouraged by the universality. results for one degree of
freedom, expect this to be generic.

One should appreciate the role of random phases in the
dynamics of Eq. (4). Suppose the P"s were all equal.
Then the dynamics has a simple solution with a uniform
spatial structure: P'„'=P„. The uniform phases P„are
simply the one-degree-of-freedom values. The stability of
the uniform solution is given by the equation

(5a)

The linear operator on the right-hand side has eigenvalues

Q
A, = g [1—Kcos(P„+)8)—aJ], (5b)

where a&[0,2] and Q is the periodicity of P„. These
eigenvalues are positive and less or equal to the stability
eigenvalue of a single circle map if 2J+K& 1. The
mode-locking steps disappear through a tangential bifur-
cation, which corresponds to a A, =1. Obviously, the step
of the coupled problem exists a's long as that of the single
degree of freedom in this region of the K,J space. Note
that condition for K,J is a sufficient one: In fact, one ob-
serves numerically that the edges of the steps are those of

The physical quantity corresponding to the rotation num-
ber is the dc part of the current carried by the CDW.
I—(P; ) =coR.

We can in principle integrate the Eq. (3b) over ~ and
obtain a system of coupled circle maps:

z
y(i) y(i)+II+K (y(i)+P(')) J y(') —) y y(J')

j=1

(4)

the uncoupled problem up to K-1 for J«0.5. Period-
doubling bifurcations on the step, which correspond to
A, = —1, are different for the coupled system. In addition
to uniform solutions there usually coexist nonuniform
ones, which have a spatial structure of domains interpo-
lating between the Q different values of the uniform
period-Q solution. ' However, the mode-locking structure
of the dynamics, Eq. (4), with the P"s equal and small J
can be understood fairly well in terms of the solution of
the one-degree-of-freedom map. In particular one finds
mode locking to all rationals with infinitesimal K.

Things are much more complicated for random P"s:
The uniform solution does not exist and the stability prob-
lem is not related to the eigenvalue of the linear stability
of the one degree of freedom. This has dramatic effects
on the properties of the dynamics at the tangential bifur-
cation point where a P/Q step disappears; The quantity

I
R —P~Q

I
behaves as

I

&—&r(~ j'Q)
I

~ with 0» ""
whereas g= —, for one degree of freedom. In this paper
we consider this and other effects due to many degrees of
freedom and spatial inhomogeneity.

This paper is organized as follows: In Sec. II we-intro-
duce the technique of the infinite range of elastic interac-
tions (z~ ao ), which is a simple generalization of the one
derived by Fisher. " This approximation. allows us to
have a nice analytic handle on the mode-locking structure.
Section III discusses our results for the phase diagram of
the Fibonacci steps in K,J plane. We prove that a finite
K=K, is needed for a step to appear for any nonzero J.
The decay of the step sizes is found to be universal close
to K, . The positions of the first period-doubling lines on
the step are determined. There exist parameter ranges
where period-doubling precedes the appearance of the
step. All these results have been obtained both for the
infinite-range model and in simulations on a two dimen-
sional (2D) square lattice with nearest-neighbor interac-
tions. Section IV studies J as a small perturbation on the
Fibonacci steps at K =1, the complete mode-locking line
of the uncoupled map. We find that J is more relevant
variable than 1 —K. We have not been able to determine
the complete mode-locking line for any nonzero J; we
cannot even show that it exists. Calculations are carried
out again both in the infinite-range approximation and on
the 2D square lattice. In Sec. V we study the disappear-
ance mechanism of the steps, which is a new kind of
tangential bifurcation. The leading correction' to the
infinite-range approximation is shortly discussed. The pa-
per is concluded in Sec. VI by discussing the relevance of
the return-map dynamics, and in particular the infinite-
range model, to the CDW dynamics.

II. INFINITE-RANGE APPROXIMATION

The dynamics of Eq. (4) is in general too difficult to be
discussed analytically. Therefore, as an alternative to our
numerical simulations, we adopt the infinite-range ap-
proximation, first used in CDW context by Fisher. " In
this approximation all the spatial degrees of freedom P'„'
are coupled to each others with a coupling constant in-
versely proportional to the number of degrees of freedom
X. For ordinary phase transitions, such as in ferromagne-
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tism, this approximation is exactly the mean-field theory
because both approaches neglect the spatial fluctuations
of the order parameter. Then one usually finds that there
exists an upper spatial critical dimension d, such that sys-
tems with d ~d, show universal critical properties equal
to those of the infinite-range approximation. Recently, it
has been argued that the onset of sliding motion in
CDW's, which corresponds to the disappearance of the
0/1 step in Eq. (4), has an infinite critical dimensionality
d, .' Therefore, here the status of the infinite-range ap-
proximation is unclear, but this approximation has to be
worked out before the fluctuation effects can be con-
sidered.

The infinite-range approximation in Eq. (4) means that
we replace the number of nearest neighbors z by the num-
ber of degrees of freedom X. Then in the thermodynami-
cal limit, %—+co, we find that

where the angular brackets denote average over space, or
equivalently, over the configurations of /3"s.

The most general ansatz for (P„), when the rotation
number is a rational R =P/Q and the orbit has periodici-

Q, 1S

(p„)=n21rP/Q+C„ i (7)

i=g
where the numbers [ C„I;, are constants.

Combining Eqs. (6) and (7) with Eq. (4) we find a local
equation of motion for each P„":

C„=C, C some number, solve the set of Eqs. (9), and find
the new constants C„' through

] 2m
C„'=C+ f dpx„*(p) for n =1,2, . . . , Q2' (10')

these will all be equal. Hence the choice of just one con-
stant C is justified. If we denote the above connection be-
tween C' and C by C'=f(C), the self-consistency is ob-
tained through the fixed points of this relation:
Cllc f(CA )

The equality of the constants C„' in Eq. (10') is a conse-
quence of the symmetries of the problem: Shifting the
random phases uniformly, p')~p' +m2nP/Q, m a pos-
itive integer and smaller than Q, shifts the time labels of
the curves [x„*(P)I „" g) by n ~n +m (mod Q)
(Q —m —+Q). The random phases P" are defined only
mod 2', and therefore the p shifts do not affect integrals
over [0,2m ):

2m 2'f dpx*, (p)= f dpx,*(p 2~p/Q—)=
= f dpxg(p (Q —1)—2riP/Q) . (11)

» the special case of P/Q= —, it is easy to show that
the solution with C1 ——C2 is the only self-consistent solu-
tion, and we expect that these are the dominating ones on
any P/Q step before the period-doubling bifurcations
occur.

We have freedom in choosing. the self™consistent value
of the constant C*. Two different values are related by a
uniform shift in random phases. From now on we choose
C =0. Then the dynamics, Eq. (8), is simplified into

p'„'+1 i/p'„'+ f),——Ki s(np—„"+p") )

J(P n2rrP/Q —C
i dg)) (8)

x„'+1=(1—J)x„' +Q 2rrP/Q-
—K sin(x„"+n 2m P /Q+ p" ) . (12)

The solution of Eq. (8) has to satisfy the condition (7).
The effects due to an infinite number of degrees of free-
dom are translated into that Eqs. (7) and (8) must be con-
sistent.

It is useful to write P'„'=n2nP/Q+C„ i,dg)+x„".
Then Eq. (8) for the derivations from the (spatial) average
value of the phases, x„",reads as

x„'~ 1
——( 1 J)x„"+0 2~P /Q— —

+Cn (modQ) Cn+1 (modg)

—K sin(x„"+n 2vrP/Q+ C„i,d g)+/3") . (9)

Obviously, x„"is bounded as n ~ &n if J is in the interval

(0,2), and hence the part linear in n in the self-consistency
condition, Eq. (7), is always satisfied. The consistency re-

quirement for the Q points of the stable period-Q orbit of
Eq. (9) for a given /3", [x„*"(/3"')I„":g),reduces to

f dP"x„*"(P")=0for n=1, 2, . . . , Q . (10)
0

(;) (;) an
Xn ~Xn + J

(14a)

(14b)

p(i) pii) (14c)

leaves the equation unchanged. Using again the fact that
uniform shifts in random phases do not affect integrals
over [0,2~) we find that

Because of the symmetries under uniform p shifts by
m2~P/Q, it is equivalent to study one of the curves
x„*(p) at pH [0,2~) or all of them at pH [0,21r/Q):

f d/3x1(p)= f dp g x„*(p) . (13)
n=1

The second form is especially useful when the curves
x„*(P)have to be determined numerically.

We note yet another symmetry of the dynamics in Eq.
(12). The following transformation,

(Because the equations are local we shall from now on

neglect the spatial indices. )

In this paper we confine ourselves to solutions for
which all the constants C„are equal. This is self-
consistent iri that if we first choose all the constants

f dp g x„"(p,Q+bQ)
2m n=1

f dp g x'(p, Q)+ . (I&)
n=1
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This relation is useful in determining the value of Q cor-
responding to the rotation number P/Q: We need to
evaluate the curves Ix„(P))"„:Ponly for one Q.

III. MODE-LOCKING STEPS
IN PARAMETER SPACE

X„(P)

The mode-locking structure of the dynamics, Eq. (4), is
well-known for the uncoupled case J=O. In the (Q,K)
plane there exist "tongues" for each rational rotation
number P/Q, such as the one displayed in Fig. 1, having
the following properties. '

(i) The tongues exist down to K =0. The width of the
tongues vanishes continuously as K~, when I( ~0.'

(ii) The width of a tongue is nonzero for all positive K.
(iii) K = 1 is the complete mode-locking line.
(iv) Above the complete mode-locking line there exist

hyperbola-shaped curves K=K~~'(Q), n =1,2, ..., oo, such
that in the regime between curves K~&'(Q) and K~&+"(Q)
the periodicity is 2"Q and the rotation number R =P/Q
(usually denoted as 2"P/2"Q). On yet another curve
K=Kd(Q) there coexist infinitely many rotation num-

bers, which lead to irregular motion.
In this section we study how properties (i), (ii), and (iv)

are changed when J is turned on. We discuss both the
infinite-range approximation and our simulations on a
two-dimensional square lattice.

A. Infinite-range approximation

The condition for mode locking in the infinite-range
model is that the self-consistency condition, Eq. (10), is
satisfied in an Q interval of nonzero measure. Let us first
assume that the curves Ix„*(P)J"„:Pare single-valued, as
in Fig. 2. If the motion is locked in the vicinity of
Q=Qo, there exists, by definition, a nonzero hQ such
that the condition of Eq. (10) is satisfied for both Qo and
Qo+AQ. But when we insert these values of parameters
into Eq. (15) and note that because of the Eq. (10) the in-

tegrals on both sides have to vanish, we find that a van-

ishing b,Q is the only self-consistent solution. Therefore
there exist no mode-locking steps for single-valued

Ix„'«) l"„==5.

FIG. 2. Curves x„*(P) for P/Q =
3 below IC, =0.448;

J=0.03, E=0.4.

If the curves are multivalued, as those shown in Fig. 3,
it is possible to combine the branches for different Q's in
different ways to ensure self-consistency in an interval in
Q of finite measure. Furthermore, even for a fixed Q in
this interval there is a continuum of combinations of the
branches such that each combination obeys condition (10).
Thus at each point on the step an infinity of metastable
mode-locked solutions with equal rotation numbers coex-
ist. This should manifest itself as hysteresis and long re-
laxation times in experiments and simulations.

The transition from single-valuedness to multivalued-
ness at some K=K, (J) is through a bifurcation (without
period-doubling) of the family of orbits Ix„*(P)I"„:~~,also
called the cusp catastrophe. ' This means that at some
value of P the linear stability eigenvalue A, is

FIG. 1. Structure of mode-locking tongue P/Q of uncoupled
circle maps as explained in text.

FIG. 3. Curves x„*(P) for P/Q =
3 above K, =0.448;

J=0.03, K=0.55. Scale is as in Fig. 2. Dashed part is unstable
branch. Vfe have inset a figure which illustrates combinations
of stable branches in integrals I&,I2 such that they yield the
same 0's through the self-consistency condition even though the
combinations correspond to different solutions.
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k= Q [ 1 —j L;(J—)cos[x„"M[)+a 2'/Q+[I] [ = 1,
n=1

K (J Q)=(QJ)'~~ (17)

up to K, =O(1), over 3 orders of magnitude in J in our
numerical results for Ix„'(P)J„"=P. The difference be-
tween Eq. (17) and the numerical results is shown in Fig.
5. The errors seem to be insensitive to m for m &2. The
result, Eq. (17), is exact for m =0 and can be shown to
coincide with the leading term of small-J expansion of
m =I.

The width of the step in Q for values of K slightly
larger than the critical value can be determined from the
cusp catastrophe picture, too. . The starting (end) point
Q& (Q&) of the mode-locking interval is determined by

and otherwise A, & 1 indicating a supercritical double point
at this value of P. As the nonlinearity parameter K is fur-
ther increased from K, (J) one finds an interval in P with
one unstable branch Ix„(P)I

"„=Pand two stable branches

Ix„' (P)g:P, as is shown in Fig. 3. The new branches
arise through a turning point. The cusp catastrophe is
displayed in Fig. 4.

We have determined the curves K,(J;Q} for lowest-
order Fibonacci steps (m=0, 1, . . . , 5), R=F~/F~+2,
where Fo ——0, F[——1, and F +[ F+——F [ for m &1.
We have chosen Fibonacci steps because we are interested
in what happens as Q~ao and earlier works have
shown that the asymptotic behavior is found most rapidly
for the Fibonacci sequence. (The scaling behavior of vari-
ous properties depends on the sequence of rationals stud-
ied. By studying only Fibonacci steps we limit ourselves
to scaling in a neighborhood of irrationals with
continued-fraction representation having the same tail as
the golden mean, i.e., equivalent to it. )

The critical curves are extremely well described by the
expression

choosing the upper (lower) branch of the curve

,x„* ' '(P) throughout the multivalued region.
The width b,Q =Q &

—Q & is obtained through the defini-
tions of Q& and Q& and Eq. (15):

0= f dP Q x„'&(P;Q&)
n=1

f dP g x„'&(P;Q&)—
n=1

P2 Qf dP g [x„' (P;Q&) —x„'&(P;Q&)]—

= a(J,K;Q )(x —xo )+b(J,K;Q )(x —xo ) (19)

Here (Po,xo) is the point where the stability is lost at
K=K, (J). A second-order term is forbidden, because it
would not describe a cusp catastrophe but a transcritical
double point. At the critical curve the coefficient
a(J,K;Q) vanishes. The width of the multivalued region

P2—P[ is proportional to a ~ and the difference between

the two stable branches, x„—xn*, to a' . Hence the
area of the loop behaves as a .

There is no a priori reason to expect that the point
(K,(J),J) is a special point of a (J,K;Q). We keep J
fixed and expand in K: a(J,K;Q)=a[(J;Q)(K—K, )

+O((K K, ) ), which —yields the leading contribution

b,Q-(K —K, )

This is to be contrasted with the Q-dependent scaling,

(18}

where P[,Pz are the end points of the multivaluedness in-
terval in P. According to Eq. (18) the width of the mode-
locking interval is proportional to the area of the "hys-
teresis" loop of g~ [x„'(P) multiplied by the coupling
constant J.

Close to the critical curve K, (J) the inverse of the func-
tion x=F(P)=g~ [x„*(P) can, following the standard
catastrophe theory, be written as

P 13p F—'(x) ——Po—

I
I

I

~ 0/1 0 2/5
+ 1/2 o 3/e

1.05 — ~ 1/3 ~ 5/13

00aO g
0

OO 0

X„ ~ ~ 0
1 00 ——~——~—~ y ——~——~————~——~—————

+
+

0.95—

I

-2.0
I

0.0

FIG. 4. Cusp catastrophe. Projections show how difference

of the branches and width of multivalued region in P depend on

E.
FIG. 5. Ratio of numerically determined values of E,(J) to

one obtained from Eq. (17).
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property (i) of uncoupled circle maps. The quadratic
dependence, Eq. (20), is in excellent agreement with nu-
merically determined I x„*(P)}„":P.

At the point (K,J)=(0,0) there is crossover. This can
be explained by assuming that the coefficient a& diverges
as (QJ) ' ~=K ' as J~O. Then according to the dis-
cussion above

~K~ as K, ~O (20')

g= ff I 1 J K'„"—( J)—c os[x„*(P) +n2mP /Q+P] I= —1
n=1

(21)

and A, ~ —1 otherwise. At values of K larger than
K~d'(J), defined through Eq. (21), the dynamics, Eq. (12),
has a solution with periodicity 2Q instead of Q in an in-
terval in 13. Thus there are 2Q curves Ix„'(p)]„":&~which
must satisfy the self-consistency condition, Eq. (10).
There exist no symmetries relating the curves x„*(P) and
x„*+~(P) in the interval PC [0,2m) (only in the "unphysi-
cal" interval [0,4m )). Therefore we expect that in general

2%.I dPx„"(P)& J dPx„*+~(P)

which recovers the uncoupled behavior.
Since the result, Eq. (20), follows directly from the cusp

catastrophe, it holds for all choices of smooth g (x) in Eq.
(4) and is hence universal. However, our result on the
critical nonlinearity, Eq. (17), has been derived only for
g(x) = —sinx, so we do not know whether this is univer-
sal or not.

Another breakdown of the single-valuedness of the
curves Ix„*(P)I„":& is through a period-doubling bifurca-
tion, which occurs either on single-valued curves (and
hence prior to the mode locking, which is not possible at
J=0) or after the cusp point. Period-doubling means
here that at some value of P the linear stability eigenvalue
A, 1S

any Q on the step. Thus the critical line, K=K~'(Q;J),
of the period-doubling is independent of Q. This is in
contrast to the hyperbola observed in the uncoupled sys-
tem [see property (iv)]. When we determined the curves
Ix„*(P)I„"=Pnumerically for the lowest-order (m &6) Fi-
bonacci steps, we found that period-doubling bifurcation
intervals always opened up at the single-valued regions of
the curves.

For small enough J there exist two or more stable
branches throughout the interval [0,2n) and thus some
choices of the branches avoid the period-doubled part,
which does not appear simultaneously on all the branches.
Even then there coexist period-doubled solutions at all
Q's. The fractiori of these vanishes as the edge of the step
is approached and hence in experiments and in numerical
simulations one should observe an effective K~d' which is
curved and dependent on the observation procedure.

The mechanism of the period-doubling bifurcation as a
function of P and the parameters is displayed in Fig. 6.
The stability eigenvalue, Eq. (21), as a function of P close
to the bifurcation curve K~d' and to the point 13c where the
stability is lost first can be written as

A(P) = —1+A +B(P 13c)— (23)

where A =0 is the period-doubling line. Expanding 2 in
K —K'„d'(J) and taking into account only the linear term
we find that width of the period-doubled region is propor-
tional to [K—K~d'(J)]'~ . Since Eq. (23) is a generic
form, i.e, , independent of the choice of the function g (x),
this result is universal. This behavior is confirmed by our
numerical studies of the curves tx„"(P)g:P. Equation
(23) is helpful in locating the period-doubling line numeri-
cally.

The period-doubling lines on the lowest-order Fibonacci
steps are displayed in Fig. 7. We cannot approximate this
set of curves with any simple function which would cover
all the values of Q. The positions of the minima of these
curves, J~(Q), seem to behave as Q

' with a prefactor
larger than one. This means that the minima are always

which we have observed also numerically. Equation (22)
means that the solution is not. self-consistent. We have to
allow an oscillating part in the ansatz for the average
phase and hence break the translational symmetry in time
by employing 2Q coefficients to satisfy the self-
consistency:

(p„' ) =n2WP/Q+C„( Od2g),

Cn&cn+g .
(7')

Xn

] / //~
l VwL~/ l&W

The 2 Q self-consistency conditions for variables
x„"=P„"—(P„) are then Eq (10). T.he widths of the
steps and the period-doublings into 4Q-periodic orbits can
be studied in the same way as we discussed above for the
Q-periodic solution. We do not carry out the analysis of
2Q-periodic motions in this paper.

If the point Pc, where the period-doubling occurs first,
is. on the single-valued part of the curve g~, x„'(P),
which is multivalued in some other part (and hence corre-
sponds to a step), the period-doubling cannot be avoided
by any special choice of the branches, or, equivalently, at

FIG. 6. Period-doubling bifurcation of curves x„(P). Projec-
tions show how difference of the branches and width of period-
doubled in p depend on K. Period-doubled orbit alternates be-
tween branches at fixed P and K. We have drawn the part
which is not bifurcated as a horizontal line for simplicity.
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1.2

periodicity. At this point we cannot exclude a cusp in the
width of the step because of the sudden increase of the
self-consistency conditions. If JH(J&,J& ) [Fig. 9(b)] the
rotation number exists only at one point in Q until it bi-
furcates into a 2Q-periodic orbit. For even larger IC, not
obtainable from our calculations, the step opens up. More
than one period-doubling bifurcation may occur before
the step appears [Fig. 9(c)]. In all cases of Fig. 9 the steps
lie inside the region of the uncoupled step, Fig. 1. We be-
lieve that these qualitative features are universal.

Figures 8 and 9 summarize our analysis of the mode-
locking tongue in the infinite-range approximation. All
this has been obtained analyticaHy, except that the stable
orbits as a function P have to be determined numerically.

1.0
0.0 0.4

J
0.6 o.e

FIG. 7. Curves E„'~'(J) for lowest-order Fibonacci steps

+yg /+gyg+2) ~ =0) ~ ~ ~ p 4. (1)
Kp d(J)

1

above Jc, defined as K,(Jc)=1, and thus the period-
doubling line and the critical curve have an intersection
point in the interval (Jc,J& ). (The period-doubling line al-
ways lies above E =1 and the value of E at the minimum
tends towards 1 as Q~oo. ) For large J the period-
doubling line diverges faster than J' ~ indicating another
intersection point in ( J~, ao ). (However, remember that
stability against diverging solutions limits us to J & 2.)

The generic behavior of the critical curve and the
period-doubling line is shown in Fig. 8. Let us now com-
pare the mode-locking tongue of a single circle map (Fig.
1) to the structure indicated by Fig. 8. Two possibilities
exist: If JH(O, J&) or JH(J&, oc) [Fig. 9(a)] we find at
small values of K that the rotation number R =8/Q ex-
ists only at one 0; then at IC =If, (J) the step appears and
finally at K=IC~&'(J) the orbit bifurcates, doubling the

K

(b)

Kp g(J)—(1)

/
/

/
/

/
/

/

I

3)
J

FICz. 8. Generic curves E,(J) and E~q'(J) for a given step
I'/Q. Indicated values of J are explained in text.

0
FICi. 9. Structure of mode-locking step at J&0. Hatched re-

gion indicates that orbit has periodicity 2 Q, n &0, or chaotic.
Small horizontal lines below the opening of the step denote
period-doubling. (a) Step appears before first period-doubling
(at period-doubling the boundary of step may have cusp); (b) one
period-doubling before step opens up; (c) several period-
doublings before step opens up. Dashed lines are the boundaries
of the step for J=0, see Fig. 1.
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less than or equal to 5 (see Fig. 11), and for 1/6, we ob-
serve flat steps, whereas a finite but small slope can be
seen for rationals with S=6. For larger values of S we do
not find any steplike structure.

The disappearance of steps is studied by keeping J fixed
and decreasing the value of the parameter E. Figure 12
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FIG. 10. Rotation number R(Q) for K =1 and J=0.04.
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B. Simulations on 2D square lattice

0
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In order to study the effects of finite dimensionality we
have carried out numerical simulations of Eq. (4) on a
two-dimensional square lattice of size 30 && 30 with
nearest-neighbor couplings (z =4) and periodic boundary
conditions. The mode-locking structure is investigated by
calculating the rotation number R through Eq. (2) with
x„defined as

0.36

0.35—

0.34—

(b)

0

1 N
y(t)

i=1
(24)

0.33—

0.32—
where X is the number of degrees of freedom, %=900.

Figure 10 shows an example of the mode-locking struc-
ture obtained through- simulations. The value of K is set
equal to one, which corresponds to the complete mode-
locking line of the uncoupled case, and J=0.04. The ro-
tation number is calculated at Q=Q, =0.87+ 0.01m
with m=0, 1,2, . . . , 209 and with a number of iterations
N;, =3000. The 0/1 step is left at 0=0.93, and R =1/2
is reached at 0=2.94; between these values many steps
show up. For rationals with a continued-fraction sum S

0.31—
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0.35—
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0.30 I i I I
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FIG. 11. Farey tree below 1/2 for continued-fraction sum
S&8. Dashed-line sections are used when the number N of
continued-fraction elements is unchanged, while solid-line sec-
tions are used when N increases by one.

FIG. 12. Rotation number R close to R=1/3 for J=0.04
and (a) %=1.0, (b) E=0.7, and (c) K=0.5. The lines are least-
squares fits. The crossing points with R=1/3 determine the
step size.
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FICx. 15. Critical nonlinearity as a function of Q for Fibonac-
ci steps as given by Eq. (17).
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We have studied the effect of small J on the steps at

K =1 also without using Eq. (17) directly. We fitted our
results for the width of the lowest-order (m & 8) Fibonacci
steps obtained from Ix„"(P)I„":Pand numerical simula-
tions on a two-dimensional square lattice by the formula

log)o Q

FIG. 16. Double-logarithmic plot of g (Q) for Fibonacci frac-
tions. (a) Infinite-range approximation. (b) Two-dimensional

- square lattice.

b.Q(Q, J)=b.Q(Q, O)exp[ —g(Q)J] . (26)

[It is advantageous to use an exponential rather than
linear correction; we find this to be valid up to
g(Q) J=0(1).] This is to be compared with the effect of
changing E from the complete mode-locking line E = 1 at
J=0 (a= 1 —X) (Ref. 20):

b Q(Q, e,J=0)=EQ(Q, O, O)exp[ —f(Q)e] (27)

where f(Q)-Q, with v= 1.054.
One must be cautious when applying Eq. (26) in the

limit of infinite Q because a simple exponential on J can
be valid only if J« 1/Q. However, we proceed by using
the form Eq. (26), but bear in mind the possible complica-
tions as Q~ ao.

It is of great importance whether J is more or less
relevant variable than r.. Suppose g(Q)-Q". If v' & v it
is possible to restore the width of the step at finite J by a
negative e= —AQ" "J, where A depends on the prefac-
tors of f(Q) and g(Q). Because this correction would
then vanish in the limit of infinite Q, it would mean that
the complete mode-locking curve would touch L = 1 at ir-
rationals equivalent to the golden mean [or as Eq. (26)
holds only in the limit of vanishing J as Q tends to infini-
ty, the complete mode-locking curve moves smoothly out
from K =1 as J is turned on]. However, we find the op-
posite case. Figure 16 displays our results for g(Q), both
in the infinite-range approximation and for simulations on
a two-dimensional square lattice. In the infinite-range ap-
proximation, where the errors are smaller, we find
v'=1.16+0.02, clearly larger than v. The result of the
simulations is somewhat more unclear. The exponent v is
known to be universal. Whether v' is or is not we do not
know.

We have riot been able to settle the question of the ex-

istence of a complete mode-locking curve in the infinite-
range approximation because it is difficult to satisfy the
self-consistency conditions for period-doubled solutions,
which may affect the curve, and because we know of no
special features characterizing the complete mode locking.
It is too tedious to determine the curve straightforwardly
by finding the crossings of all the steps. Numerical simu-
lations are so far time consuming and inaccurate due to
finite-size effects in studies of steps with Q & 20 and thus
cannot give information either on fractal dimension.

V. IRRATIONAL ROTATION NUMBERS
AND FLUCTUATIONS

So far we have concentrated on rational rotation num-
bers on steps or on isolated lines in the E,Q plane. The
irrational rotation numbers can be dealt with in the
infinite-range approximation, if we assume that the aver-
age phase is linear in n:

(P„)=n2mR+C, (2g)

i.e., all (infinitely many) C„'s are equal to a constant C.
We shall consider only irrationals close to a step, either
when we change 0 through 0& or 0&, or when slightly
below K, (J) 0 is varied through the point Qp~~ which
satisifes the self-consistency for a given P/Q.

The dependence of the rotation number on the distance
from these special points turns out to be equivalent to the
onset of sliding motion of CDW's under strong pinning,
and the linear conductivity problem of weakly pinned
CDW's. " The connection is as follows: We write the
equations of motion, Eq. (4), formally as

(29)
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If g =P/Q the function F&(N) has a fixed point. As II
is changed slightly and the rotation number acquires an
irrational value, the variable O'„=N„& still spends most
of its time close to the fixed-point value and thus moves
slowly in the vicinity of it. Therefore we are allowed to
replace the discrete equation for (II „by its continuum ver-
sion, which is equal to Eq. {3) with m =0 and some
corrections, which are irrelevant when the rotation num-
ber is close enough to the rational P/Q.

This method of connecting the discrete and continuum
dynamics close to a tangential bifurcation is a standard
one. If J=0, the discrete version locks to all rationals,
whereas the continuum version has a smooth R{Q). This
difference is avoided for J&0 and K & 1 close enough to a
step because only a finite number of steps exist. When
E y 1 and all the highest-order Q steps occur, the connec-
tion holds in the same sense as for a single circle map: the
most stable points of the steps scale according to the con-
tinuum case.

We do not repeat Fisher's excellent treatment of the
continuum dynamics in the infinite-range limit" (see also
Ref. 12), but just quote the relevant results. The rotation
nunAer close to the edge is given by

y())
n

fR P/Q
i

——[0—II ( )f

and the steepness of the appearing step vanishes as

n=n~~g

(30)

(31)
1.7

l.7

2.B

It is remarkable that both exponents are independent of Q
and on the special choice of g(x).

The result (30) is subject to the following caveat: Ritala
and Hertz' (RH) studied the fluctuations around Fisher's
infinite-range approximation of the onset of sliding
motion and found singular short-range corrections which
affect the exponent as soon as the number of neighbors z
is finite. In a Bethe approximation RH determined the
exponent of Eq. (30) to be nonuniversal if z & (1+f/J')
[cf. Eq. (3)] and equal to one otherwise.

The important fluctuations in a system with only a fi-
nite number of nearest neighbors are due to nonlinearity
of the dynamics and inhornogeneity of the pinning phases
P", and they have no counterpart in ordinary phase tran-
sitions. The quantity of interest in the continuum time
case is the time derivative of the intrinsic field

(1)(()
0+1

0.3
2.3

2.S

(t,())
n

2.8

h (i) z — g j(')
j=l

(32)

which couples to the "order-parameter field" (t ". The
fluctuations in h "behave as'

P/Q
f

—2/3

(h (i))2
(33)

and diverge for all finite z when the edge of the step is ap-
proached. Furthermore, because of the absence of such
fluctuations on the step the divergence of Eq. (33) cannot
be supressed by a shift in A& ( &). Note that in systems
with continuous spatial variation this kind of fluctuation

2.4
2.4

y(()

FIG. 17. Example of local return map of two-dimensional
simulations. A=0.285, 7=0.2, and %=0.5. (a) Return map in
interval [0,2'). (b)—(d) Successive close-ups of {a) in regions
where the change in dynamical variable is slow.
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cannot exist and thus the continuum limit of the present
theory is unclear. In particular, perturbation calculations
of the upper critical dimension of continuum models do
not say anything about the model of Eq (.3).

In this work we studied in simulations the effect of only
a finite number of nearest neighbors on irrational rotation
numbers. We have chosen to look at the effective local re-
turn map of a phase in the lattice. Figure 17 shows an ex-
ample of such a map; the change in the internal field h„"
corresponding to the same fixed values of parameters and
the same configuration of random phases P"' is displayed
in Fig 18.. We want to stress that the single-valuedness of
this local return map is by no means accidental. Thus it
is possible to describe also the finite-ranged system by a
local equation and a self-consistent internal field. Here,
however, the field is a much more complicated function
of time (n) as is evident from Fig 18.. All this supports
the approach by RH, but we are not able to determine ac-
curately enough the distribution of h„'+~ —h„", the crucial
quantity of RH, from our numerical data. RH predict
that for the parameter values of Figs. 17 and 18 the rota-
tion number R should depend linearly on the distance
from the edge of the step. (This was used in Sec. III B; see
also Figs 10 . and 12.) Numerical results, which are
displayed in Fig. 19, show finite-size effects close to the
transition, but seems to be in fair agreement with RH.
An additional problem at the transition are the domain-
wall structures, ' which are neither taken into account in
the infinite-range approximation nor in RH. To deter-
mine the mle of short-range fluctuations further numeri-
cal work, including finite-size scaling, is needed.

The short-range fluctuations are important only at irra-
tional rotation numbers. Thus the results of Secs. III and
IV hold for both infinite and finite ranges of interactions
as our simulations indeed show. Below E, the short-
range fluctuations are irrelevant and thus we expect the
result, Eq. (31), to hold for a finite range of interactions,
too. Again the numerical simulations are so noisy that
the exponent cannot be determined with required accura-
cy.

0.1
2K

0
0

FICr. 18. Internal field, defined through Eq. (32), correspond-
ing to return map of Fig. 17. Dashed line is infinite-range field.
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FICx. 19. R(Q) for three different samples of size 30&(30
close to the 0/1- step. K=0.5, J=0.2. Rapid jump to zero at
0=0.26 is due to finite-size effects.

VI. DISCUSSION

In this paper we have demonstrated that the dynamical
properties, mode-locking structure, and bifurcations of in-
finitely many coupled circle maps with random phases are
qualitatively different from those of a single circle map,
the limit of vanishing coupling. In particular, for small
values of the nonlinearity parameter we find only a finite
number of exact steps, a few plateaus with small but finite
slope dR/dQ, and infinitely many steps missing. Also,
the complete mode-locking line changes abruptly as the
coupling is turned on.

%'e have derived in the infinite-range approximation
the novel behavior of the vanishing slope of the plateaus,
Eq. (31); the critical value of the nonlinearity, Eq. (17);
the width of the step near the critical nonlinearity, Eq.
(20); the width of the step at the complete mode-locking
line of the single circle map as the coupling is turned on,
Fig. 16; and of the rotation number close to a step, Eq.
(30). All these, except the last one, survive under short-
range fluctuations. Numerical simulations agree quite
well in most points, although the numerical accuracy is
rather poor. The effect of fluctuations on irrationals is
discussed in Ref. 12.

A motivation of this work has been to understand the
mode-locking behavior observed in CDW materials. The
recent experiments show mode locking to smallest denom-
inator steps, "incomplete" locking of the intermediate
steps (not to be confused with incomplete versus complete
locking in circle maps), i.e., small but finite slope in
dI/dV curves, and fina1ly no locking at higher denomina-
tor steps. This is exactly the behavior of our model with
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a small value of nonlinearity parameter. Therefore we ex-
pect the other properties found in this paper to be observ-
able in CDW experiments, too. In particular, we suggest
experiments to investigate the properties, Eqs. (20) and
(31). Note that our theory does not give connection be-
tween the physical quantities and the parameters of our
model. However, we believe that the nonlinearity is most
simply tuned by varying the amplitude of the time-
dependent ac voltage.

Recently, it has been shown that mode-locking behavior
similar that we have observed is found in the continuum-
time —continuum-space model at finite dimension, too.
This suggests that our conclusions on the irrelevancy of
short-range fluctuations on the step and below the critical
nonlinearity are correct. However, the discrepancy be-
tween the continuous and the discrete space models on ir-
rationals, Eq. (30) and the RH result, still remains to be
settled.

There exist several open questions in our theory. The
fate of the complete mode locking needs further studies.
It would be interesting to determine the Feigenbaum con-
stants a and 5 for the period-doubling sequence. We do
not have intuitive understanding on either why the critical
nonlinearity has a maximum as a function of denomina-
tor, or why K =1 has a special role at high values of
denominators. How far can the expression Eq. (17) be
pushed in J and Q?

We conclude that the dynamics studied in this paper is
new and interesting and deserves more study. Many of its
aspects are realized in charge-density-wave dynamics.
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