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Laboratory-frame cross-correlation functions for spherical-top molecules
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Dynamical cross-correlation functions are reported for the diffusion of spherical-top molecules,
exemplified by the Td-symmetry molecule carbon tetrachloride in the liquid state at 296 K. These
are novel types of cross-correlation functions which exist directly in the laboratory frame of refer-
ence, (x,y, z), and involve rotational and translational motion simultaneously. Contemporary analyti-
cal theories for the diffusion of the spherical top are not able to account for these results, which
were obtained by computer simulation.

INTRODUCTION

The theory of rotational diffusion was introduced by
Debye, who defined the problem without considering ex-
plicitly the way in which translation and rotation, the two
fundamental modes of motion, are interrelated in a diffus-
ing spherical top. There was good reason for this because
otherwise the problem would have become analytically in-
tractable and Debye would not have been able to reduce
the problem to its essentials as elegantly as he did. Note,
for example, the complexity introduced ' by considera-
tions of molecular inertia, important for the explanation
of the far-infrared spectrum. No closed-form solution to
the Euler-Langevin system is possible in this case as wit-
nessed by the meticulous work of Lewis, McConnell, and
Scaife in the mid seventies, some 60 years after the first
papers on the subject by Debye himself. Note that this is
true for the spherical top in the case of rotational dif-
fusion, with no considerations at all of center-of-mass
translation. A set of Euler-Langevin equations for the
three-dimensional (3D) diffusion of the spherical top in-
cluding center-of-mass translation has been introduced by
Evans, but these equations are still unsolved because
they are intricately nonlinear in nature. There have been
many other attempts to write down and solve the dif-
fusion equations for simultaneous molecular rotation and
translation, but there are too many parameters ever to be
determined in a single, simple, and self-consistent experi-
ment. It seems, therefore, that the methods introduced by
Debye and extended in many elegant ways during the cen-
tury, ' cannot solve the basic problem of molecular dif-
fusion as soon as this is extended to two fundamental
modes of motion rather than just one.

The difficulties of the analytical theory are shown up
by the relative success of numerical methods in this field
of physics, in particular the technique of molecular
dynamics computer simulation. This has scored heavily
over the analytical methods in this decade —for example,
the discovery' of the first (simple) CCF (cross-correlation
function) (v(t)co (0))('[23) in 1981 by Ryckaert, Belle-
mans, and Ciccotti; its confirmation and extension to oth-
er molecular symmetries (chiral, for example) by Evans
and co-workers the discovery of (v(t)co (~&) direct-

ly in the laboratory frame in 1985 by the use of an exter-
nal uniaxial electric field; the discovery of the higher-
order CCF's; and recently the confirmation that
these exist in frame (1,2,3), the frame of the molecular
principal moments of inertia, in spherical top molecules,
the subject of this work. By now many different types of
CCF are known, but the time dependence of none of these
is obtainable from the analytical theory. Furthermore, the
necessary comparison with experimental data is also pos-
sible by computer simulation, ' using the self-same tra-
jectories as used to construct the CCF's so that the simu-
lation is providing new information within the framework
of natural philosophy. This is, of course, hypothesis fol-
1owed by measurement followed by modified hypothesis.
The stage has now been reached, however, where the
analytical theory of molecular diffusion seems incapable
of modification without immediately making the new hy-
pothesis so elaborate as to be useless for comparison with
observables and the parameters, such as relaxation times,
obtained therefrom. This is not true at all of computer
simulation, however, because the ability of this method to
produce new information —for example, as follows —is
paralleled by its ability to produce information of direct
experimental interest, such as thermodynamic, structural,
and spectral data.

This paper illustrates this by reporting direct
laboratory-frame cross-correlation functions in liquid car-
bon tetrachloride. This is the first time that the funda-
mental modes of motion have been correlated in frame
(x,y, z) for the spherical top. This paper reports CCF's
that are positive to time reversal, parity reversal, and re-
flection in frame (x,y, z) and which also show a distinct
and well-defined time dependence from the simulation.
This supplements the previous work in frame (1,2,3), and
shows clearly and conclusively that the hypothesis of rota-
tional diffusion, considered in both frames (1,2,3) and
(x,y, z) by Debye, ' is a very crude first approximation,
even in the case most favorable to that hypothesis, that of
the diffusing spherical top. Therefore, it is advisable to
use computer simulation to interpret the experimental
data available in this field. The CCF's obtained in this
paper therefore are no mere exotica, but are fundamental
to molecular dynamics in the condensed phases of matter.

35 2989 1987 The American Physical Society



2990 M. W. EVANS 35

COMPUTER SIMULATION METHOD

A standard constant-volume algorithm, developed by
the author, ' was used to solve approximately the rota-
tional and translational equations of motion for 108 CC1&
molecules. The approximations used in the simulation
were also standard, e.g., cubic periodic boundary condi-
tions, the pair interaction approximation, cutoff criteria,
and virial corrections. The pair interaction potential be-
tween two carbon tetrachloride molecules was modeled
with a five-by-five Lennard-Jones atom-atom potential
with the Lorentz-8erthelot combining rules for cross
terms, as usual. The Lennard-Jones parameters were as
follows:

e(C1—Cl)/k =175.0 K, o(Cl—Cl) =3.35 A,
e(C—C)/k =51.0 K, o(C—C) =3.20 A,
9'c] =Vc =o

The novel (x,y, z) frame CCF's of this work were com-
puted over a time span of 2000 time steps of 5.0 fs each.
The CCF's are well behaved statistically with this amount
of information for the running time averaging of the sub-
sidiary algorithms coded in this work. The new CCF's
are naturally a little more difficult and time consuming to
compute than autocorrelation functions (ACF's), but are
otherwise straightforwardly obtainable once their ex-
istence has been inferred. The following section deals
with the way in which this inference was obtained.

GENERAL THEORY OF "NONINERTIAL"
MOLECULAR DYNAMICS

Newton's three laws of motion are derived in what is
sometimes termed an "inertial" frame of reference.
They refer to uniform translational motion and accelera-
tion in this frame. When rotational motion is superim-
posed on the translation of the center of mass, then the
frame (x,y, z) becomes "noninertial" with respect to the
rotation of the molecule, which is in effect the rotation of
frame (1,2,3) with respect to frame ( x,y, z). The frame
(1,2,3), whose origin is at the molecular center of mass,
also translates with respect to (x,y, z) with the molecular
center-of-mass velocity v. This relative translation is fil-
tered out by use of the rotating frame (1,2,3)' whose origin
is fixed at the (x,y,z) origin and whose angular velocity
with respect to (x,y, z) is conveniently defined as the
molecular angular velocity co.

A basic theorem of dynamics is available ' to relate a
vector, such as the molecular center-of-mass linear veloci-
ty, defined with respect to (x,y, z) to its equivalent defined
in frame (1,2,3)'. For linear center-of-mass velocity the
relation is

[ v](z y z) [ +co X r](1 z 3)

In this equation [v](„~,1 is the linear center-of-mass
velocity in frame (x,y, z), which is equivalent in the rotat-
ing frame (1,2,3)' to the sum on the right-hand side. The
latter is made up of the Newtonian linear center-of-mass
velocity v plus the noninertial linear velocity co)& r, which
evidently appears only for finite co, i.e., when there is rota-
tion superimposed on translation.

The corollary of theorem (1) is

[ v](1 2 31' —[v —to X r](z y z) (2)

which shows that the noninertial linear velocity exists in
frame (x,y, z) and is a real velocity in the laboratory
frame. This basic theorem of dynamics is at the root of
the new CCF's discovered in this work. The equivalent of
theorems (1) and (2) for acceleration are, respectively,

[v](„„,=[v+2roXv+r0Xr+coX(c0Xr)](( 2 31

[v](12 31' —[v —2' Xv m—Xr+coX(taXr)](„~,1
.

(3)

(4)

(v(t) Xro(t)[r(0) Xro(0)] )
( 2)1/2( 2) ( 2)1/2

is, for the (2,2) diagonal element, 0.132. If there is no
cross correlation, this value would be zero for all t. The
value of 0.132 therefore shows considerable statistical
cross correlation in the spherical-top CC14 in the liquid
state at 293 K.

Equation (4) shows that there are three noninertial ac-
celerations in the laboratory frame. These are real linear
accelerations, but confusion is often caused in the litera-
ture by calling them the "pseudo" accelerations. This
misleading reference is due to the fact that they do not ap-
pear in Newton's second law. In previous work ' we
have computed the ACF's of each type of noninertial ac-
celeration and have obtained their time dependence in
frames (1,2,3) and (x,y, z) for different molecular sym-
metries, including that of the spherical top.

The key to the novel results obtained in this paper, and
the kernel of this work, is the extra insight obtained into
the cross correlations in frame (x,y, z) by the fact that
noninertial CCF's of the type

( [v(t)](( z 31"[v(0)](1 z 3)') (5)

exist in frame (x,y, z). This result comes directly from the
general theorem on cross-correlation functions

( A(t) A(0) )(„y,), (6)

where A is a classical dynamical time-dependent stochas-
tic variable. A combination of results (5) and (6) then
produces a variety of possible CCF's in the laboratory
frame directly. If any member of the set of possible
laboratory-frame CCF s obtained in this way is positive to
time reversal, parity reversal, and reflection in frame
(x,y, z), then it may exist for t &0 in an isotropic medi-
um such as CC14 liquid. The reflection operations are
necessary but not sufficient conditions for the existence
of the laboratory-frame CCF's, and in previous work in
liquid water it has been shown that some CCF's which
are symmetry allowed do not actually exist for t & 0 in the
simulation.

In this work on carbon tetrachloride liquid three
laboratory-frame CCF's are illustrated which are syrnme-
try allowed and actually have a real time dependence for
t &0. These are oscillatory in the femtosecond and/or pi-
cosecond range and, when conveniently normalized, reach
a maximum value of the order of 20% of the denomina-
tor. For example, the maximum value reached by the
laboratory-frame CCF
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DISCUSSION

Curves 1 to 3 of Fig. 1 show the time dependence of
elements of the three (x,y, z) frame CCF's:

C1(t)= (v(t) x~(t) [r(0)x to(0)]')
( 2)1/2( 2) (t2) 1/2

C2(t) = (to(t) X v(t)[co(0) Xv(0)] )
(

' 2) 1/2( 2) 1/2( 2)

(v(t) Xco(t)[v(0) Xco(0)] )

( 2 ) 1/2 ( 2 ) 1/2 ( 2 ) (x,y, z)

normalized as shown in the denominators. The curves il-
lustrate a well-defined time dependence in each CCF.
These three are samples of cross correlations between
noninertial linear velocities and noninertial linear ac-
celerations. Many more such CCF's exist among higher
time derivatives of the noninertial velocities and accelera-
tions. All these laboratory-frame CCF's are composed of
vectors such as r, v, and co which, naturally, characterize
both translational and rotational modes of motion. The
normalized amplitudes of the CCF's are such as to invali-
date any theory of spherica1-top diffusion which attempts
to "decorrelate" the angular and linear variables. For ex-
ample, the theories of rotational diffusion, such as the
original Debye theory, ' the Ornstein-Uhlenbeck theory,
the Chandrasekhar theory, " and Kramers theory, ' ' the
various Kubo-Mori-Zwanzig rotational theories, and the
many variations thereof, will not produce the results of
curves 1 to 3. Furthermore, none of the attempts, from
1965 to the present, to extend the theories of rota-
tional diffusion to involve center-of-mass translation will
produce curves 1 to 3 because the CCF's illustrated there
are double vector products. Any attempt to produce the
CCF's analytically, even for the spherical top, will run
immediately into fundamental difficulties of nonlinearity
in the Euler-Langevin system of equations, coupled with

Q. A

FIG. 1. The (2,2) elements of the three laboratory-frame
cross-correlation functions are (1) C](t) (2) C2(t), (3) C3(t).

the intrinsic nonlinearities of the translational
Langevin equation when this includes the three noniner-
tial linear accelerations. The complete set of equations in
this case has been derived by Evans, but this has not
yet been solved analytically. This is hardly surprising in
view of the intricacies of the Euler-Langevin equations for
the rotational diffusion in three dimensions of the spheri-
cal top, as demonstrated by the work of Lewis, McCon-
nell, and Scaife in 1976. Add to this a highly nonlinear
translational Langevin equation and the mathematical
difficulties become obvious. This shows conclusively that
the techniques of computer simulation are now capable of
providing fundamental information available in no other
way.
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