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Equilibrium properties of molecular fluids in the semiclassical limit.
II. Hydrogen molecules
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Thermodynamic properties, such as pressure entropy and configurational energy, of fluid H2 are
evaluated where the first-order quantum correction is taken into account. Agreement for the pres-.
sure and entropy is found to be good at high temperature ( T) 100 K).

I. INTRODUCTION

In the previous paper' (which we refer to as I) we have
developed a theory for calculating the quantum correction
to the thermodynamic properties of molecular fluids of
diatomic molecules. This is based on the assumption that
the total interaction potential is yairwise additive, i.e.,

U(Xt, . . . , X~)= g u(X;,XJ),
1&i &j&N

where u(X;, XJ ) is the pair potential between molecules i
and J and the vector X;=(r;,ro;) represents both the posi-
tion of the center of mass and orientation of the ith mole-
cule. The pair potential model is assumed to be of the
form

LJ + QQ +u jII +udjs +u shape

where uLs is the Lennard-Jones (LJ) (12-6) potential, ufo
is the permanent quadrupole-quadrupole potential, u;„ is
the induced dipole —permanent quadrupole potential, ud;,
is the anisotropic dispersion potential, and u,h,p, is aniso-
tropic short-range overlap potential. However, the calcu-
lated results could not be compared with any experimental
values. Further, in the derivation of paper I, we have
treated the single-molecule rotational partition function
classically. Although it will not affect the configurational
energy and pressure, it should be taken correctly into ac-
count while dealing with the total energy.

We may adopt this approach to calculate the thermo-
dynamic properties of fluid of hydrogen molecules (Hi).
Although the quantum effects for hydrogen are large, '

they can be treated semiclassically because the quantum
effects for them can be treated as a correction at high tem-
perature.

Powles and Rickayzen have also calculated the quan-
tum correction to the free energy and pressure in terms of
(E ) and (r ), where (E ) and (r ) are the classical
mean-squared force and mean-square torque of a mole-
cules, respectively. However, their study is confined to a
few molecular fluids, where quantum effects are small.
Clancy and Gubbins have estimated the first-order quan-
tum correction for hydrogen. However, they have not
taken u;„ into account. Its contribution is not expected to
be negligible.

In this paper we treat the single-molecule rotational

partition function semiclassically and include u;„ to cal-
culate the thermodynamic properties of H2.

II. THEORETICAL BASIS

&& f f W„(X,,X„.. . , X ) gdx;,
where dX;=dr; dco;, 0=4m. for linear molecules, and
W& is the Slater sum which may be defined in this case as

Wtt(Xt, Xi, . . . , X~)

=X!XPq,
-~g y„*exp( —pa„)q„, (4)

~, =(2~'P/m)'",
q„=g (2J+ 1 )exp[ pJ(J+ 1)srt /—2I]

[m is mass, I is the moment of inertia of a molecule, and
P=(kT) ']. In Eq. (4) P~'s are a complete set of ortho-
normal X particle wave functions. The summation in Eq.
(4) extends over all states. Hz is the Hamiltonian of the
system

HN ——— V';+ U,2' (7)

where 7; is the generalized Laplacian operator in an s-
dimensional space. q, is the single-molecule rotational
partition function.

In the semiclassical limit, where the quantum effects
are small, q„ for linear molecules is given by

qr =~r &+
6

where

=(Peart /2I) (9)

is the classical value for the single-molecule rotational
partition function. The expansion of the Slater sum in the

We consider fluids of diatomic molecules which are
permanently in their ground electronic and ground vibra-
tional states. In the quantum statistical mechanics, the
canonical partition function is defined as

g (~ ig3N —NEIN) —1
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order of A is given in paper I.
The corresponding expression for the Helmholtz free

energy is given as

where T =kT/e and f=2/N is the free energy per par-
ticle.

For the free energy per particle f' of the classical fluid,
we have

pA pA' fi p
m

+ ~rr A' p
N I

Ap
6I f'=fa+fr+f2 (12)

+O(A'4), (10)

where 3' is the free energy for the classical fluid. The
first-order quantum correction contains three terms —the
first two arise from the translational and rotational poten-
tial energy effects, respectively, while the last term in Eq.
(10) is due to the rotational kinetic energy. The first two
terms of first-order quantum correction are reported in
paper I.

For calculating the thermodynamic properties of H2 we
consider the pair potential energy given in Eq. (2). For
such a system, in terms of the reduced quantities

where fo is the free energy per particle of the classical
reference fluid and f &

and f2 are, respectively, the first-
and second-order perturbation correction to the free ener-

gy

f;=f)(in),

f2 ——f2(quad)+ f2(anis-dis)+ f2(shape)

+fz(dis-in) +fz(quad-dis)

+f2(shape-in)+ f2(shape-dis) .

(13)

(14)

For details, we refer to paper I. There are some misprints
in Eqs. (3.10)—(3.17) of paper I: p is missing from the
right-hand side of these equations and Eq. (3.14) of paper
I should be read as

Pf2 (dis-in) = —» [p*a*(0*)X/( T") ]((r" )
' )z .

Equation (10) can be written as

pf =pf'+&* (f'„)*+6*(f'...)*—

In Eq. (11), (f„)*and (f„«)* are the first-order quan-
tum corrections to the free energy due to the translational
and rotational coritribution, respectively, and they are
given by

(ftr)* =[frr(1 J)]*+[err(in)] + [frr(quad)]*+ [f «(anis-dis)]*+ [f «(shape)]*

+[f„(dis-in)]'+ [f„(quad-dis)]'+ [f„(shape-in)]*+ [f„,(shape-dis)]',

(f,«)*=[f„,(quad)]'+ [f„,(in)] +[f„,(anis-dis)] +[f,«(shape)]'

+ [f,«(quad-in)]*+ [f,«(quad-dis)]'+ [fr«(quad-shape)]*+ [f,«(dis-in)]

+[f,«(shape-in)]'+ [f„,(shape-dis)]* .
E

(16)

These are reported in paper I. However, there are some
misprints in Eqs. (44)—(4.24) of paper I, and corrected
versions are given in Appendixes A and B. Other thermo-
dynamic properties can be calculated from Eq. (11) using
the standard thermodynamic relations of paper I.

I

III. RESULTS AND DISCUSSIONS

In this section we calculate the thermodynamic proper-
ties of H2 where the quantum effects are appreciable. The
force parameters for these systems are given in Table I.
We chose those parameters with which calculations have
been made earlier by Clancy and Gubbins.

We have calculated the first-order quantum correction
to the thermodynamic properties. We use the empirical
equation of Ananth to evaluate the integral ((r*) ")2
appearing in the expressions of the thermodynamic prop-
erties.

The contribution of the various branches of pair in-
teraction potentials to the excess free energy per particle
and pressure are reported in Table II at p*=0.22638,
T =2.16, and p =0.45844, T*=3.24. The classical

values are also shown in Table II. We see that the contri-
bution of u;„, which increases with the increase of density
and decrease of temperature, is small but not negligible
and should be taken into account.

The quantum corrections to the configurational energy,
entropy, and pressure for fluid H2 have been calculated
and are shown in Table III. We find that the quantum ef-
fects increase with the increase of density and decrease of
temperature. We have also estimated the contribution of
the rotational potential energy to the first-order quantum
correction to the configurational energy and pressure.
The contributions of rotational part to the quantum
correction are found to increase with the increase of densi-
ty and decrease of temperature. For example, for pressure
at p=9.468 moll ', its contribution is 21.22% at T= 120
K and 31.71% at T=80 K, while at p=30.322 moll
the corresponding values are 24.40% and 34.55% at
T= 120 and 80 K, respectively.

The compressibility and entropy of the fluid H2 are cal-
culated including, as well as excluding, the induced in-
teraction, u;„. They are reported in Table IV. The experi-
mental results are also demonstrated in Table IV. Again
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TABLE I. Force parameters of H2 used in the present calculations.

~/k (K)

37.0

o (A)

2.928

10 a
(cm')

0.806

10"e
(esu)

0.65 0.125 0.1 1.729 13.4997

TABLE II. Contribution to the configurational free energy and pressure of fluid H2.

Contributions

LJ
In

uad
anls-dls
shape
dls-1n
quad-dls
shape-in
shape-dis
quad-in
quad-shape

Total

p =0.226 38
Pf'

—0.154 30
—0.009 64
—0.015 64
—0.003 10
—0.007 59
—0.000 31

0.003 02
0.000 27
0.005 70

—0.181 60

T*=2.16
13f

0.001 01
—0.006 95

0.035 01
—0.000 36
—0.003 27
—0.000 19

0.002 55
0.000 83
0.005 37

—0.000 19
0.007 52

0.041 33

p =0.458 44
I3f'

0.18202
—0.012 90
—0.01654
—0.003 60
—0.01045
—0.000 32

0.002 93
0.000 41
0.008 57

0.150 12

T*=3.24
Pf

0.349 91
—0.011 16

0.01793
—0.00141
—0.007 80
—0.000 25

0.002 62
0.000 92
0.008 33

—0.000 12
0.006 01

0.364 98

p* =0.226 38
PP'/p

0.859 21
—0.008 56
—0.01720
—0.003 65
—0.007 89
—0.00029

0.002 74
0.000 37
0.007 93

0.832 66

T*=2.16
I3P /p

1.003 60
—0.006 86

0.038 43
—0.00024
—0.005 02
—0.000 20

0.002 27
0.000 99
0.00742

—0.000 16
0.008 03

1.048 26

p* =0.458 44
PP'/p

1.447 80
—0.01344
—0.024 84
—0.00600
—0.01726
—0.00041

0.003 39
0.000 90
0.018 53

1.408 67

T*=3.24
PP/p

1.683 01
—0.01198

0.027 60
—0.002 18
—0.016 51
—0.000 35

0.003 01
0.001 80
0.01802

—0.000 13
0.009 55

1.711 84

TABLE III. Quantum corrections to the configurational
internal energy, entropy, and pressure for Auid H2.

120

P
(moll ')

9.468
14.973
30.322

100 U —U'
U'

—16.88
—15.95
—15.91

100 S S
S'

0.90
1.50
4.08

100 pc

5.71
9.43

21.52

9.468
14.973
30.322

—25.29
23.37

—22.10

1.51
2.47
6.70

8.55
14.45
33.57

80 9.468
14.973
30.322

—42.32
—38.52
—33.90

2.86
4.73

12.46

15.35
25.89
64.29

TABLE IV. Compressibility and entropy of fluid H2.

P
(moll ') With u;„

PP /p
Calculated

%'ithout u;„ Experimental

S/Xk
Calculated

With u;„Without u;„ Experimental

120
100
80
60
60

9.468
11.540
14.973
21.619
16.342

1.0743
1.0665
1.0484
1.0430
0.9940

1.0776
1.0708
1.0545
1.0523
1.0011

1.0726
1.0560
1.0174
0.9395
0.9361

7.9689
7.2240
6.3342
5.3521

7.9673
7.2213
6.3291
5.3403

7.996
7.400
6.642
5.557
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we find that the results calculated in the presence of the
induced interaction u;„are better. Further, the agreement
is good at high temperature, which decreases with the de-
crease of temperature. For example, in case of pressure,
the percentage of error is less than 1% for T) 100 K,
whereas in the case of the entropy the percentage of error
is 0.34% at T= 120 K, p= 9.468 mol l ' and 2.38% at
T=100 K, p=11.540 mol l '. However, for lower tem-
peratures, the percentage of error is large. One should

consider the higher-order quantum corrections to get
better results at lower temperatures.
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APPENDIX A

Expressions for terms appearing in Eq. (15) are given by

[f„(LJ)]'= [p*/(T*) ][22((r*) ' )z —5((r*) 8)z], (A 1)

[f'( )]*=— [
* '(&*)'/(T*)'] —,'(( *) "& —,(22(( ') "& —5(( *) "& )7 g ]0 1

(A2)

[f„(quad)]'= — [p"(8*) j(T")z]((r') ' )z, (A3)

[f„(anis-dis)]*= — [p'/(T*) ][K (2+ —",K )((r*) ' )z+2p'K ([(r;z) (r fz) P zcos(8[))3],
~2

(A4)

(A5)

[f„(dis-in)]*=— [p'a*(8') Kj(T*) ]((r*) ' )z,
35~2

[f„(quad dis)]-*= [p*K (8') /(T*) ]((r*) ' )z,

[f„(shape-in)]*= [p*a*(0*)Dj(T*) ]((r*) )z,
35m

[f„,(shape-dis)]*= [p*KD/(T*) ]((r*) )z .
5m.2

(A6)

(A7)

(A8)

(A9)

APPENDIX B

Expressions for terms appearing in Eq. (16) are given by

[f„,(q d)]*=—,[p*/(T*) ](—,'(8*)'(( *) '),—",,'[(8*) /(T*)](( *) ' ) )
192

[f„,(i )]*= [p"( *) (&*) /(T*)'](( *) ' )

(B1)

(B2)

[f„,(anis-dis)]"= [p*/(T*) ]K (1+—",K )((r*) ' )z,
5m

[f„,(shape)]*=
z

[p*D /(T*) ]((r*) )z,

(B3)

(B4)

[p*(0*) /( T*)']K(2——', K) (( *) ")
180

[p*(&*)'D/(T*)'](( *) ")
2 P

[f„,(quad-dis) ]*=

[f,«(quad shape)]* -=

[f„,(quad-in)]*= —
z

[p*a'(8*) /(T*)')((r*) ")z,
6720m

(B5)

[f,«(dis-in)]*= [p*a*(8*)K/(T*) ]((r*) ' )z,
35~2

(B8)
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[f„,( h p -i )]*= [p* '(&') D/(T') ](( ") ) (89)

[fm, (shape-dis)]*= —
2

[p*DK/(T*) ]((r*) )q . (810)
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