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This paper presents new results for the steady states of a detuned ring laser with a saturable ab-
sorber. We employ a semiclassical model which assumes homogeneously broadened two-level
atoms. We proceed by solving the Maxwell-Bloch equations for the longitudinal dependence of the
steady states of this system„and then simplify our solution by use of the uniform-field approxima-
tion. We present uniform-field results for squared electric field versus operating frequency, and for
each of these versus cavity tuning and laser excitation. Various cavity linewidths and both resonant
and nonresonant amplifier and absorber line-center frequencies are considered. The most notable
finding is that cavity detuning breaks the degeneracies found in the steady-state solutions of the ful-

ly tuned case. This leads to the prediction that an actual system will bifurcate from the zero-
intensity solution to a steady-state solution as laser excitation increases from zero, rather than to the
small-amplitude pulsations found for the model with exactly resonant tuning of the cavity and the
media line centers. Other phenomena suggested by the steady-state results include tuning-dependent
hysteresis and bistability, and instability in both intensity and frequency due to the appearance of
one or more new steady-state solutions as tuning is varied. These effects of detuning are being test-
ed by a linearized stability analysis whose results will be reported separately.

I. INTRODUCTION

In this paper we present new theoretical results for the
steady states of homogeneously broadened, detuned ring
laser with a saturable absorber. This work is part of a
general study of the time-dependent and time-independent
solutions of this system. The results given here represent
a step forward in our ability to incorporate cavity detun-
ing into the treatment of this system and to allow dif-
ferent resonant frequencies for the absorbing and amplify-
ing atoms. We will present results on the stability of the
steady-state solutions in a later paper.

Recent theoretical investigations of instabilities, bifur-
cations, and dynamical behavior in this system have so far
been restricted to the "fully tuned" case, in which the
resonant frequencies of the amplifying and absorbing
atoms are equal and match the cavity tuning (for example,
Refs. l —4). We are able to lift both of these restrictions,
and can therefore examine the dependence of the possible
steady-state solutions on the cavity tuning, and on the fre-
quency mismatch between the amplifying and absorbing
atoms. We have found that detuning the cavity removes
degeneracies otherwise present in the steady-state
solutions, suggesting that there may also be in-
teresting departures from the stability behavior found in
the fully tuned case. ' Similar effects of detuning on the
steady-state solutions for a model of the far-infrared laser
have been found by Wu and Mandel.

An additional feature of our method is the ability to
compute the longitudinal dependences of the state vari-
ables describing the system, and thereby to allow for non-
saturable losses. In the present paper we derive the full
solutions with longitudinal dependence, simulating arbi-
trary nonsaturable losses by assuming mirrors of arbitrary

reflectivity. In order to simplify our initial calculations
and to compare our results with those of other workers,
we then apply the uniform-field approximation of Bonifa-
cio and Lugiato. " This approximation, which removes
the longitudinal dependence, has been used throughout the
studies of Refs. 1—4. On the other hand, Arimondo and
Dinelli modified the model used in Refs. 1—4 in order to
take account of the significant losses actually encountered
in their experimental system. Thus solutions containing
the effects of the longitudinal variations in the field neces-
sitated by nonsaturable losses are eventually of interest.
An examination of the results given by our model without
the uniform-field approximation will be presented else-
where.

Our model for the ring laser with a saturable absorber
entails the following simplifications: atoms of both types
are modeled as two-level atoms experiencing only homo-
geneous broadening of their spectral lines. The two media
are taken to be uniformly mixed in a single cell, but are
assumed to interact only through the electric field. We
model this system by the semiclassical Maxwell-Bloch
equations, and assume the existence of single-frequency
solutions in the slowly-varying-amplitude approximation.
We also assume unidirectional propagation of light
around the ring. Polarization of the light, and radial vari-
ation of the state variables of the system with respect to
the optical axis, are not considered.

The model so extensively developed in Refs. 1—4 also
assumes homogeneously broadened two-level atoms and
the existence of single-frequency solutions. A variety of
other approaches to the problem of the laser with a satur-
able absorber, which remove one or more of these restric-
tions, are given in Refs. 9—15. However, most of these
studies have employed the simpler rate-equation approxi-
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mation, and many, though not all, treat only the fully
tuned case. We have found the model described above to
be a good starting point for a more complete treatment of
the effects of adjusting the cavity tuning and the atomic
line-center frequencies of the two media. A review of
laser instabilities, including theoretical work on the homo-
geneously broadened two-level atom model for a laser
with a saturable absorber, is being prepared by Abraham,
Mandel, and Narducci. '

Lasers with intracavity saturable absorbers have been of
experimental interest for many years in such applications
as spectroscopy, ' ' frequency stabilization, ' and mode
locking, self-pulsing, and pulse shaping. ' Careful experi-
mental studies of the dynamical behavior of these systems
have now been undertaken by a number of work-
ers. ' ' Bistability ' ' and Q switching' ' ' have
been particularly studied. This exciting work has stimu-
lated the further development of theoretical models ' in
addition to testing the dynamical predictions of the
theorists. " ' ' The theoretical and experimental study
of bistability reported in Ref. 8 was concerned with the
fully tuned case. Similarly, the detailed studies of Q
switching reported in Refs. 13 and 20 used resonant rate
equations to model the media as four-level systems. An
expanded theory of passive Q switching which incorpo-
rates dispersion is needed for the interpretation of data on
the effects of cavity tuning.

We have organized the paper as follows. In Sec. II we
derive the steady-state solutions as implicit functions with
full dependence on longitudinal position and all the pa-
rameters of our model. In Sec. III we apply the uniform-
field approximation to these solutions. We then cast the
results of this procedure into a form analogous to that ob-
tained by Casperson and Yariv in their study of the multi-
ple operating points of an inhomogeneously broadened
laser. This results in a particularly physical picture of
the steady-state solutions and their dependence on the pa-
rameters of the system.

However, the equations themselves are still quite corn-
plicated. In Secs. IV—VI we assume physically interesting
values for the model parameters and p'erform numerical
calculations in order to visualize our results. In Secs. IV
and V, we assume that the amplifying and absorbing
atoms have the same line-center frequency. In Sec. IV we
obtain plots illustrating the relationships between the state
variables of the system and the operating frequency. We
then use these relationships to find the parameter depen-
dences of the solutions for the operating frequency and
for the squared modulus of the electric field. The adjust-
able parameters we consider are cavity detuning, cavity
linewidth, and excitation of the amplifying medium. The
results of variations in these parameters are discussed in
detail in Sec. V. In Sec. VI we undertake a similar
analysis assuming unequal line-center frequencies for the
two media. Section VII is a summary and conclusion.

II. THEORETICAL APPROACH
AND STEADY-STATE SOLUTIONS WITH FULL

LONGITUDINAL DEPENDENCE

We have been especially influenced in our approach to
this problem by the methods of Casperson and Yariv

and of Lugiato, Mandel, and their co-workers. ' ' Our
initial Maxwell-Bloch equations correspond to the semi-
classical equations derived by the latter authors, but allow
longitudinal variation of the electric field, detuning of the
cavity, and unequal line-center frequencies for the gain
and loss media. Figure 1 shows a schematic diagram of
the ring system. The Maxwell-Bloch Equations for this
problem are then the following:

BE BE——C ga Sa gbSb
Bt Bz

(2.1a)

= —(yi, +&'b,co, )S,+ ED, ,
Bt

BSb Pb= —(yqb+ibcob )Sb+ EDb,

(2.1b)

(2.1c)

BDa Na

Bt 2
= —

X)(a Da+
2A

(ES,*+E'S,), (2.1d)

BDb Nb

Bt 27 [)b Db (ESb +E Sb) . (2.1e)

These equations must be supplemented by the ring-cavity
boundary condition

E(0,t )=E(L,t —ht )R exp( —i Ace, tz ) . (2.2)

RI
z= 0

of
z=L

R

100K

FIG. 1. Schematic diagram of the model ring laser with a
saturable absorber. The ring cavity of total length W is defined
by four mirrors, of which two are 100%%uo reflecting and two have
reflectivity R &1. The spatial coordinate z measures position
along the medium cell in the direction of propagation of the
light. The cell has length L and contains a homogeneous mix-
ture of absorbing and amplifying media.

The symbols used in these equations are defined as fol-
lows. The "state variables" E, S, and D are, respectively,
the slowly varying amplitudes of the electric field, the
electric polarization of the medium, and the "population
difference" for the medium. The subscripts a and b refer
to the amplifying and absorbing media, respectively.
These are all functions of longitudinal position z (along
the optical axis of the cavity) and time t, with propagation
of light occurring in the positive z direction. Population
difference, as usual, means —,

'
(N& N2) for each—medium,

where N& and N2 are the populations of the lower and
upper levels. g, and gb are the polarization-field coupling
constants; g, =4m'~, /V and gb

——4m.co~b/V. Here coo
is the angular frequency of the light field, p, and pb are
the electric dipole transition moments for the two media,
and V is the volume of the mixed media through which
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the beam passes. yz„yzb are spontaneous decay rates for
the electrical polarizations of the media, and yI~„yIIb are
the corresponding rates for the population differences for
media a and b.

h~„Acerb, and Ace, are defined by

—IEI4'=c IEI —g, v, g—bvb,
Blp

az

a Pa—u, = —v, 4& —y~, u, +Aco, v, + D,
I

E
I

(2.7b)

(2.7c)

ACda =COa —Q)0,

667b =COb —COO,

COc =Cuc COO,

(2.3)

a Pb
at ub = —vbc —

1 lbub +Acobvb + Db
I

E
I

a
Ua =&a C @laUa ~~a ~aat

(2.7d)

(2.7e)

ECOO =COO
—CO a

~~ah ~b ~a

ac =Cue Cua

so that

(2.4a)

(2.4b)

(2.4c)

Ace, = —Acro,

ACOb =EQ)ab —ACOO,

Ace, =A~„—hcoo .

(2.5)

where cu, and cob are the angular frequencies at line center
for the amplifying and absorbing media, and co, is the an-
gular frequency of the empty-cavity mode nearest to the
laser operating frequency ~o. For a ring cavity of round-
trip length W, this mode may be characterized by the
(empty-cavity) wavelength A,, and the integral mode num-
ber m, =W/X„such that co, =2am, c/W. For purposes
of computation, it will later be convenient to refer each of
the co's and b,cv's to the frequency co, by introducing the
relative frequencies

a
at
—

Ub =QbC —p bVb —ACObQb (2.7f)

p,
Da = ) [[a 7[[aDa I

E
I
ua

Bt 2

Nb pb
Bt 2

Db ) f[b VfjbDb IE
I

ub

(2.7g)

(2.7h)

E(o, t)
I
=R

I
E(L,t —6t) I,

q (0, t) =q (L, t b t)+h~, t—R .

(2.8a)

(2.8b)

We next express the steady state in terms of the
transformed equations by setting all time derivatives to
zero. Steady-state forms of the state variables and their
transformations are functions only of z and are denoted
by the superscript SS.

I

E
I

is written as
I
E

I
for leg-

ibility. The equations become

0= —c
I
E

I

—

genug

gbub—SS SS

dz
(2.9a)

The boundary condition similarly transforms into a pair
of equations

We will refer to bee„as the "cavity detuning" (relative to
the amplifying atom line center), in analogy to the com-
mon designation of co, as the "cavity tuning".

N, and Nb are the numbers of active a and b atoms in
the effective volume V, and thus represent the excitation
of the media, or "pumping. " As indicated in Fig. 1, the
cell containing the media extends from z=0 to I, . tz
denotes the empty-cavity round-trip time W/c, and
b, t =(W L)/c. Finally, the —cavity is taken to be defined
by four mirrors, of which two are perfectly reflecting and
two have reflectivity R &1. The transmissivity of the
latter mirrors is T=1—R. We will later introduce the
empty-cavity linewidth, ~ =cT/W.

We now transform the Maxwell-Bloch equations plus
boundary condition into a set of purely real equations by
means of a decompostion of variables employed by the au-
thors of Refs. 1 and 2. This transformation has the form

0=c
I
E

I g —g, v, gbvb—SS d SS SS SS

dz

Ylbub +b "b + Db
ss SS ~& SS SS

0= —y&, U, —Ace, u,ss ss

0= —p hub —Ambub
ss ss

Nb ss I b ss ss0=x(fb 1[[bDb IE
I

ub
2

In the steady state the boundary conditions are

(2.9b)

(2.9c)

(2.9d)

(2.9e)

(2.9f)

(2.9g)

(2.9h)

E(z, t) =
I
E(z, t)

I
e

S,(z, t) = [u, (z, t) +iv, (z, t)]e

sb(z, t) =[ub(z, t)+ivb(z, t)]e

C(z, t)= y(z, t) .
ai

(2.6a)

(2.6b)

(2.6c)

(2.6d)

I

E (0)
I

=R
I

E (L)
I

(0)=p (L)+ hrv, tg .

(2.10a)

(2.10b)

The last six of the main equations, Eqs. (2.9c)—(2.9h), can
be straightforwardly solved for the u's in terms of

I

E
and for the U's and D's in terms of these,

The transformed Maxwell-Bloch equations are then

8
at az
—IEI = —c IEI —g, u, gbub, — (2.7a)

ss

2y, & 1+(bee, /yi, )+(
I

E"
I

'/I, .)

(2.1 la)
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ss I b

2rlb~ I+(~~b/ygb)+(~E
~

/I, t, )
' ~E (0)

~

/R +k3/k4—2p lnR+q ln
~E (0)

~

+k3/k~

ss
Ua

ss
Ub

LeLCOa

Qa
Via

ACOb
Qb

(2.11b)

(2.11c)

(2.11d)

+ ' (1/R' —I)~Ess(0)~'=L,
2k4

AgoL
—=y (L)—qP (0)= bc@—, tl(

~E (0)
~

/R +k3/k4

~E (0)
~

+k3/k4

(2.148)

D,
2

Nb
Db =+

2

)

Ess
)
ass

~lla

(Ess( ss

X)(b&

(2.11e)

(2.11f)

2~ Via/((a
Isa =

Pa
(2.12a)

Here we have introduced the "saturation intensities" Isa
and I,b, defined as

(1/R —1)
~

E (0}
~2k4

(2.14b)

Corresponding values of
~

E (0)
~

and coo appear as
the simultaneous roots of these two transcendental equa-
tions; we cannot obtain a convenient "mode-pulling equa-
tion" for coo without further approximation. In general,
we expect multiple pairs of roots from these equations.
We now define the coefficients used in these expressions.
First let c&, c2, d&, and d2 be as follows:

~ 'VibV IlbIsb-
Pb

(2.12b)
A%a ga P

( (a 27TANa P
( )a COO

2p, c cV
(2.15a)

2

~

Ess(z)
~

~

E (z)
~

+k3/kq
pin +qln

~

E"(0)
~

'
~

E"(0)
~

'+ k, /k,

+ [ )
E"(z)

]

' —
[
E"(0)

)
']=z,1

2k4

Ago, =—y (z) —y (0)

IE (z)
~

+k3/k4=p'z+q' ln
~

Ess(0)
~

k3/k4

(2.13a)

The results for the u's can be substituted into Eq.
(2.9a), which can then be integrated to yield

~

E (z)
~

as
an implicit function. Equation (2.9b) can be integrated by
treating g as a function yP of

~

E ~, putting
d qP Idz = (d yz~l d

~

E
~

)(d
~

E
~

Idz ), and substituting
for d

~

E
~

/dz from Eq. (2.9a). Expressing the u's and
u's in terms of

~

E
~

and integrating with respect to
~E

~

yields qP (
~

E
~

). p (z) is then defined indirect-
ly through pz (

~

E
~

) and the implicit function

~

E (z) ~. The constants of integration may be taken as
~E (0)

~

and qP (0). In this way one obtains the follow-
ing:

d2=«'/vb} (xib+~~t') .
Vib

Then we define

k i C2d2~ k2 Cp +d2

k3 ——c&d2+d&c2, k4 ——c&+d»
ECOa ACOb

C )d2+ C2d )
VibVia

and

k6 ——
ACOb

d]
ACt)a

Ci+
Vib

k) k5
P=2k P =k

c~ ——(&'/p', ) (y&, +&~', ),
Via

~bgb7 )(]b 2~NbV (Ib~o

2Pb C CV

(2.15b)

(2.15c)

(2.15d)

(2.16}

P [ [Ess(z)
[

[E (())
) ]

2k4
(2.13b)

In the limit Nb~0, Eq. (2.13a) takes the form of the cor-
responding equation found by Lugiato et al. for the case
of the homogeneously broadened ring laser [Eq. (2.12) of
Ref. 6]. The coefficients k„, p, q, p', and q' are defined
below; they contain the various parameters of the system
and the operating frequency coo. These expressions for

~

E (z)
~

and b.yo, thus require values for
~

E (0)
~

and coo. The latter two can be evaluated by setting z =L
in Eqs. (2.13) and using the boundary conditions

~

E (L)
~

= ~E (0)
~

/R and y (L)—qo (0)=b(poL,
= —hen, tz. The equations which result are

1 kqk3k4 —kik4 —k32 2

'=4 k k'
c)di(c2 —d2)

(2.17)
4k3k4

k3k5 k2k4k5 +k ik4k6

kik

III. STEADY-STATE SOLUTIONS
IN THE UNIFORM-FIELD APPROXIMATION

The preceding results may be simplified greatly by ap-
plying the uniform-field approximation. " As is usual in
uniform-field treatments, the excitation of each medium
is expressed by a "lumped parameter" containing the ratio
of the number N of active atoms to the mirror transmis-
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sivity T, multiplied by the cell length L. For the amplify-
ing and absorbing media, we define these, respectively, by

2M yell« = (L/T),
N L

c V T

B= 2M y lib b—:—(L/T)
N L

c V T

(3.1a)

(3.1b)

I

E""
I

'+ [(c2+d» —(~ —B ) l I

E""
I

'

+ [czd2 —(Adz Bc2)]=0 . (3.2)—

We will later refer to 2 and B as the "excitation parame-
ters" for the system, or simply as the "excitations" of the
respective media. Eventually we will specify a value for
B, and will then sometimes refer to 2 alone as the excita-
tion parameter or merely as the excitation. The uniform-
field approximation amounts to a limiting procedure in
which N, L ~0, Nb L ~0, and T~0, while 3 and B are
fixed at chosen finite values. It is also assumed that the
lumped parameters 3 and B can be maintained constant
or varied independently of other parameters, even though
some quantities, such as coo, may vary with operating con-
ditions. Physically, this limiting process corresponds to
making the media optically thin while decreasing the non-
saturable losses in the cavity, in such a way that the inten-
sity remains finite. In this limit, the state variables be-
come independent of position z, and, when appropriately
defined, of the individual values of T, L, N„and Nb.

The uniform-field approximation is typically applied to
the fundamental semiclassical or quantum equations used
in the model before attempting to solve them, thereby el-

iminating the troublesome z derivative of the electric
field. This method is used in Refs. 1(a) and 2(b). In our
approach, we apply it instead to the longitudinally depen-
dent solutions found above. We do this by first expanding
our solutions (2.14) for

I

E (0)
I

and b, @OL in powers of
T. We anticipate that terms in powers of T higher than
the first will be eradicated by the limiting process, and
drop these immediately. With one exception, the remain-

ing first powers of T can be combined with the quantities
L, N, coo, and Nbcoo, and thus be absorbed into the con-
stant parameters 3 and B. The exception occurs in the
uniform-field expression for the total phase shift b,yoL,
which retains an overall proportionality to T. However,
we shall find that we can work instead with the quantity
G(coo) = (b,qP~t /T), which we call the "phase-
shift —transmissivity ratio, " or, when the context is clear,
the "phase-shift function. " This total quantity remains fi-
nite in the uniform-field limit, and is independent of the
separate values of T, L, N„and Nb, but does depend on
the lumped parameters 3 and B. The physical signifi-
cance of this behavior of AcpoL is that it becomes propor-
tional to the number of active atoms in the medium as the
medium becomes optically thin.

The end results of this process are the following equa-
tions. For notational clarity, the superscript SS is
changed to UF to indicate that the uniform-field limit has
been taken. There is no longer any z dependence. The
implicit function for

I

E (0) I, Eq. (2.14a), becomes a
quadratic equation defining

I

E

This has solutions,

EUF
I [ P+(P2 4g )1/2]

with

P = [(c2+d2) —(3 B)—],
Q = [c2d2 —(Adp Bc—p)) .

From these equations it follows that

IEUFI' & IEUFI'

(3.3a)

(3.3b)

(3.3c)

(3.4)

for all values of coo where two real roots exist. Setting
I

E "I =0 in Eq. (3.2) gives the value of the
amplifying-medium excitation parameter 3 at the lasing
threshold. In the limit of zero absorption (B~0, Nb ~0),
we find that the minimal threshold is 3 =I„, which
occurs for coo=co, (a tuned, homogeneously broadened
ring laser). Note that the boundary condition on E is no
longer relevant in the uniform-field treatment.

In this way we have obtained a "state relation" for the
squared electric field amplitude as a function of the laser
operating frequency. Applying this method to equation
(2.14b) for the total phase shift due to the medium gives
the function for the phase-shift —transmissivity ratio in
the uniform-field approximation,

G + (coo) —=Abbot, ~ /T
1

yl yJ b(c2 d2)

x[(W —B—IE""I+)(y,ba~. y,.a—~b)

+(yi c~~~b —yibdz~~a ) 1 . (3.5a)

As in the derivation of Eq. (2.14b), the boundary condi-
tion on the total phase shift requires

G~(coo) = b,co, tg /T= —b.—co, /a. . (3.5b)

Here we treat the empty-cavity linewidth
v=cT/W—:T/tz as a third parameter of the system to be
held fixed when the uniform-field limit is taken. This
makes sense physically as an approximation to the proper-
ties of a real cavity with highly reflective mirrors (see the
discussion of parameter values in Sec. IV). Then Eq.
(3.5b) is the mode-pulling equation for this system in the
uniform-field approximation, and allows us to find the
possible steady-state operating frequencies as functions of
the cavity tuning, contained within Ace, . From these, and
the equation for

I

E "I +, we can find the corresponding
electric fields. In addition, for a given tuning, we can find
the dependence of operating frequency and electric field
on laser excitation, as expressed by the parameters 3 and
B. The question of calculating uniform-field values for
the other state variables is taken up in a subsequent paper
in connection with the stability problem for the steady-
state solutions. We will refer to

I
E "I + and G+ as

"primary" solutions, and to
I

E "
I

and G as "secon-
dary" solutions.

In carrying out this program, much insight is gained by
first considering Eqs. (3.3) and (3.5a) for

I

E
I

+(coo) and
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G+ (ci)o) as "state relations" which are independent of the
boundary condition (3.5b). The boundary condition can
then be treated as a constraint on the permitted values of
the phase-shift function G+ (coo). We have

6+(Q)o) = —Aco~ /Ic= (ci)o —Q7~ }/K . (3.5c)

IV. CALCULATION OF STEADY-STATE
SOLUTIONS FOR THE CASE OF MEDIA HAVING

THE SAME LINE-CENTER FREQUENCY

The solutions found above are so complicated in form
that it is necessary to plot the results of calculations using
typical parameter values in order to visualize the relation-
ships. In this and Secs. V and VI we present an analysis
of such results, generated by using the state-
relation —mode-line method developed in Sec. III. Thus
we assign physically reasonable parameter values, calcu-
late the state relations, and numerically find intersections
of the chosen mode line with the curve of the phase-
shift —transmissivity ratio. These intersections define
operating frequencies and, via the state relations, the cor-
responding values of squared electric field. By varying
relevant parameters, we are then able to generate plots of
squared electric field and operating frequency versus cavi-

Thus this constraint corresponds to a straight line on a
plot of the phase-shift —transmissivity ratio versus operat-
ing frequency, whose intersections with the phase-shift
function give the physically allowed solutions for 6+ and
coo. The line's intercept with the frequency axis is the cav-
ity tuning, that is, the frequency ~, of the empty-cavity
mode closest in frequency to the operating frequency.
When frequency is presented as angular frequency, as
here, the slope of such a "mode line" is the reciprocal of
the empty-cavity linewidth ~. Finally, the allowed values
of coo determine corresponding allowed values of

~

E
through the expression for

~

E
~

+(coo).
Neither the cavity tuning nor the cavity linewidth, as

such, enters the expressions for
~

E
~

+(coo) and 6+(coo)
given by Eqs. (3.3) and (3.5a). The dependence of the
solutions on cavity tuning can therefore be obtained by
translating or "sweeping" a mode line horizontally across
a plot of the phase-shift —transmissivity ratio versus
operating frequency. Similarly, their dependence on cavi-
ty linewidth can be obtained merely by varying the slope
of the mode line. On the other hand, variation of the ex-
citation of the media, expressed by the parameters 3 and
8, distorts the plots of ~E ~+(coo) and 6+(cop), but
leaves the mode line unaffected. Results obtained from
the numerical realization of these procedures will be dis-
cussed in Secs. IV—VI. It is in the development of these
solutions from the uniform-field approximation that the
spirit of our approach owes most to the paper by Casper-
son and Yariv referred to above. A more formal alter-
native is to use Eqs. (3.3) and (3.5a) to rearrange the
mode-pulling equation (3.5c). This gives a polynomial
equation of the sixth degree in the operating frequency.
Then three of the mathematically possible roots corre-
spond to possible intersections of the mode line with the
primary phase-shift —transmissivity curve, and three to
possible intersections with the secondary curve.

ty tuning and excitation of the amplifying medium. We
also examine how these plots are affected by changes in
the cavity linewidth. Initially we treat the case in which
the amplifying and absorbing atoms have a common reso-
nance frequency. The results are presented graphically in
Figs. 2—5 and are discussed in detail below and in Sec. V.

In the following, electrical quantities are expressed in
the electrostatic (ESU) system of units. The parameter
values used are line-center wavelength, 3.51 pm; decay
rates for amplifying-medium polarization and population

yg/ and y~~/ 100X 10 sec for the absorbing
medium gab and y~~b, 10)& 10 sec ', electric dipole tran-
sition moments p, and pb, 2.17' 10 ' and 0.434&& 10
cm g' sec '. The values for the line-center wave-
lengths and for the transition moment of the amplifying
medium are those for a known lasing transition in xe-
non. " The other values have been chosen simply for con-
venience, as well as physical reasonableness. Those for
the absorbing medium give it a linewidth one-tenth that of
the amplifying medium, and a transition moment one-
fifth as great. These parameter values give saturation in-
tensities I„=2.36 )& 10 g cm ' sec and I,b

——5.90
)& 10 g cm ' sec =(I„/0).

Levels of excitation of the amplifying and absorbing

2.0

1.5

1.0
LLI

0.5

/
/

0.0
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

OPERATING FREQUENCY (6(0 )

FIG. 2. Squared electric field vs relative operating frequency
Acro for Ace, b ——0 (that is, amplifying and absorbing media have
the same line-center frequency). In this plot the amplifying
medium excitation parameter is 2=3.02I„. In all figures,
operating frequency, cavity detuning, cavity linewidth, and line
center offset h~, q are expressed in units of the amplifying medi-
um polarization decay rate y&, ——100&10 sec '. Similarly,
squared electric field and the amplifying medium excitation pa-
rameter A are always presented in units of I, =2.36 & 10
g cm ' sec . The primary solutions in every figure are drawn
as solid curves, and the secondary solutions as dashed curves.
These curves and those of Fig. 3 exemplify the state relations
discussed in Secs. III and IV of the text. If the value of the ex-
citation parameter is not too high, the plot of the primary solu-
tion for squared electric field shows a pair of maxima and, if
continuous, a minimum at hcoo ——0. The plot of the correspond-
ing secondary solution has a maximum at the same location if it
is greater than zero there. The arrows indicate the possible
operating frequencies and the corresponding values of squared
electric field obtained by the method of Casperson and Yariv for
the mode line illustrated in Fig. 3 ~
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media are respectively represented by the parameters 3
and B defined in Eqs. (3.1). We take B=1.779)&10
gcm 'sec =(0.754)I„=(3.02)I,b throughout the calcu-
lations presented here. This value of B corresponds to
T=0.01, L=15.0 cm, V=1.0 cm, N~ ——1.0X10, and
~p=~ =5 37 X 10 sec '. Since
= 10(X /%~)B for the values we are using. Having fixed
B, for the sake of brevity we will sometimes use the un-
qualified terms excitation and excitation parameter to
refer to the value of 3 alone. Because of the uniform-
field treatment, our results do not depend on the individu-
al values of T, L, N„and Nb, but rather on the lumped
parameters 3 and B.

For T=0.01 and M=30.0 cm, the cavity linewidth
K= 10.0X 10 sec '. In the uniform-field treatment, ~ is
also considered as an independent lumped parameter; thus
we will later introduce cavity linewidth values ranging
from 6.5X 10 to 40.0X10 sec '. These are of the same
order as the decay rates for the absorbing medium, but the

OPERATING FREQUENCY (~)
FIG. 3. The phase-shift —transmissivity ratio vs operating

frequency Acoo for bee b ——0 and the same 3 value as in Fig. 2
(3=3.02I„). The primary solution is represented by a solid
curve, and the secondary solution by a dashed curve. The pri-
mary solution shows a minimum and a maximum on its region
of physical existence when it is continuous, while the secondary
solution is monotonic on the region where it has physical ex-
istence. The solid straight line is an example of a mode line
used in the method of Casperson and Yariv. It corresponds to a
detuning of zero and a cavity linewidth of ~=0.40@&,,'thus its
horizontal intercept is zero and its slope is ~ =2.5 in the units
employed for the plot. Its intersections with the curves gave the
possible steady-state operating frequencies for the parameter
values chosen. These operating frequency values were used in
conjunction with the curves of Fig. 2 to obtain the correspond-
ing values of squared electric field; they are indicated by the ar-
rows in Fig. 2. Shifting the intercept of the mode line gave the
results for variable detuning shown in Figs. 4{a) and 4(b) for this
value of cavity linewidth. Leaving the mode line fixed and vary-
ing the amplifier excitation gave the results for zero detuning
presented in Figs. 5(a) and 5(b). The slope of the mode line was
changed to obtain the results for other linewidth values shown
in Figs. 4(c)—4(f), and various combinations of linewidth and
detuning with variable excitation gave the remaining results
shown in Fig. 5 ~ For further explanation of the mode line
method, see Sec. III of the text.

lower values are an order of magnitude smaller than the
decay rates for the amplifying medium.

In order to express our results in a more convenient and
general form, we adopt the following conventions for the
graphical presentation of numerical results. All optical
frequencies are given as angular frequencies relative to the
amplifying atom line center co„using the relative frequen-
cies defined in Eqs. (2.4). Thus operating frequency is ex-
pressed as hoop, the absorbing medium line center as Ace, b,
and the cavity tuning as the detuning Ace„. These and
the cavity linewidth ~ will be expressed in units of yz, .
Similarly, we shall express values of

~

E
~

+ in units of
the amplifier saturation intensity I, . We note that for a
plane wave,

~

E
~

= 1.0 &( 10 g cm ' sec corresponds
to an intensity of (c/8')

~

E
~

=1.19mWcm, so that
here

~

E
~

=I„corresponds to an intensity of 2.81
m W cm . As mentioned in the comments following
Eqs. (3.2)—(3.4), for a cavity tuned to the amplifying
medium line center, 3 =I„ is the lasing threshold in the
absence of an absorbing medium. Therefore we shall also
express the amplifier excitation 3 in units of I„. The
values of y&„ I„,I,b, and B are the same throughout the
calculations presented in this paper.

Examples of the state relations discussed in Sec. III are
plotted in Figs. 2 and 3. Figure 2 shows a plot of squared
electric field versus operating frequency for a specific
value of the amplifying medium excitation parameter A.
For this value of 2, both the primary and the secondary
solutions are physically meaningful and are continuous
over their range of physical existence. For all values of 3,
the primary solution (solid curve) has the larger intensity
at a given frequency, and spans a wider range of operating
frequency, while the lower-intensity secondary solution
(dashed curve) has physical existence over a much nar-
rower range of operating frequencies near the absorber
line center. The secondary solution also exists over a nar-
rower range of values of the excitation parameter 3; if 3
is raised or lowered sufficiently, the secondary solution
disappears while the primary one may still exist [cf. Figs.
5(a) and 5(b)]. For the case in which the media are in res-
onance, such plots of squared electric field are symmetric
about the common line-center frequency of the two
media.

For values of 2 which are sufficiently below that used
in Fig. 2, there is an intermediate region of operating fre-
quency for which the laser is below threshold. In such a
case, both the primary and secondary solutions are discon-
tinuous functions of operating frequency. If A is low
enough, the secondary solution is completely unphysical.
For still lower values of 3, the primary solution also be-
comes unphysical; the laser is below threshold for all
operating frequencies. For intermediate values of A, as
exemplified in Fig. 2, both solutions have continuous
domains of existence. The maximum value of the secon-
dary solution now decreases with increasing A while the
local minimum of the primary solution increases in value.
Finally, at sufficiently high values of 2, the secondary
solution fades away completely, and is again unphysical
for all values of operating frequency. These general
features are also seen in the plots of

~

E "~ versus 3
presented in Fig. 5.
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FIG. 4. Squared electric field (a), (c), and (e) and operating frequency hcoo (b), (d), and (f) vs the detuning A~„, for Ace, b
——0. Here

A =3.02I, corresponding to Figs. 2 and 3. Cavity linewidths are (a) and (b), ~=0.40@&,, (c) and (d), ~=0.125y&, , and (e) and (f),
~=0.065y&, . These plots were obtained from the data of Figs. 2 and 3 by means of the mode-line-intersection procedure described in
Sec. III of the text and exemplified in Figs. 2 and 3. Branches given by the primary and secondary solutions are shown as solid and
dashed curves, respectively. Breaks in the curves are numerical artifacts occurring between the contiguous branches of multivalued
solutions.
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The primary and secondary solutions for the field each
have a corresponding solution for the phase-
shift —transmissivity ratio as a function of operating fre-
quency. These are plotted in Fig. 3. It must be em-
phasized that this phase shift applies to the steady-state
laser radiation itself, at the intensity level found on Fig. 2
at each particular operating frequency, for the primary
and secondary solutions. These curves would not be ob-
served for a weak beam injected externally and passing
once through the medium cell. In other words, saturation
of the active media by the intense circulating field is prop-
erly taken into account. Figure 3 shows primary and
secondary solutions for the phase-shift —transmissivity ra-
tio corresponding to the solutions of Fig. 2. When the
media have a common resonance frequency, these curves

have centers of inversion at that frequency.
The usefulness of the mode-line analysis described in

Sec. III is nicely shown by the typical case illustrated in
Figs. 2 and 3. The value of the excitation A for these
curves is such that primary and secondary solutions each
exist over a continuous domain of operating frequency
containing the absorption maximum. Then the branches
of the phase-shift function both exist in this region
without breaks. In such a case, we find that as the slope
of the mode line increases from values near zero, the max-
imum numbers of intersections with the branches of the
phase-shift —transmissivity ratio change according to the
following pattern: for low values of slope, there are up to
three intersections with the primary branch and one with
the secondary; for a narrow intermediate range, at most
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FIG. 5. Squared electric field (a) and (c) and operating frequency Acro (b) and (d) vs amplifying medium excitation parameter for
Ace,~

——0. The cavity linewidths and detunings are (a) and (b), v =0.40y&,' Ace„=0.0y&, is shown by dot ted curves, and
Ace„=0.030y&, is shown by solid curves for primary solutions and dashed curves for secondary solutions; and (c) and (d),
K=0.065y&„' Ace„=O.Oy~, is shown by dotted curves, and Ace„=2.5 &( 10 y& is shown by solid curves for primary solutions and
dashed curves for secondary solutions. Sections through the plots of (a) and (b) at 2=3.02I„correspond to sections through the
plots of Figs. 4(a) and 4(b) at cavity-detuning values of Ace„=O.Oyq, and hen„=0.030y~, . Sections through the plots of (c) and (d) at
3 =3.02I„correspond to sections through the plots of Figs. 4(e) and 4(f) at cavity detuning values of Ace„=O.Oy&, and
Ace„=2.5X 10 yz, . The curves in the case of the tuned cavity show degeneracies with respect to squared electric field and operat-
ing frequency which are broken by detuning. See the text for a discussion of this.
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one intersection with each branch; and for higher values
of slope, at most one with the primary branch and as
many as three with the secondary. A different pattern re-
sults if there is only a discontinuous primary branch (very
low A), or if both the primary and secondary branches are
physical but discontinuous (low 3), or if there is only a
continuous primary branch (high 2).

Each operating frequency found in this way defines a
value for the electric field via the plot in Fig. 2. Intersec-
tions on the primary or secondary branch in Fig. 3 give
solutions on the corresponding branch in Fig. 2. It is now
possible to plot these solutions for squared electric field
and operating frequency against cavity tuning by numeri-
cally solving the problem for a range of tuning values.
Such solutions are shown in Figs. 4(a)—4(f) for three
values of the cavity linewidth and the same value of exci-
tation used in Figs. 2 and 3. These results illustrate the
pattern noted above, and are discussed in Sec. V. One can
also fix the cavity tuning and carry out the computation
for a range of amplifier excitation. Solutions for squared
electric field and operating frequency versus the excitation
parameter A are presented in Figs. 5(a)—5(d) for various
combinations of cavity tuning and linewidth. These are
also discussed below.

V. VARIABLE TUNING AND EXCITATION
FOR MEDIA WITH THE SAME LINE-CENTER

FREQUENCY

Figures 4(a)—4(f) show steady-state solutions for the
squared electric field and the corresponding operating fre-
quency as functions of cavity tuning and excitation of the
amplifying medium, for the case in which the amplifying
and absorbing media have a common line-center frequen-
cy. In these plots, the cavity tuning is expressed as detun-
ing from the amplifying medium line center, as defined in
Eq. (2.4c), and is given in units of y~, . The effect of cavi-
ty linewidth on these plots is striking. In particular, they
show the pattern of multiple steady-state solutions
described above, as the slope of the mode line increases
with decreasing cavity linewidth. The linewidth values
are 0.40y&„0.125@~„and 0.065@~, (that is, 40.0X10,
12.5 X 10, and 6.5 X 10 sec '), in Figs. 4(a) and (4b), 4(c)
and 4(d), and 4(e) and 4(f), respectively. These solutions
appear in a sudden, bifurcationlike fashion, as the cavity
detuning is scanned. These features suggest the possible
appearance of bistability, hysteresis, instabilities, jumps in
intensity and frequency, multiple frequencies, and pulsing
in the tuning behavior of the laser. Such speculations are
complicated by the nonlinearity of the system, which
prevents a linear combination of solutions from being it-
self a solution. We are conducting a stability analysis of
these solutions in order to clarify such questions, and will
report the results elsewhere. The plots for squared electric
field are symmetric about zero detuning (cavity tuned to
amplifying atom line center), and the plots of operating
frequency have inversion centers at zero detuning. In all
these plots, the amplifier excitation 2 =3.02I„, corre-
sponding to Figs. 2 and 3. Small breaks in the curves are
numerical artifacts occurring at the ends of single-valued
branches.

Figures 5(a)—5(d) show plots of the steady-state squared
electric field and operating frequency versus excitation.
Figures 5(a) and 5(b) illustrate the case when the cavity
linewidth is 0.40) ~„ for cavity detunings of 0.0 y~, (dot-
ted line) and 0.030 yq, (3.0X10 sec ') (solid and dashed
lines, indicating primary and secondary branches, respec-
tively). Sections through these curves at an excitation pa-
rameter value of 3.02I„correspond to sections through
the plots of Figs. 4(a) and 4(b) at detuning values of
0.0@~, and 0.030y~, . Again one has multiple solutions,
with solutions appearing, disappearing, or merging as one
scans the value of the excitation parameter. Similar ob-
servations apply to Figs. 5(c) and 5(d), which show the
case for a cavity linewidth of 0.065yz„and cavity detun-
ing of 0.0 y~, (dotted curves) and 2.5 X 10 y~,
(0.25 X 10 sec ') (solid and dashed curves). Sections of
these plots at an excitation value of 3.02I, are likewise
comparable to sections of Figs. 4(e) and 4(f) for corre-
sponding detuning values. As above, the cavity linewidth
has a notable effect on the shape of these plots. However,
the effect of detuning in this case is particularly remark-
able.

In the case of variable excitation with zero detuning,
there is a pair of solutions which are degenerate with
respect to squared electric field but not with respect to
operating frequency. These are the first solutions to ap-
pear as the excitation parameter 2 is increased from zero,
and they appear simultaneously. At a higher value of 3,
a second pair appears. These are degenerate in operating
frequency but not in squared electric field. (In fact, this
operating frequency is the line-center frequency of the
atoms, equal to the cavity tuning. ) For cavity linewidths
above or below an intermediate value, both pairs of
steady-state solutions have mathematical existence over a
range of excitation parameter values. As the excitation
increases, the initial pair converges in frequency to the
frequency of the atomic line centers and the cavity tuning,
and disappears at a point on the plot where all branches of
solutions meet. Finally, the low-field member of the
second pair fades out and only the high-field solution per-
sists at sufficiently high values of excitation. Solutions of
just this type have already been described by other authors
in the case of zero detuning. ~"

The effect of detuning the cavity away from the line-
center frequency of the media is to split both types of de-
generacy. Thus, as the excitation parameter A increases
from zero, two branches of solutions having different in-
tensities appear at slightly different values of the excita-
tion parameter. These branches never meet at a common
point, but instead separate further as the excitation in-
creases. As the excitation becomes high enough, the
high-intensity branch persists while the low-intensity
branch disappears, as in the tuned case. For sufficiently
high cavity linewidth, the low-intensity branch is mul-
tivalued, both in intensity and in operating frequency,
while for sufficiently low cavity linewidth this is true of
the high-intensity branch instead. For low cavity
linewidth, the plot of operating frequency versus excita-
tion parameter shows that a jump in intensity in the de-
tuned system is always accompanied by a jump in fre-
quency, this is not necessarily the case in the correspond-
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ing tuned system. (See Fig. 5.)
Because of the lifting of degeneracy and the splitting of

the plot into nonintersecting branches, one may expect de-
tuning to affect strongly the stability properties of the
steady-state solutions. For example, over a range of exci-
tation giving sufficiently low intensity, the tuned case
has been shown to admit stable low-amplitude periodic
solutions at a frequency which is essentially
the beat frequency of two degenerate steady-state
solutions. """' ' ' ' ' ' Although the coexistence of
two steady-state solutions is not possible in a nonlinear
system, this result indicates the existence of a solution
which approximates such a situation. We suggest that
such solutions might not exist, or might not be stable, in
the nondegenerate case. Since the degeneracy is broken by
any small but finite detuning, one expects some such ef-
fects always to be present, due to the practical difficulty
of achieving perfect tuning. Thus a study of the proper-
ties of the detuned system may be necessary to an under-
standing of the actual behavior of an experimental
"tuned" system. Conversely, one might seek to use these
effects to monitor detuning, or to limit it in a hybrid sys-
tem containing an external feedback loop.

VI. STEADY-STATE SOLUTIONS FOR MEDIA
HAVING DIFFERENT LINE-CENTER

FREQUENCIES
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Selected results for steady-state solutions in which the
amplifying and absorbing media have different line-center
frequencies are shown in Figs. 6—8. These have been
plotted for an absorption line center 100X 10 sec
higher in angular frequency than the amplification line
center at 3.51 pm (that is, hen, b =yz, ). Frequencies are
again given as angular frequencies relative to the amplify-
ing medium line center, in units of yz, . The values of 8,
I„, and the other fixed parameters are also the same as
before.

Figures 6(a) and 6(b) show state-relation plots of
squared electric field and the phase-shift —transmissivity
ratio versus operating frequency for a particular value of
the excitation parameter A. These are essentially asym-
metric versions of the plots of Figs. 2 and 3. The corn-
ments made in Sec. IV on the behavior of the primary and
secondary solutions as 2 is varied apply to the non-

resonant case as well.
Plots of the squared electric field and operating fre-

quency versus cavity detuning are given in Figs. 7(a)—7(f)
for the same cavity linewidths used for Figs. 4(a)—4(f),
respectively. The value of the amplifier excitation param-
eter for these plots is 4.90I„. These curves are topologi-
cally like those found when the media had the same line-
center frequency, but are now asymmetric. Because of
this asymmetry, the low-intensity (secondary) branch for
the cavity linewidth value of 0.125yz, becomes mul-
tivalued [Figs. 7(c) and 7(d); compare Figs. 4(c) and 4(d)].
On the other hand, the corresponding branch for a cavity
linewidth of 0.065@&, is reduced from being triple valued
in Figs. 4(e) and 4(fl to being double valued in Figs. 7(e)
and 7(f).

The most interesting new result is the excitation param-

-2.0 -1.0 0.0 1.0
OPERATING FREQUENCY (AM 0 )

2.0

FIG. 6. Squared electric field vs operating frequency Atop (a)
and the phase-shift —transmissivity ratio vs operating frequency
(b) for h~, q

——y&, (that is, the absorber line-center frequency ~b
is higher than that of the amplifier, co„by y&, ——100&10
sec '}. The excitation parameter value for these plots is

A =4.90I„. These plots are analogous to those of Figs. 2 and 3,
where Ace, b

——0. In the present case, the overall asymmetry in

the solution for squared electric field causes the dip in the pri-
mary solution and the peak of the secondary solution to be
asymmetric; furthermore, the extrema occur at different values

of Atop neither of which equals yj, .

eter scan shown in Fig. 8. Here both squared electric field
and operating frequency are plotted against the excitation
2 for a cavity detuning of 1.57yq, (1.57)&10 sec ') and
a cavity linewidth of 0.40yz, . Figure 8 is to be compared
with Figs. S(a) and 5(b), discussed in Sec. V. The plot of
operating frequency versus excitation in Fig. 8(b) is quali-
tatively similar to that in Fig 5(b) for a .cavity detuning of
2.5~10 yq . These show the presence of two separate
branches of solutions, one of which is multivalued. Thus
the crossover point on the plot of squared electric field in
Fig. 8(a) does not represent an intersection of the branches
in the fu11 solution space. In the plot of squared electric
field, one continuous branch of solutions rises to a max-
imum, then decreases to zero in a reversed s-shaped curve.
This branch is mutlivalued in frequency also. The other
rises monotonically from zero, starting at a higher excita-
tion parameter value than the first. The crossover point



35 SEMICLASSICAL ANALYSIS OF A DETUNED RING LASER. . . 2947

2.0 1.4

1.5

1.0

0.5

0.0

1.5 1.6 1.7
CAVITY DETUNING (~AC )

1.8

C3
Z',

Q

(3
I—

CC

0

1.2

1.0

0.8

1.5 1.6 1.7
CAVITY DETUNING (4m„)

1.8

2.5 1.4

2.0

1.5

1.0-

0.5—

0.0

1.0 1.2 1.4
CAVITY DETUNING (&m„c )

C3
Z'.

C3

U

CC

0

1.2

1.0

0.8

1.0 1.2 1.4
CAVITY DETUNING (~~„c)

1.6

1.3

2.0

1.5

1.0

0.5

0.0

1.0 1. 1 1.2 1.3
CAVITY DETUNING (ho)„)

1.4

O
LJJ

Q
LLl
CL

U
I—

CC
LU
CL0

1.1

1.0

0.9

0.8

1.1 1.2 1.3
CAVITY DETUNING (~„c )
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occurs at a higher excitation value than the maximum of
the first branch, at a junction of two single-value seg-
ments of the first branch. If one were to increase the exci-
tation from zero, the system would be expected to follow
the first branch, then hop to the second; but as excitation
is decreased from some high value, it is not clear whether
or where the system would hop from the second branch
back to the first. It is even conceivable that it could fol-
low the second branch all the way to zero intensity, and
then hop up to the first. Any such jumps in intensity
would also be accompanied by jumps in frequency. The

2.5

2.0

1.5

1.0

stability analysis will help resolve these questions.
A comparison of Fig. 8 with Figs. 5(a) and 5(b) suggests

that one can roughly picture the effects of cavity detuning
and the separation of amplifier and absorber line-center
frequencies on these plots as a relative horizontal sliding
of the monotonic and nonmonotonic branches of solu-
tions. The figures indicate that these effects may work in
opposite directions. One concludes that some combina-
tion of line-center separation and nonzero detuning will
cause the points where these branches bifurcate from zero
intensity to coincide, as they do in the fully tuned case.
Unlike the fully tuned case, there would not be whole re-
gions of degeneracy.

This case is the first presented here in which the solu-
tion of maximum intensity exists first on one continuous
branch of solutions, and then on another, as a control pa-
rameter varies. However, this may not be particularly sig-
nificant, in that all multivalued branches of solutions may
be considered to be composed of shorter single-valued
branches. Then hysteresis in any case is expected to in-
volve a jump from one single-valued branch to another,
and the fact that some branches link end to end in solu-
tion space may not have any bearing on the dynamics of
the system. Again, a stability analysis will be helpful.

VII. SUMMARY AND CONCLUSION
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FIG. 8. Squared electric field (a) and operating frequency
Acro (b} vs amplifying medium excitation parameter for
Ace, b

——y~ . The cavity linewidth ~=0.40@&, and the cavity de-

tuning A~„=1.57@&,. Solid curves are primary solutions;
dashed curves are secondary solutions. Sections through the

plots at 3=4.90I„correspond to sections through the plots of
Figs. 7(a) and 7(b) at a cavity-detuning value of b,co„=1.57y&, .
The plots shown here may be compared to the plots of Figs. 5(a)
and 5(b), for which Ace, b

——0. Here the monotonic branch of
solutions has shifted to higher excitation parameter values, rela-

tive to the multivalued branch. This may give rise to more com-

plicated bistability and hysteresis behavior than occurs in the
case of Ace, b ——0. See the text for further discussion.

We have presented a method of obtaining steady-state
solutions incorporating depndences on detuning, excita-
tion, and atomic line-center frequencies for a semiclassical
model of the ring laser with a saturable absorber. We be-
lieve this is the first theoretical work to study these prop-
erties of the system in such detail. The results obtained
show how cavity detuning, laser excitation, cavity
linewidth, and the line-center frequencies of the media in-
teract to determine the possible steady-state solutions.
Results of this type were found for the limiting case of
uniform electric field amplitude [the uniform-field ap-
proximation, often called the mean-field approximation,
Ref. 7(a)]. However, the solutions found also allow nu-

merical calculations of the longitudinal position depen-
dence of the steady-state electric field amplitude, as well
as that of the other state variables. The formulation of
such a calculation for this system is also a new result. A
summary of the model, the methods, and the main results
and predictions follows.

We began with a model which assumed that the ampli-
fying and absorbing media were mixed in the same cell,
and that each medium consisted of homogeneously
broadened two-level atoms. The system was modeled
mathematically by the semiclassical Maxwell-bloch equa-
tions, assuming single-frequency solutions in the slowly
varying amplitude approximation. Light was assumed to
propagate unidirectionally around the cavity. Polariza-
tion of the light and variations of the electric field and
other variables transversely to the optical axis were ig-
nored.

The spatially dependent steady-state solutions of the
Maxwell-Bloch equations were obtained with the help of a
transformation which converts the equations and their
boundary condition into a set of purely real equations. In
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order to simplify these results and compare them with the
findings of others, the uniform-field approximation was
applied to them. The results of this procedure gave "state
space" plots of squared electric field amplitude versus
operating frequency and of the phase-shift —transmissivity
ratio versus operating frequency. Over various ranges of
operating frequency, zero, one, or two steady-state solu-
tions were found. How many solutions there are and over
what ranges of operating frequency they exist was found
to depend upon the degree of excitation of each medium.

These results were combined with the boundary condi-
tion to give squared electric field amplitude and operating
frequency versus various control parameters —in particu-
lar, cavity detuning and laser excitation. This step was
considered from the viewpoint of a graphical method
developed by Casperson and Yariv, which provided physi-
cal insight into the mathematical procedures and suggest-
ed the method of numerical solution employed.

In general each of the two possible state-space solutions
gave rise to as many as three roots when the steady states
were found as functions of cavity detuning or laser excita-
tion. However, it was observed that there were no more
than four physically significant roots in total for any
combination of parameter values. The number and
behavior of the roots given by each state-space solution
was found to depend strongly on the cavity linewidth.
For example, with fixed laser excitation and variable de-

tuning, each of the two state-space solutions gave a
branch of solutions on a detuning plot. The cavity
linewidth and the difference between the line-center fre-
quencies of the absorbing and amplifying media deter-
mined which branch, if either, was multivalued.

Plots of squared electric field and of operating frequen-

cy versus laser excitation for the fully tuned case were
found to agree with results previously obtained by others.
In particular, there were two branches of steady-state
solutions giving different operating frequencies but the
same values for squared electric field at a given excitation,
and two other branches having different values for
squared electric field but the same values for operating
frequency. All four branches met at a common point,
whose position varied with the cavity linewidth. This
dependence of the plots on cavity linewidth also agreed
with the previous findings. The presence of cavity detun-

ing or of differing line-center frequencies for the media
broke the degeneracies and eliminated the common point

of intersection. Instead, there were two continuous
branches of solutions, one of which bifurcated from the
zero-field solution at a lower value of laser excitation than
the other. This suggested that increasing laser excitation
from zero in the presence of detuning ~ould lead to the
appearance of a steady-state solution rather than the
small-amplitude pulsing found in the fully tuned case.
Since the breaking of degeneracy occurs for any small de-

tuning, it was concluded that an actual laser would behave
in the manner described here, because mathematically ex-
act tuning cannot be achieved in practice. &hen the two
media had a common line-center frequency, the branch of
solutions bifurcating from zero at lower excitation always
had a greater amplitude than the other branch; the latter
eventually returned to zero field. If the line-center fre-
quencies of the two media were sufficiently different, the
branch which eventually returned to zero field bifurcated
from zero at a lower value of excitation than the other
branch. In such a case, first one branch and then the oth-
er has the higher value of electric field amplitude. This
reversal raises interesting questions about the stability of
the two branches and the occurrence of hysteresis and bi-
stability in such cases.

Questions such as these can be answered, at least in

part, with the help of a linearized stability analysis of the
steady-state solutions. Such an analysis is presently
underway and will be reported separately.
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