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A new formalism is introduced for discussing propagation of electromagnetic waves in space- and
time-varying media. The approach taken here is to supplement the velocity-independent solution by
a correction factor. This factor involves a four-dimensional line integral and is therefore a WKB-
type solution. The formalism is relativistically exact to the first order in v/c. Special cases are dis-

cussed, demonstrating how time-harmonic velocity fields modulate the propagating electromagnetic
fields. Scattering problems involving time-varying surfaces have been considered in the past. The
scatterers were situated in free space (vacuum), or if material media were involved, the mechanical
interaction of the moving surfaces with the medium was usually ignored. The new theory presented
here facilitates the analysis of electromagnetic scattering problems in the presence of combined sur-
face and medium motion. Consequently, mass continuity at the moving surfaces can be preserved.
This makes the modeling of such problems much more realistic. Simplified canonical problems in-

volving interaction of electromagnetic and mechanical waves are discussed to highlight the effects
resulting from the new boundary considerations. Surprisingly, for bounded surfaces the time-
varying medium effects vanish in the far field. This means that previous results which simply ig-
nored the medium motion are still valid as good approximations.

INTRODUCTION AND MOTIVATION

Electrodynamics in moving media and scattering by
moving surfaces have captured the imagination of scien-
tists for many decades. Problems of this kind contribute
to our understanding of fundamental theories, e.g., see
Pauli' and other early references cited by Censor. High-
precision sophisticated systems, e.g., the Global Position-
ing System, require relativistic electrodynamics considera-
tions, which bring such problems into the domain of
modern engineering. The general history can be traced
from the historical remarks made by Sommerfeld, who
cites the early papers by Hertz, Minkowski, and Ein-
stein, and Pauli, ' to a comprehensive review of the state
of the art provided by Van Bladel. See also Toman for
history of the Doppler effect.

Two distinct classes of problems are evident in the
literature: (a) scattering by moving surfaces and (b) prop-
agation in moving media. Both problems are based on
Einstein's theory of special relativity and Minkowski's
subsequent results for electrodynamics in moving media.
Even for first-order U/c velocity effects one must refer to
special relativistic theory in order to be able to carefully
enumerate the heuristic aspects of his solution method.
Thus, for example, it is not clear whether the use of the
Lorentz transformation for constant velocities may be ex-
tended to space- and time-varying velocity fields v(r, t).
The fact that practically all studies use this heuristic as-
sumption, often without even declaring the heuristic na-
ture of this approach, only serves to show how far we are
from a satisfactory general theory. The effect of a space-
and time-dependent velocity field on the Lorentz transfor-
mation and the ensuing transformations for the elec-

tromagnetic fields, and the associated boundary and tran-
sition conditions, is not known. The best argument for
adopting the above assumption, which is also used below,
is to say that the velocity field changes slowly, such that
Av/v is small over distances comparable to wavelength
and duration comparable to the period of the waves under
consideration. This is a ray (as opposed to wave) ap-
proach, and is consistent with the WKB-type theory in-
troduced below. Another salient feature of the existing
literature is the fact that many studies are devoted to
analyzing examples. This again demonstrates our limited
knowledge. Here too the formalism is used to solve sim-
ple canonical problems and thus enhance our understand-
ing of the general subject.

It is interesting to note that the above-mentioned two
classes of problems evolved simultaneously without much
interaction. Moving surfaces were considered in free
space (vacuum), and when a material medium was con-
sidered, its interaction with the moving surfaces was ig-
nored. For example, Censor ' discusses moving media
and surfaces at rest, ignoring the interaction. This, of
course, violates mass continuity at the surface, which is a
serious drawback. A later technique used by Censor"'
to treat time-independent nonuniform velocities can be
traced back to Tai, ' and Collier and Tai. ' Essentially an
exponential correction factor amounting to a WKB- or
ray-type approximation was introduced, in order to obtain
a solution of the relevant wave equation correct to the
first order in U/c. The technique facilitated the analysis
of scattering problems involving surfaces at rest and mov-
ing media, preserving mass continuity at the surface of
the scatterer. "' Presently this idea is extended to four-
dimensional line integrals which enable us to discuss spa-

35 2869 1987 The American Physical Society



2870 DAN CENSOR 35

tially and temporally dependent velocity fields.
By combining the motion of the surface and the sur-

rounding medium, problems involving moving surfaces
can be discussed, preserving mass continuity at the rnov-

ing surface. This is a novel feature: Now for the first
time we are able to analyze simple problems with and
without the effect of the moving surface on the surround-
ing medium. Subject to all the restrictions enumerated
below, the analysis of the present class of problems indi-
cates that for bounded scatterers the additional effects
produced by the surface setting in motion the surrounding
medium decrease with distance. It means that in the far
field these effects can be neglected. One should, however,
be careful, because these conclusions are based on very
restrictive assumptions. A similar situation occurred with
respect to acoustical waves. Censor' ' analyzed scatter-
ing from time-varying surfaces, ignoring the interaction
of the surface with the surrounding medium. Rogers'
and later Piquette and Van Buren' argued that the
analysis is invalid and that if the motion of the surround-
ing medium is taken into account, the effect will altogeth-
er disappear —this is an argument first raised by
Petzval —and that a nonlinear mechanism is necessary in
order to adequately analyze this class of problems. R--
cently it has been shown, ' using techniques similar to
those used presently, that the same conclusions regarding
the far field apply to acoustical waves as well.

PROPAGATION IN SPACE AND TIME-DEPENDENT
MOVING MEDIA

The fields measured in the "laboratory" system of
reference are governed by the Maxwell equations, ' which
for sourceless domains (i.e., zero current density j=O,
zero charge density p=0) have the form

VxE= —B,B,
VXH=d, D,
V D=O,
V-B=O,

where 0, =—0/Bt. In a "comoving" system of reference, in
which the medium is at rest, the simple constitutive rela-
tions

D'=eE',
8'=pH'

are assumed. The primed fields D'(r', t'), etc. , are func-
tions of the comoving system coordinates r', t', which are
related to the laboratory system by the Lorentz transfor-
mation. The laboratory fields D(r, t), etc. , are related to
the comoving fields by the appropriate field-
transformation formulas prescribed by the invariance of
Maxwell's equations [i.e. , prescribed by the postulate that
in the comoving system (1) with primed coordinates and
fields, etc. , is valid]. Substituting the field-transformation
formulas into (2) yields the Minkowski' ' constitutive re-
lations, which to the first order in U/c have the form

VxE+/ a, H —a, (AxE)=0,
V XH —eB,E—B,(A XH) =0 .

(4)

The solution of (4) is the subject of this study.
Extending a previous method, as explained above, we

make the ansatz

E=E&&(r)e

H =H()(r)e
(5)

—l Ci) pfwhere e'~ is a correction factor and Ez(r)e—i coot
Ho(r)e is the solution for the velocity-independent
case A=O. Substituting (5) in (4) and keeping only first-
order effects in v/c (higher-order effects can be retained
for convenience, however, the approximation is valid only
to within the first power of v /c), we obtain

V & Ep —1 cop pHp= 0

V ~ Hp+ r copeEp =0

V.Ep ——0,
V.Hp ——0,

and

i V/3 x E +i p 8,/3H + i co A x E —8, A x E =0,
(7)

i V/3XH —ied, /3E +ice A XH —B,AXH =0 .

Previously' time-independent velocities have been con-
sidered, for which (7) becomes

( V/3 + ct)pA ) x Ep =0

(V/3+copA) x Hp ——0,
whose solution is V/3= —coqA, hence /3= —co f A.dr is a
spatial, three-dimensional line integral. This technique
closely resembles the WKB method, or what the physi-
cist usually calls a ray approximation. The generalization
to space-time rays involves four-dimensional line in-
tegrals. ' Correspondingly, /3 is represented as

r, t

/3(r, t) = f [K(r,t).dr —W(r, t)dt],

D=eE+AXH,
B=pH —A&(E,

A =v(pe —pvep),

where v is the velocity as observed in the laboratory sys-
tem of reference and pv, ev are the free-space (vacuum)
values of the constitutive parameters. Note that special
relativity assumes inertial systems, i.e., constant v. In the
following a space- and time-varying velocity field v(r, t)
will be assumed, and the above equations will be heuristi-
cally assumed to hold. The validity of this conjecture has
not been tested, as far as this author is aware. If spatial
and temporal changes in v(r, t) are small, compared to
wavelength and period, respectively, of the fields at hand,
then the validity of (l)—(3) for space-time velocities seems
to be plausible. The new equations governing the fields
are now
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a, vp=va, p

which in turn prescribes

V~K=0,
B,K+VW=O .

(10)

Note that VXK is already included in the second equa-
tion (11) provided we are allowed to interchange
V X &,K=0,V X K. Subject to (9)—(11) we now have (7)
in the form

F )& Ep —p WHp= 0

F~Hp+e WEp ——0,
F=K+(coo+iB, )A .

(12)

From (12) it follows that EO, HO, F are mutually perpen-
dicular. While (1) and (2) are quite general, the ansatz (5)
leads to (12) and perpendicular fields, which is a severe
constraint. In the next section an example will be given
for which this constraint can be waived. The pertinent
velocity field is taken as an acoustical wave, and it is
shown that to the first order in U/c it amounts to taking
F=O, W =0 in (12), hence the orientation of F relative to
Ep Hp is irrelevant. This is in fact a quasistatic approxi-
mation. In general the dependence on the orientation of
the fields does not vanish. This means that Ep, Hp, F must
be mutually perpendicular. If the total Ep.Hp is nonvan-
ishing, the fields must be recast as a sum of partial fields
satisfying the perpendicularity requirements. For exam-
ple, the fields may be recast in terms of an integral of
plane waves

Eo(r)= f e(r)e "deal,

Ho(r)= f h(r)e "dQ,
(13)

where r denotes a unit vector depending on directions
(e.g. , 8 and tt, the polar and azimuthal angles, respective-
ly, in a spherical coordinate system), dfl=sinOdOdg is
an element of the surface on the unit sphere, and e h=0.
In this case, for each direction r there is an associated
F(r) vector parallel to k(r).

As it stands, (12) is a homogeneous system of equations
whose determinant must vanish for nonvanishing Ep, Hp
(or ep hp for plane waves), thus defining a relation

W= W(F) .

a four-dimensional line integral extending from the fixed
limit ro, to to a variable r, t; here r, t are integration (dum-
my) variables. The behavior of p at a point r, t must be
independent of how the integration is performed, i.e., the
uniqueness of the physical fields E,H prescribes that the
integral (9) depends on the limits only. In turn, this
prescribes that the expression in square brackets in (9) be
an exact differential. These conditions are satisfied sub-
ject to P(r, t) being indifferent to order to differentation,
1.e.)

lar equations for the four scalar components of K, W. We
have therefore shown that in principle the system is solv-
able. Examples will be given below. Taking the divergent
of (12) yields

VLF=0
and since V X K=0 from (11), it follows that

(15)

Vx A=0. (16)

Hence, the present method works only for irrotational
flows. For velocities v not satisfying (16), a different
method must be employed.

FURTHER CONSIDERATIONS AND ANALYSIS
OF SIMPLE EXAMPLES

i ko. r —i coot +i PH= Hpe
(17)

which for p=O reduces to the simple plane harmonic
wave, with Ep Hp constants. Let the velocity of the medi-
um be associated with an acoustical wave, such that

where Ap ——const and the wave propagates with a velocity
u =II/g, where the phase velocity u and the displace-
ment velocity v (3) are of similar magnitude. The fre-
quency 0 is considerably smaller compared to cop, thus
satisfying the requirements of ray theory. From (12) and
(17), F is parallel to ko, hence

Kg ———( coo+ 0)A ~, (19)

where l denotes components perpendicular to kp. The
component K~~ parallel to ko is determined from (12) and
(14), in the following way. Apply FX to the first line
(12) and substitute in the second one. Noting that
F Ep =F Hp =0, this yields

F'=Fi~i+Fi ——( W/C)',

where C = 1/pe, and since Fj ——0, we have

(20)

ii+( o+A)Aii ——( W/C)ko .

Adding (19) and (21) yields a vector equation

(21)

K+ (~o+f1 )A = ( W/C)ko . (22)

For (22) to hold for all r, t, it follows that K, W have as a
factor the same exponential as in (18). From (11) and (18)

V W =i OK=i QW,
hence K, Q are parallel vectors and

(23)

The interaction of a simple velocity field with a plane
electromagnetic wave is relatively easy to compute. As
shown below, this problem provides more insight into the
implications of the above general formalism. Consider
the electromagnetic field

i ko r —i coot +i PE=Epe

This scalar equation is the analog of the dispersion equa-
tion in ray theory. ' The second equation of (11) pro-
vides another three scalar equations —altogether four sca- Consequently (22) can be recast as

(24)
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K —kpKu /C + ( o)p+ II ) A =0 . (25)

K= —(top+ fl, )A,
r

W(r, t) =i fI K(r, t) dr .
0

(26)

This is a very interesting result. Except for A, which does
not appear in (8), K is derived as in the time-independent
velocity case. Moreover, since in (26) the dependence on
directions relevant to the electromagnetic field (17) disap-
pears, the condition F Ep=F'Hp=0 is not important
anymore.

The fact that K (26) has been computed from (22) by
putting W =0 is far-reaching also for the computation of
P, according to (9). We will now prove that the four-
dimensional line integral degenerates into a three-
dimensional spatial line integral, i.e., except for coo+A in-
stead of cop, we are led to a quasistatic approximation.

Since (9) is independent of the path of integration, we
choose

f.
".= f'.', + f . (27)

Hence for complex }33,

rp rt
))3, = f K.dr —f Wdt

= f K.dr+ f ' K.dr

r, t 1= f K.dr= f K(r, t) dr
p, t 0

r=K e ' ' e' 'A.dr
0

(28)

i.e., the time integration of W simply yields a factor
1/i II, and according to (26) the integral in large
parentheses is obtained. The time t appearing on both
limits of the integral K dr simply means that K is

O, t
evaluated at this time, and the factor e ' ' can be taken
outside the integral. The remaining integral is integrated
with respect to the direction of the velocity, say
Ap dr =dx, and Q is also parallel to A, hence

p (~ /Q) iQr int— (29)

At this point it must be realized that P in (9) is real, hence
we have to take f3= ReP„

Inasmuch as K is already of first order in U/c, the second
term in (25) is of second order and therefore negligible.
Therefore, to the first order in U/c, (23) and (25)
prescribe, for time-harmonic velocity fields,

ment of (28), leading to (30), is really necessary. To
answer this question, an example will be given for which
the quasistatic approximation is inadequate. Consider a
velocity field harmonic in time and uniform in space,

A =Ape (31)

where Ao=const. As a limiting case of (18) it prescribes
that Q~O, hence u~ co. However, this violates the as-
surnption of small u/c which led from (25) to (26). Con-
sequently, a different type of solution is to be found.
Combining (22) and V W =i fIK, we now have

V W+i II(top+ Q)A k—o(i II/C) W =0 (32)

as the equation governing W. For A=Akp parallel to kp
we obtain (say kp is in the x direction)

iI„W+itI(o) +II )A

(i'll—

/C) W=0

whose solution is

W (i nlc)x —int+ AC (

K =Ex=xi} W'/itI =x( Wo/C)e"

and Wo is arbitrary. If W =0 for x =0, t =0, then

(33)

(34)

igr —i QtAp=r e (37)

where Ap ——const and absorbs the extra lenght-unit in-
volved. For this case, and subject to the approximation
(26), we have

Wo = —CAo(o)o+n) .

Integrating (9) subject to (34) and (35) along the contourf" dx+ f '
dt yields

P=Re[(C i/I)I( cop+0) Aeo' '(1 —e'i I ' )] . (36)

Clearly (36) is different from (30), and depends on Eo, Hp
field directions. For arbitrary directions of Ap the solu-
tion of (31) is not readily available, but obviously depends
on field directions.

Subsequently, only interaction of electromagnetic and
mechanical waves of the kind leading to (30) will be con-
sidered. The reasons for that are the simplicity of the re-
sult, and the fact that in the case of scattering by moving
surfaces, acoustical waves of the kind (18) are generated
by these moving surfaces. Consider, for example, spheri-
cal waves defined by

Np+ A
Apsin —A r —At

A/u u
(30)

r
f3= —Re (o)p+ Q)Aoe ' ' f (e'~/r )dr

rO

Substituting (30) in (17) yields the desired result. It is now
clear how the velocity modulates the phase of the plane
wave. In order for f3 to be consistent with the fundamen-
tal assumptions of the above theory, it must be of order
U/c, hence for cop »A, we must have ( u /c)(cop/A) of or-
der 1 or less.

For cop»A such that (30) simply becomes a quasistatic
approximation, it is legitimate to ask whether the whole
theory of the preceding section and the following argu-

For distances small compared to the acoustical wave-
length, Qr «1,

f3 —(o)p+ Il )Ap ln( r /rp ) cos( At) (39)

Note that the reference distance r 0 must be finite for the
present case. Also note that Qr «1 means that the dis-
tance is small compared to the acoustical wavelength, but
the same distance may be large compared to the elec-
tromagnetic wavelength 2~/ko. For the opposite case
Qr &&1, (38) becomes
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P = —(coo+ II )( Ao/r) sin( Qr —At), (40)

A =rAoHo(gr)e (41)

where r is perpendicular to the cylindrical axis and Hp is
the zero-order Hankel function of the first kind. For
Qr « 1, we have

where the reference distance is taken as rp~ oo. Clearly
as r increases, p decreases, hence the velocity effect due to
a spherical velocity wave vanishes in the far field (at a dis-
tance which is many acoustical wavelengths). For
cylindrical waves

igx +i Ot—x pe (46)

i.e., an acoustical wave propagating in the —x direction.
Similarly to (29),

pp=— Aosin(gx +At) (47)

which is considered to be of first order in U/c. At the
boundary x =0 the incident wave can be represented as

be in the xy plane. The scatterer is a plane defined by
x =0. For reasons relevant to case (c) below, the velocity
is defined as

2 2
Hp ——i—ln

yr
(42)

where y =1.78. . . is a constant. It follows that

P= —2(coo+A)(Ao/vr)r[ln(yr/2) —y/2] sin(Qt), (43)

—i (coo —Q)t
Ape

~p + —i (coo+A)t
Ape

2

—i~ t ~p —+
E=zEp e

2

(48)

where the reference distance is taken r„=O (note
lim„o r lnr =0). On the other hand, for Qr» 1,

Ho —(2/ivrQr)'~ e'~",

hence

P=Re[(coo+A)Ao( —2/ing r)'~ e'~" 'n']

=(~o+n)Ao(~g'r)-'"

X [cos(Qr —Qt) —sin(Qr —Qt)]

(44)

(45)

and again p~O as r ~ ao, so that in the far field the velo-
city effect vanishes. The above examples will be subse-
quently exploited to solve scattering problems in the pres-
ence of space-time —dependent moving media.

THREE TYPES OF SCATTERING PROBLEMS

The main objective of the present study is to gain more
understanding regarding scattering problems in the pres-
ence of moving media. This happens, for example, when
the moving scatterer sets in motion the surrounding medi-
um. Models discussed previously involved moving media
and scattering surfaces at rest and moving scatterers in
unperturbed media. Both models violate mass continuity
at the surface, hence it is desirable to solve problems in
which mass continuity is preserved and compare the re-
sults. Accordingly, subsequently three cases will be con-
sidered.

Case (a). Medium moving and scatterers at rest.
Boundary conditions are satisfied at the static surface.

Case (b). Medium at rest and moving surfaces. Boun-
dary conditions are satisfied at the surface in the comov-
ing frame of reference.

Case (c). Medium and scatterer are in motion as to
preserve mass continuity. Boundary conditions are satis-
fied at the surface in the comoving frame.

This program is carried out below for plane, cylindrical,
and spherical scatterers. The procedure is similar to that
used for acoustical wave propagation. '

i kO, -r —icoot +i PE, = —zEp

kp = —xkp x+ ykp y
(50)

and the associated H, field.
Case (b). This problem is discussed by Van Bladel and

De Zutter. Presently only first-order effects are dis-
cussed, which makes the argument simpler; however, the
results are still adequate for the purpose of comparing the
three cases, as defined above, and for all practical pur-
poses, first-order approximations are all that will be need-
ed. Now the incident wave is given by (17) with P=O.
The boundary is vibrating according to

v=xvo cos(At), (51)

i.e., the boundary is moving with a displacement

x =rosin(Qt) (52)

and the amplitude Ago must be such that our assumptions
on U/c are valid. The boundary conditions must be satis-
fied in the comoving system, i.e., x&E'=0 for a perfect
conducting metallic boundary. To the first order in the
velocity the relativistic transforrnations for the fields
prescribe E' =E+pv & H, which after some manipulation
becomes for the present case [(17) with P=O and E=E,]

E'=zE(1 —ko.xu/C) . (53)

Taking the reflected wave as in (50), with P=O, yields the
same transformation (53) for the reflected wave

consistent with (17) and (47) to the first order in v lc. The
effect of the moving medium is therefore to develop two
sidebands at frequencies cop+A. Let the boundary condi-
tion be

E+E,=O
~ „„o (49)

prescribing that the scattered field E, at the boundary is
given by (48) with the opposite sign. It follows that the
scattered wave is given by

PLANE SCATTERERS E,' =zE, (1—ko, xv/C) =zE, (1+ko xv/C) . (54)

Case (a). The incident wave is given in (17). For sim-
plicity let Ep ——zEp be polarized in the z direction, and kp

At the boundary we must therefore satisfy, to the first or-
der in v/c,
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ikp x(v~ln) sin(nt) +ik Oyy —im&t
S (55)

Let us guess E, =zE, in the form

ikp r —iruot ik+ r —iru+t
s = o e +

+3 e ), (56)

where kp, is given in (50) and 3+,3 are of order u/c.
We already assume the sideband frequencies

cc) + = cop +0 (57)

and try to satisfy (55) and (57) simultaneously at the
boundary defined by (52). The result is

conductor such that the tangential E field vanishes at the
surface. For simplicity only one polarization will be con-
sidered, that of the E=zE field parallel to the cylindrical
axis. The interacting acoustical wave will be taken as a
cylindrical wave leading to (43) or (45).

Case (a). The incident wave is a plane wave as in (17),
polarized along the z axis and propagating in the I direc-
tion, with P given by (43) or (45), depending on the dis-
tance in acoustical wavelengths from the center of the
cylinder defined by r =a. The incident wave is recast in
terms of cylindrical waves

3+ = —(up/C)kp x(1+cup/II) (58) ikox —icoot + s pE=zEoe

k+ ———xk + +ykoy

0 + =co+/C
(59)

which includes the aberration effect.
Case c. For this case we combine cases (a) and (b), i.e.,

p [Eq. (47)] is now included in the incident and scattered
wave. Inasmuch as the same term appears in the ex-
ponential of both the incident and scattered fields, it has
no effect at the boundary. The effect appears in the scat-
tered wave by adding ip in the exponents of (56). To the
first order in (cup —A)Ap/Q we obtain

Ik+.r ~p —+ +p iko, . + QE+ ——A+e — + e
2

(60)

CYLINDRICAL SCATTERERS

As an example for problems of this kind, we consider a
circular cylinder of radius a, whose surface is a perfect

provided we meet the condition that (up/C)(tup/II) &( l.
If this condition cannot be met, more sidebands will be
necessary to satisfy the boundary condition, as done by
Van Bladel and De Zutter. In this study it is attempted
to compare the three cases described above; therefore, in
order to keep the examples as simple as possible, only the
first pair of sidebands is derived. Using the expansion of
Bessel's function near the origin, the corresponding ex-
pressions given by Van Bladel and De Zutter [e.g. , see

Eq. (10.129) in Van Bladel ] are seen to be identical. The
propagation vectors are determined from

(61)

where J„are the nonsingular Bessel functions and P is the
azimuthal angle; r is the distance perpendicular to the
axis of the cylinder. In view of (61), the scattered wave is
chosen as

(62)

where a„are coefficients and H„denotes the Hankel
functions of the first kind of order n. The term P is iden-
tical for the incident and reflected waves, hence the appli-
cation of the boundary condition

E+E,=O~, , „

simply yields

a„=—J„(kpa ) /H„(kpa )

(63)

(64)

as in the static case. The velocity effect is therefore con-
fined to the effect of p in (62), according to (43) or (45).
According to (45) it is obvious that for r ~ ~ the velocity
effect vanishes.

Case (b). Here we assume P=O for a medium at rest,
and consider the cylinder to pulsate according to

r =a +pepsin(Qt), (65)

i.e., the associated velocity is rgpA cos(Slt) =rup cos(Qt) in
the radial direction. At the moving boundary according
to (53) and (65) and to the first order, the incident wave
becomes

E'-=zEp[i —kp. r(up/C) cos(At)]e gi "J„[kpa +(kpup/0) sin(Qt)]e'"~

zEpe gi "e'"@—
[J„(kpa) —J„(kpa)kp. rcos(Ot)+ [J„'(kpa)kpup/0] sin(Qt) I, (66)

where J„' denotes the derivative with respect to the argu-
ment and only the first correction term in the Taylor ex-
pansion is retained. Subject to the present approximation,
(66) displays a dependence on the original frequency Cup

and the sidebands coo+ 0,; therefore, these frequencies
must also be present in the scattered wave. According to
the (first order in u/c) relativistic transformation
E' =E+pv & H, taking H to the zero-order approxima-
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tion, we have in the z direction

E,'=E, +(vp/C) cos(At)e Ep

X gi "+'a„H„'(kpa)e'"&, (67)

a„—= [+a„H„'(kpa)(k pgp+ v p/C)
2H„(k+a)

+kp /pe„' (kpa ) +iJ„(kpa )kp. rvp/C]
(70)

where a„ is given by (64). The boundary condition to be
satisfied is

~'+ s =
1 at r =a +(&sin( nt) . (68)

We therefore choose E, as

E, =Ep gi "e'"~[a„e H„(kpr)

+ a„+e + H„(k+r)

+a„e H„(k r)],

co + =cop+ 0 (69)

k+ ——co+ /C,

and derive a„+,an, which are already of first order, sub-
ject to (65)—(69). This yields

Therefore, the problem is solved, subject to the above-
mentioned approximations.

Case (c). Including the fluid motion, caused by the
motion of the surface at frequency II, prescribes a factor
e'~ in both the incident wave, as given in (61), and in the
scattered wave, given in (69). This factor is identical for
both fields and therefore has no effect when (68) is satis-
fied. Depending on the distance, expressed in wavelengths
of the acoustical wave, P is given by (43) or (45). Howev-
er, it is clear that in the far acoustical field the effects di-
minishes. This means that for cases of this kind the
medium's motion can be altogether ignored and case (b),
although it violates mass continuity, yields a satisfactory
result.

SPHERICAL SCATTERERS
The case of scattering by a static sphere is a classical

problem, e.g. , see Stratton. Here we consider the first-
order effect produced by a pulsating perfectly conducting
sphere. The vector spherical waves and harmonics are de-
fined here as in Stratton, see also Twersky and Censor
and Le Vine.

Case (a). The incident wave is a plane wave as in (17).
In order to conform with the analysis of Stratton (pp.
563ff), we take kp ——zkp, E=xE, hence

E=xEpe ' ' =xEpe ' $ d„(M,"„'—iN,'„"),
n=1

2n +1
n (n +1)

+
cos sin

M', "=+ j„(kpr)P„'(coso) ' . f—fj„(kpr)Bs'P„'(cos6) ' (71)

(() n (n +1) . sin f (kpr) cos
N, "=r j„(kpr)P„' ' $+Bf(kpr)dsP„'' ' 'f+p . f (kpr)p„' '

f(p)=[pJ„(p)]'p, p=kpr',

(72)

where the prime denotes differentiation Bz.
In the present form (71) follows Stratton's Eqs. (1)—(3),

(Ref. 25, p. 564), in a slightly compacted manner. As in
Stratton, the superscript (1) denotes the nonsingular
spherical Bessel functions. P„' is the associated Legendre
polynomial and o,e stand for odd, even functions, respec-
tively. In terms of vector spherical harmonics (71) can be
written as

Mo" ——j„(kpr)CO n

No ——[n (n + 1j)„(kpr) /kr]P„+ f(kpr)Bon n 0 n ,n

and we shall use the orthogonality properties of the vector

n=1
(73)

where the superscript (3) denotes the dependence on the
spherical Hankel functions of the first kind h„(kpr), re-
placing j„(kpr) in (71) and (72). For scattering by a per-
fectly conducting sphere of radius r =a, the tangential E
field at the surface must vanish

spherical harmonics C, P, B as needed, below. The H
field associated with E (71) is given by Stratton, to
which we add a factor e'~. The scattered field is again ac-
cording to Stratton
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r x(E+E, ) =0
~
„„=.. (74) Hence, at the boundary

Note that in (71)—(74) rXN eliminates the longitudinal
vector spherical harmonics, i.e., r&&P=O, and the result
of (74) is '

E'=E
~ „,+& „„(n,) —(vo/C) cos(At)Eoe

x g d„rx(M,'„"+iN.'„')), (76)

a„=—j„(koa)/h„(koa),

b„ = —[koaj „(koa)]'/[koah„(koa)]' .
(75)

where the expression in square brackets follows from
Stratton's Eq. (1) (Ref. 25, p. 564). Once more we use a
Taylor expansion and retain the leading terms

E
~
„,+g, „„(,=E

~ „,+go»n(At)&„E
~ „,. (77)

Thus the problem is solved and the only difference be-
tween the present case of a moving medium and the static
case is the factor e'~, where P is given by (39) or (40), de-
pending on the distance. From (40) it is clear that as r in-
creases, the effect of the moving medium decreases. This
will also be relevant for case (c) discussed below.

Case (b) Here. we deal with scattering by a pulsating
sphere immersed in a medium at rest. The surface's
motion is described by (65), where r now stands for the
distance from the origin (as opposed to the distance from
the cylindrical axis for the cylindrical scatterer case). The
boundary condition has to be satisfied at the boundary in
the comoving frame of reference. Accordingly, to the
first order, we have to consider E'=E+pvr&H, where
H is taken as the zero-velocity approximation at r =a.

The boundary condition is

r x (E'+ E,') =0
~ „,+g „„(n,), (78)

r&P=O,
r&C=B,
r&&B= —C,

(79)

we find from (76) and (77) r X E' at the boundary

hence we need r)&E'. Using the properties of the vector
spherical harmonics

Eoe 0 g d„(j„B,„+if„C,„+( oins(At)( ),(j„B,„+i(3,f„C,„)+ ( vo/C) cos(At)( j„C,„tf„B«)]—,

where j„,f„,(3,j„,B,f„have the argument koa. It is clear from (80) that in addition to the original frequency too, we have
also the sidebands ~+ ——~o+0 present. Furthermore, the velocity-dependent terms multiplied by Uo/C have C,B factors
of opposite parity. Consequently, the scattered wave is chosen as

E, =Eoe ' gd„(a„M,„—ib„N,„+G„),

ao e
—iQtM(3)(+)+ae e

—'QtM(3)(+) o iAtM(3)( —) e iQtM(3)( —)

n =a+e on + en +a —e +a e en

—iQt~ ) + +g —iotN( )(+)+go iQt~( ) )+g iQt~+ on + en + —e on + en

(81)

where superscripts (+ ),( —) indicate dependence on k+,k, respectively, as defined in (69). All the correction terms in-
volving a+', b'+' in (81) constitute legitimate vector wave functions and solutions of the Maxwell equations. It is as-
sumed that all these terms, i.e., G, are already of first order. By inspection of (80) and (81), and replacing j„by h„,
which will be symbolized by replacing f„by g„, we obtain r XE,' at the boundary

Eoe ' g d„ I [ ha„B,„+ib„g„C,„+g si o(Ant)( „)a,h(„B,„+ib„B,g„C,„)

+ (vo/C) cos(At)(b„h„C,„ia„g„B,„)—) + r X Cr„ I,
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where h„—,g„—indicate the dependence on k+. The sum of
(80) and (82) vanishes, and from the fact that terms are
orthogonal with respect to frequency, e,o parity, and
orthogonality of vector spherical harmonics, the coeffi-
cients are computed according to

go(B,j„+a„B,h„)+2ia' h„=O,
go(c),j„+a„B,h„) 2i—a'+h„+ =0,
g,(a.f„+b„a,g„) 2b—' g„=O,
g,(a.f„+b„a.g„)+2b',g+ =0,
( v /oC)( j„+b„h„)—2b' g„=O,
(vo/C)(j„+b„h„) 2b'+g—„+=0,
(vo/C)(f„+a„g„)+2ia' h„=O,
(vo/C)(f„+a„g„)+2ia+h„+ =0,

and therefore the problem is considered solved.
Case (c). By juxtaposition of cases (a) and (b) it is pos-

sible to account for the effect produced by the motion im-
parted to the surrounding medium. It is clear from the
above discussion of the cylinder that the moving medium
will not affect the evaluation of the boundary conditions
and the effect will vanish as r becomes very large.

CONCLUDING REMARKS

In the past, scattering of electromagnetic waves by
moving surfaces was considered mainly in free space (vac-
uum). For objects immersed in a material medium, there
existed no theory that could take into account the motion
produced by the moving surfaces. Therefore, the motion
of the surrounding medium was heuristically neglected.
The present study provides a formalism for dealing with
this class of problems. Simple cases discussed above show
that for bounded objects, the effect of the medium set in
motion by the moving surfaces can actually be neglected
at large distances from the scatterer. This conclusion vin-
dicates the heuristic approximation of neglecting the
medium's motion. However, the present results show that
this approximation is valid only far away from the ob-
jects.

It must be stressed that the present theory also relies on
certain restrictions and heuristic assumptions, as men-
tioned above. In order to derive more general conclusions,
this class of problems must be further investigated.
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