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We investigate the effects of quantized radiation reaction fields on the motion of a charged parti-
cle using the gauge-independent Wigner operator (GIWO) and gauge-independent Wigner function
(GIWF) introduced earlier [Phys. Rev. A 33, 2913 (1986)]. To complement the equation of motion
of the GIWO, the Heisenberg equations of motion of the quantized electromagnetic fields are solved
within the Markov approximation. After considering the operator orderings and orders of magni-
tude of the radiation reaction terms, we eliminate the quantum fields from the evolution equation of
the GIWO, and obtain for the GIWF a closed equation containing relaxation terms. As an example
of the formalism we derive a Fokker-Planck equation (FPE) for the GIWF of a particle in a con-
stant magnetic field. To the order fi the classical radiation damping ensues, and the first quantum
correction proportional to A emerges as diffusion. The diffusion operator turns out to be indefinite
and the FPE consequently defies our attempts at a complete analysis, but we demonstrate that at
least the coherent states constructed from the Landau levels exhibit a manifestly physical time evo-
lution under the FPE. We point out that the GIWF calculated with quantized electromagnetic
fields is divergent even if the fields are in the vacuum state, and suggest that the GIWF should be
associated with the particle state by ignoring the quantized fields altogether.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I) we in-
troduced a gauge-invariant Wigner operator (CxIWO) and
a gauge-independent Wigner function (GIWF), and re-
ported on an extensive study of their properties.

Our starting point was to deal with objects that pertain
to the kinetic momentum operator

k =p —QA(r ) (1.1)

rather than to the canonical momentum p. Here the vec-
tor potential A may also contain quantized degrees of
freedom of the electromagnetic field,

T(u, v)=exp —(u k+v r)
fi

and the GIWO as the Fourier transform of it,

W(rk)= f d ud v
(2M)

l
Xexp ——(u k+v r) T(u, v) .

Under the minimal coupling Hamiltonian

(1.6)

(1.7)

A 'g+'(r ) = i g g(tI—)bqe'q'";
q

1/2

e(q) .

(1.2)

(1.3)

H = +Qk+h'g b qbq
q

(1.8)

Similarly, the positive frequency parts of the quantized
electric and magnetic fields are

the Heisenberg equation of motion for the Wigner opera-
tor was found to be

E g (r) = g Qqg(q)bqe'q
q

(1.4)
a —.a+v +Q .(v XB+Ec) W(r, k, t)
Bt 8»

B g (r)= gq)&g(q)bqe'q'".
q

(1.5) + Q [E g 'W(r, k, t)+ W(r, k, t)E g+'] =0 .

We introduced the generating operator (1.9)
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Here the various operators denoted by tildes are related to
the electric and magnetic fields, quantized and classical;

(1.10a)

1/2
8 = dv 8 r+ih~ (1.10b)

1/2 clEc ——I drEc r +itis (1.10c)

Eg——— d~E g
— r+&&[+] (+)

—1/2
(1.10d)

The GIWF, finally, was defined as the expectation
value of the GIWO. In the Heisenberg picture it is

W(r, k, t) =Tr[W(r, k, t)p(to)] .

We showed that a Weyl correspondence analogous to
the ordinary Wigner functions can be set up for the
GIWF: Expectation values of Weyl-ordered, i.e., totally

symmetrized, functions of (r|,rz, r3, k&, kz, k3) can be cal-
culated from the GIWF as if it were a classical phase-
space density. Hence the GIWF can be qualitatively re-
garded as a phase-space distribution function for the posi-
tion and kinetic momentum variables r and k. As a first
example of the use of the equation of motion (1.9) and
(1.10) we treated the case when all fields are classical.
Then a closed equation of motion for the GIWF is ob-
tained by just multiplying (1.9) by the initial density
operator p(to) and taking the trace. In the light of the re-

sults we briefly discussed how photon recoil effects enter
the dynamics.

In this paper we expand on the feature of our GIWO
that it can also incorporate quantized fields. Basically, to
supplement the equation of motion of the GIWO we first
derive and formally solve the Heisenberg equations of
motion for the electromagnetic fields. The fields are then
inserted into the GIWO equation of motion, the result is
multiplied by the Heisenberg-picture density operator and,
after suitable approximations, a closed equation of motion
is obtained for the GIWF. As a concrete example of the
rather formal development we shall discuss a charged par-
ticle in a constant external magnetic field, including the
action of the quantized radiation reaction field back on
the particle.

Closely related Heisenberg-picture operator techniques
for an electron bound in an atom are widely utilized in
quantum optics, and have also been applied to free
electrons. We advocate the GIWF in free-electron prob-
lems firstly because it describes the state of the electron in
a compact manner facilitating classical analogs and solu-
tions of quantum problems as A expansions around the
classical solutions. Secondly, the gauge of the electromag-
netic field does not affect the results or their interpreta-

II. THE P REPRESENTATION

Before embarking on the treatment of the case with
quantized radiation fields we convert the Heisenberg
equation of motion of the Wigner operator, (1.9) and
(1.10), into an equation for the operator

P(r, u)= f d3k e(i/R)u kW(r, k)

1
d v e ' ""T(u,v) .

(2vrR)
(2.1)

This operator is halfway between the Wigner operator 8,
(1.7), and its generating operator T, (1.6), in that the
Fourier transform over u is left out. Correspondingly,
derivatives acting on the k label (multiplicative factors k)
of the Wigner operator transform into multiplicative fac-
tors u (derivatives with respect to u) of the operator P:

ik~—, ~——u.
i Bu

'
Bk

(2.2)

The Heisenberg equation of motion for P is thus found by
rewriting (1.9) and (1.10):

a — a+ U o

Bt Br
u. (v &&B+Ec) P(r, u)

u [E g 'P(r, u)+P(r, u)E g ]=0,

(2.3)

tion, even when approximations are made.
We begin in Sec. II by introducing yet another operator

P closely related to the GIWO, which we have found
exceedingly helpful in problems of radiation reaction. In
Sec. III we obtain expressions for the electromagnetic
fields by solving their Heisenberg equations of motion
under the Markov approximation. Operator orderings
and orders of magnitude of the various radiation reaction
effects are discussed to the extent required for the deriva-
tion of the equation of motion for the GIWF, which is fi-
nally outlined. In Sec. IV we inititate our example of the
constant magnetic field by deriving for the GIWF a
Fokker-Planck equation (FPE) that explicitly displays the
radiative damping and quantum fluctuations up to first
order in A. The FPE turns out to be mathematically ill-
behaved and so far defies our attempts at a complete
analysis, but mostly by considering the coherent states
built from the Landau levels we have found illustrative
examples of its use. These are presented in Sec. V. Sec-
tion VI contains a discussion and summary. In Appendix
A we study a special commutator needed in the derivation
of Sec. III. Appendix B presents a comparison between
the Wigner functions when either no quantum field is
present, or the quantum field is in the vacuum state.
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with

Q i/2
U= + u X J dq qB(r+m)

iM Bu M

+Au,a
iM au

(2.4a)

1/2B= f drB(r+ru), (2.4b)

and similarly for the classical and quantized parts of the
electric field.

By virtue of the Baker-Campbell-Hausdorff (BCH) for-
mula (2.25b) of I, the definition (2.1) may be written

1 1/2
P(r, u)= d U e' "'"'&exp —

U (r r) —Q—u. dr A(r+wu) e'
(2rrirt)3 i)i . —in (2.5)

Moreover, comparison with (4.15) of I shows that the ar-
gument r of the vector potential A inside (2.5) can be re-
placed with the label r without changing the result. From
(2.5) it is then easy to see that in the case when all fields

are classical, the expectation value of the operator P is

P(r, u) =Tr[P(r, u)p]
r

l 1/2
=exp —Qu dr A (r +ru)—1/2

)& ( r + —,
'

u
~ P ~

r ——,
'

u ) . (2.6)

=P(r, u)F(r ,u)——
=P(r, u)F(r) (2.7)

applies to an arbitrary function F(r). Thus, the position
argument of the fields in the equation of motion (2.3) and
(2.4) can be treated as a classical label or an operator,
whichever is more convenient in the problem at hand.

III. EQUATION OF MOTION
OF THE WIGNER FUNCTION

FOR QUANTIZED FIELDS

When only classical electromagnetic fields are taken
into account, an equation of motion for the CrIWF can be
derived simply by multiplying the operator equation of
motion of the GIWO by the density operator and tracing.
However, since we have found no general expression of,
say, Tr[W(t)E'+'(t)p(ta)] in terms of Tr[W(t)p(ta)], we
have not been able to carry through the same procedure
when quantized fields are present. Instead, we devise here
another procedure which, under precisely stated approxi-
mations, still leads to a closed equation of motion for the
GIWF.

In Sec. III A we split up the quantized field into free-
field and radiation reaction components, and express the
latter in terms of the kinetic momentum operator k. The

Here the connection of the operator P to the position rep-
resentation of the density operator is clearly displayed.

One reason why the P representation turns out to be
very useful can be seen from an equation that may be de-
rived just like (4.16) of I is obtained from (4.13) of I:

F(r)P(r, u) =F(r+ —,u)P(r, u)

A. Derivation of radiation reaction fields

In this section we shall derive an explicit expression for
the quantized electromagnetic fields from the full Hamil-
tonian (1.8) under certain approximations, the most im-
portant one being the Markov approximation. The
method, adapted from Ackerhalt and Eberly, is by now a
standard tool in quantum optics. Our brief exposition
therefore concentrates on the aspects peculiar to an un-
bound particle.

We begin by writing the positive frequency parts of the
quantized electric and magnetic fields in the form

E'+'(r+u)= gg(q)Qqe'q'"Oq,
q

(3.1)

B '+ '( r + u ) = g [q &g (q ) ]e
'q "Oq,

q

where the operators Oq are defined by

0 =e'q'b
q

(3 2)

(3.3)

To find the operator Oq(t) we start from its Heisenberg
equation of motion under the Hamiltonian (1.8),

Oq ——— [Oq,H]—
q @

q~

i q.k q k
2 M q q M

g(q). k.

(3.4)

next task, in Sec. III 8, is to reorder the terms in the equa-
tion of motion of the GIWO in such a way that the posi-
tive (negative) frequency parts of the free-field operators
stand furthest to the right (left). As a result, the free-field
components do not contribute when the quantized field is
initially in the vacuum state. In Sec. III C we estimate the
radiation reaction terms in the equation of motion, and
demonstrate that under reasonable conditions the ones
entering (2.3) through the quantized electric field dom-
inate. We have thus argued that only the radiation reac-
tion component of the quantized electric field needs to be
retained, and that it essentially is proportional to k. We
then complete our program by showing in Sec. III D how
to express Tr[k(t)W(t)p(ta)] and Tr[W(t)k(t)p(t0)) in
terms of the GIWF.
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The operator q.k /M in (3.4) clearly represents the
Doppler shift. We ignore the Doppler shift (we comment
on this approximation later), and integrate (3.4);

g(q) f dt'e ' ' k(t') .
Adolf to

The electric field at time t then becomes

(3.5)

E '+'(r+u, t) =E F+'(r+u, t)+E tI
'(r+u, t),

where the "free" component is

(3.6)

q

(3.7a)

and the radiation reaction field

E I~+)(r+u, t)

g Q e'q "g (q)g (q) f dt'e ' k(t') .
rp

g

(3.7b)

To develop the radiation reaction field further we intro-
duce three approximations.

(1) The Markov approximation Since th.e spectrum of
the electromagnetic field is broad, (3.7b) conveys oscilla-
tions at wildly varying frequencies. We assume that the
oscillations sum up destructively in such a way that only
the times t'=t contribute to the integral. In particular,
the lower limit of integration to may be replaced with

(2) The Born approximation Instead o.f the full time-

dependent solution for k(t), we employ in (3.7b) the back-
ward solution [with the final condition k(t')=k(t) at
t'=t] of the equation of motion for k(t) where only the
classical fields are retained. This replacement ought to
apply during the short time interval before t'=t that is
sampled in (3.7b}.

(3) The secular approximation We assume .that, at
least for the times t immediately preceding t, the solution
to the equation of motion with only the classical fields is
of the form

When the sum over the photon modes in (3.7b) is carried
out, the principal-value part of (3.9) results in a diver-
gence. On account of the fact that this divergence reflects
the shape of the spectrum of the electromagnetic field
rather than the frequencies cv, we assume that it can be
removed by a suitable renormalization of the mass and
charge of the particle. Only a small frequency-dependent
mass shift is expected to remain, which we henceforth ig-
nore. We thus neglect the whole principal-value integral,
and obtain from (3.7b)

(+)
ER (r +u, t)

J 8~ V l J (3.11b)

The integral runs over the unit sphere, and n is the corre-
sponding dummy vector.

As co /c is the wave number of a photon with frequen-
cy cv, we conclude that the u dependence of the tensor W
corresponds to photon recoil effects. When either c~ oo

or u~0, WJ(u)~5, J. We loosely formulate the con-
clusion that in the absence of recoil effects the force due
to the component of the radiation field at the frequency
COa,

2 2

gE(+) ~ ~
k (+)

opposes the motion at the same frequency.
The positive (and negative) frequency part of the mag-

netic field can be calculated in the same way. The free-
field component, of course, is

(3.12)

B F+'(r+u, t) = g [q Xg (q)]e
q

Q Qqe 'q "5(
q
—co~)g(q)g(q). k '+ (t) .

q, a

(3.10)

We then carry out the polarization sum implicit in the
sum over q, and replace the sum over the photon modes
with an integral. The radiation reaction field, in com-
ponent form, finally reads

2

E z+'(r+u, t};= —g 3
Wz. (u)k ~+'(t}J, (3.11a)

6meoMc
'.

where the tensor WJ(u) is

k(t') = g [k '+'(t)e ' +H.c.] . (3.8) iq [r(t&) )+u}~Xe bq t()) ~ (3.13)

In other words, we demand that it is possible to break up
k(t') into components oscillating at (a limited number of
well-separated) frequencies tv . A particle must experi-
ence an acceleration in order to radiate; we assume that
the acceleration is due to a superposition of oscillatory
motions.

With (3.8), (3.7b) contains integrals of the form

f —iQ (t —t') +ice (t —t')
dt'e ' e

2

B I,+'(r+u, t);= —g 4 TPJ(u)k '+'(t}J,
l 6neoMc.

where the tensor T is defined by

a 3 2 i (co~/c)(n -u)
TJ(u)= gei~k d Qnke

8vr

(3.14a}

(3.14b)

and the radiation reaction field, in component form, reads

=~6(Qq+co ) —P 1

Qq +kg
(3.9)

When recoil effects are neglected (u =0), the magnetic
component of the radiation reaction field is simultaneous-
ly forced to zero (within our premises, e.g., nonrelativistic
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motion of the particle).
We conclude this section with a discussion of some of

the approximations. First, it can be seen that the 5 func-
tion in (3.10) corresponds to momentum conservation by
stating that the radiation field only contains wave vectors
lying on the sphere

~ q ~

=co /c. However, even if the
particle is excited by an external field at the frequency co,
due to the Doppler shift the scattered field may contain
other frequencies than co . If the motion of the particle
were treated classically, the Doppler shift would result in
a slight deformation of the momentum sphere inside the q
sum in (3.10), and the radiation reaction field would ac-
quire relativistic v/c corrections. It is such corrections
we have neglected going from (3.4) to (3.5).

The Born approximation is justified as long as the radi-
ation reaction field does not modify the motion of the
particle appreciably in the characteristic times determined
by~

Finally, the secular approximation is valid if the exter-
nal classical fields make the particle oscillate at discrete
frequencies. As a result, "hard" photons at these frequen-
cies are sent out. The cyclotron motion of a particle in a
magnetic field and the forced oscillations of a particle in a
monochromatic radiation field provide two examples. At
first sight it may seem that invoking characteristic fre-
quencies imposed by classical fields sharply distinguishes
the present situation from the case of electrons bound in
an atom. However, the characteristic frequencies of an
atom also result from electromagnetic interactions, and to
zeroth order the associated fields are usually taken to be
classical. A true counterexample to the secular approxi-
mation is the scattering of the particle from a center of
force. Then "soft" photons with a continuous range of
frequencies are emitted.

B. Ordering of field operators

tial time to the quantized field is empty. Accordingly, the
field operators and the density operator satisfy

p(tp)b (tp)=b(tp)p(tp)=0 . (3.15)

If the quantum field terms in the equation of motion of
the GIWO, (1.9) or (2.3), can be brought to such a form
that all positive frequency parts stand to the right and
negative frequency parts to the left, the free-field terms do
not contribute when (1.9) or (2.3) is multiplied by the den-
sity operator and the trace is taken. We study the quan-
tum field contributions to the equation of motion term by
term from this standpoint using the P representation.
We avoid premature splitting of the fields into free and
radiation reaction components in order to rely on the bo-
son commutators which are necessarily preserved in the
unitary time evolution. '

The terms involving quantized fields in (2.3) are the one
due to the quantized electric field,

TE(r, u) = — u [E g (r, u)P(r, u)+P(r, u)E ~ (r, u)],

Ttt(r, u) = — u. X [B '+ I(r, u)+B ' '(r, u)] P(r, u),
BQ

(3.16b)

the quantum b v correction to the convective derivative

Tt„(r,u)=[du ' '(r, u)+du '+'(r, u)] ~ P(r, u),
Br

(3.16c)

(3.16a)

the one corresponding to the magnetic component of the
Lorentz force

In the sequel we always assume that the particle is pri-
marily driven by fully classical fields, i.e., that at the ini-

and the term reflecting the Av correction to the magnetic
component of the Lorentz force,

Ta„xtt(r, u)= — u ~ I[Du +'(r, u)+Du ' '(r, u)]X[B '+'(r, u)+B ' '(r, u)]IP(r, u) . (3.16d)

The term TE already is in the desired order, but none of
the magnetic field contributions has the positive frequen-
cy parts to the right. We demonstrate the procedures
needed to move them to the proper position, using TB as
the detailed example.

Thus, let us study the commutator [B '+,P]. Using
the form (2.5) for P and (2.4b) for B it can be seen im-
mediately that the commutator vanishes if

1/2 1/2C= f drB'+'(r+ru);, f d&A ' '(r+ru)J =0.
(3.17)

From the explicit expressions of the quantum fields (1.2)
and (1.5) we obtain

C= g [q Xg(q) j;g(q), f 2"
2

(3.18a)

f(x)= (3.18b)

Hence, b v '+' and 8 '+ ' can be moved freely to the right
of Pin Tz and T~, .

But the function of q inside the sum changes sign when q
is inverted, hence the sum vanishes. This is basically the
method that can be employed to prove the commutators

[B ' ',P]=0, [b u ' ',P]=0, —[Au ' ',B '+'] =—0 . -

(3.19)
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The remaining T~, ~~ term may be developed to the
form

Tgv )&9
Q [(g-(—) B ( —))P

Tgv )&9 u. [(bu' 'XB' ')P

+g-( —)(PB (+))

+g-( —)(PB (+))

B—
rI

'x(Pb, u „'+')

+P(»,(+)XB,(+))] .

(3.20)

Unfortunately, the first and fourth terms in this expan-
sion introduce another problem. To see this, display in
hu '+ ' and B '+ ' the free-field and radiation reaction com-
ponents separately:

SU (+)XB (+)=(~U (,+'+~u (+') X(B,+'+B ',+')

g-(+)x(B (+)+B(+))

+g-(+) ~B (+)+g-(+) ~B (+)

(3.21)

In the last term the free-field component does not appear
furthest to the right. To study the resulting circumstance
in more detail we first restore the operator argument r in
b, u'+' and B'+ using (2.7),

P(r, u)b, u 'F+'(r, u) XB I(+ (r, u)

= P( r, u )hu F+ '( r —,u, u ) X—B rr+ '( r —,u, u ) . (3.22—)

C. Estimates of the radiation reaction terms

Our next task is to estimate the contributions from the
radiation reaction fields to the equation of motion of the
GIWO, and isolate the leading ones. We fix a characteris-
tic frequency of the secular motion co, and denote the typ-
ical scale of variations of the GIWO with k and r by b,k
and b r. Correspondingly, we use in (2.3) or (3.16) the esti-
mates

Aku, I" AT,Ak' '
Bu A

' Br Ar
(3.27)

We shall always assume that the width of the k distribu-
tion greatly exceeds the recoil momentum of the emitted
photons,

In conclusion, in the equation of motion of the CHWO,
(2.3) and (2.4), we may split the field operators into posi-
tive and negative frequency parts, and move the former
freely to the right of the operator P. Moreover, in
theories where (3.25) is satisfied, all free-field terms may
be neglected after this ordering, provided the equation of
motion is used in conjunctio~ with a density operator with
the property (3.15).

From (2.4a) and (3.13) we obtain Ak )&%co/c, (3.28a)

Au'F+'(r ——,
'

u, u;t)= g Wq(u)e ' bq(t()), (3.23)
q crau/c ~~1 . (3.28b)

and from (2.4b) and (3.14) it follows that

BI(+'(r ——,
'

u, u;t)= g N (u)k '+'(t) . (3.24)
Let E be the scale of E ~+'. In view of (3.28b), we ob-

tain from (3.11) and (3.14) the estimate

[bq(to), k '+'(t)] =0 . (3.25)

In view of (3.22)—(3.24) this justifies moving all field
operators bq(to) furthest to the right, so the troublesome
terms in (3.22) give zero when it multiplies a density
operator satisfying (3.15). As our intention is to derive an
equation of motion for the CxIWF for precisely such den-
sity operators, we may in practice write

Here Mq(u) is a vector and A (u) a tensor, whose precise
forms are irrelevant to the argument.

The main problem with (3.22) is that Heisenberg o era-
tors with different time arguments appear in Au F+ and
B z+'. We have not been able to prove that these opera-
tors commute in general. Nevertheless, in Appendix A we
demonstrate that if the Markov approximation is made
and the amplitude of the forced motion of the particle is
small compared to the wavelength of the driving classical
field, then

(3.29)

Similarly, the quantum correction to the velocity Au in
(2.4a) is roughly

(+) ))1Q ~BR A' A co QE
Mbk c bk ~(hk)'c' (3.30)

T —Q" E(+)P (3.31a)

T — u B '+'P — B '+ P — T, (3.31b)uau

Here (cole)B I(+' stands for (Blur)B 'rr+'(r), obviously
representing the lowest nonvanishing contribution to the
integral in (2.4a). We may now write down order-of-
magnitude expressions for the radiation reaction terms
(3.16):
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Tg AU ' P-(+)
Br

M Au '+'
&U XB

'2

Ace Ace

Mc2 c Ak Ak Ar

cAk AkAr
(3.31c)

Finally, Tz, ~z && Tz. If the parameters %co/Mc and
fico/c Ak are both much smaller than unity, TE is the
largest radiation reaction contribution to the equation of
motion (2.3). In the sequel we always assume this, and re-

tain only TE.

D. Elimination of radiation reaction fields

Ace Ace

Akc

3
Ace Ace

k~ Mc~

QEc /co

(bk) /M

(3.31(l)

The dominating radiation reaction term in the equation
of motion of the GIWO is the one depending on the elec-
tric field,

TE ——Q .(Etc W+WER ) .

In (3.31d) we have used (3.11) to express E in terms of
k —b,k; a=Q /4ireoh'c is the fine-structure constant if
Q =e.

The magnetic field term Tz is smaller than the electric
field term TE by the factor Ace/Mc . Next, by quantum

mechanics hk b, r & A', and as a result of (3.28a) Tt),„«Tti.

By virtue of (3.11), the field E~+' (E'R ') may be ex-
pressed in terms of the positive (negative) frequency com-
ponents k '+ '

( k ' ') of k. It thus pays to study the prod-
ucts k;P and Pk;.

From Eqs. (2.26a) and (4.30b) of I, it follows immedi-
ately that

k T(u U)
e)i/2%)u ve(r/R)v ~

i) + Q dr ( I r)[u XB(p +ru )]I I ~

g p
I (3.32)

By partial integrations the result transforms into the P representation as

a
k;P(r, u)= — —— —Q j dr(1 —~)[u XB(r+ru)]; P(r, u) .

i Bu; 2i 3r;
(3.33)

Similarly,

aa +a 1

P(r, u)k; = — +— +Q I dr(1 —r)[u XB(r+wu )]; P(r, u) .
i Bu; 2i Br;

(3.34)

Since in B the quantized fields are also included, a pro-
cedure similar to that in Secs. III B and III C is executed
next. First, by a similar argument as before, the positive
frequency part of B may be moved to the right of P, al-
lowing us to neglect the free-field component. Second, the
leading terms in (3.33) are of the order of b,k, fi/br, and
whatever the integral may give for the classical part of the
magnetic field. To the order of magnitude, the ratio of
the integral of the radiation reaction field BR to the first
term inside the large parentheses in (3.33) can be estimat-
ed to be

2
Ace Acu

Mc2 c Ak

For consistency, all radiation-reaction contributions to the
integrals in (3.33) and (3.34) must thus be neglected.

Assume now that it is possible to express k ' —'(t), and

hence EtI '(t), in terms of the Cartesian components

k;(t). The only remaining radiation reaction terms in the
equation of motion (2.3) are of the form of the right-hand
sides of Eqs. (3.33) and (3.34). When the equation of
motion (2.3) is subsequently multiplied by a density opera-

tor satisfying (3.15), the free-field component of B as in
(3.33) and (3.34) drops out and the radiation reaction com-

ponent of B is negligible. In addition, (2.7) can be used to
convert the operator argument r of the classical part of B
to the label r. Consequently, the whole radiation reaction
is accounted for by an operator that only acts on the la-

bels of the operator P. When finally the trace is taken, a
closed equation of motion obtains for P(r, u), and hence
for the GIWF W(r, k). We have formally completed the
objective of Sec. III.

IV. EXAMPLE: FOKKER-PLANCK EQUATION
IN A CONSTANT MAGNETIC FIELD

To give a concrete example of the formalism and
methods introduced in the preceding sections we shall
treat in detail the motion of a charged particle in a con-
stant magnetic field. We write the field in the form
B =be, with e denoting the unit vector in the direction
i =1, 2, or 3, and to avoid notational complications as-
sume that b, Q & 0. Then the cyclotron frequency
co, =Qb/M is positive. When only the electric component
of the radiation reaction field is kept, the equation of
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motion of the GIWO reads

a k a
+co, (k Xe ). W

Bt M Br

We now focus on the radiation reaction terms, in the P
representation. Using (2.7) we first obtain from (3.16a)

iQ i ~( )TE(r, u) = — u dr[E z (r+ru )P(r, u)
0

+Q (E~ 'W+ WER )=0 (4 1) +P(r, u)E z+'(r r—u)] .

, k(t') =co,k(t') Xedt' (4.2)

The task is to develop further the last two terms in (4.1).
When only the constant magnetic field is present, the

Heisenberg equation of motion for k(t') [e.g. , from (Ala)]
reads

From (3.11) we find that
2

f drEtt '(r+r-u);= —
3 g T;J(u)k J6neoMc

with

(4.5)

(4.6a)

I

X(e' ie )e—' +H.c. I . (4.3)

A comparison with (3.8) shows that the system has two
characteristic frequencies, 0 and m, . The former corre-
sponds to free motion in the direction 3, and no radiation
is associated with it. The only relevant positive frequency
component of k is thus

The solution to this equation with the final condition
k(t') =k(t) at t'= t can be written

k(t') =k, (t)e'+ I —,
' [k, (t)+ ik, (t)]

k;P(r, u)=
i Bu.

(u XB);
Br;

P(r, u),

TJ(u)= f dr f d Q(5J n;nj—)e' ' ' ""
. (4.6b)

8~

By (4.4), k '+-' may be expressed in terms of ki and k2,
and using (3.33) and (3.34), k;P and Pk; may be obtained
in terms of P. Thus the whole radiation reaction term TE
can be expressed in terms of P. First, when the magnetic
radiation reaction field is neglected, (3.33) and (3.34) give

k '+ = —,(k i +ik2 )(e ' ie ) . — (4.4)

(4.7)~a a iQP(r, u)k; = —. + + (u XB); P(r, u),
i Bu; Br;

Notice that k'+' is a simple linear combination of the
Cartesian components k& and k2.

and after some straightforward algebra Eqs. (4.4)—(4.7)
result in

i A c3
TF(r, u) =I gg u; T—J(u) ~-

f? i i i ()uj

Here we have introduced the rate

i)i 3 (3 iQ——e X + „(uXB)
2

~

"r}r fz
(4.8)

Q ~cr=
6' eoMc

(4.9)

It can be seen from (4.6b) that in the variable u the characteristic scale of the functions Tz(u) is c/co, . When (4.8) is

transformed back to k space, these functions give integral transformations sampling the k dependence of W(r, k) over a
span %co, /c. As this is precisely the recoil momentum associated to photons with the cycloctron frequency co„we again
conclude that the dependence on u of TJ(u) conveys the recoil effects. For simplicity we from now on neglect the recoil,
and use in (4.8) T~z(0) =6J instead of T&(u). The result, when transformed to k space, reads

T (rk)= —I g k; ——e X +QBXfi a .W(r, k) . (4.10)

We now know the explicit form of Eq. (4.1). It remains to multiply the equation with a p(to) satisfying (3.15) and take
the trace. The final equation of motion for the GIWF reads

a a
Bk

k)+
~k

k2

a2

ak, ar
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The first two terms in the FPE (4.11) constitute the or-
dinary convective derivative of a free particle. The fol-
lowing term in large parentheses describes the Lorentz
force due to the magnetic field, and the ensuing cyclotron
motion. The remaining terms are proportional to I, the
well-known damping coefficient for cyclotron motion.
Since I does not depend on A, the friction term in the
second pair of large parentheses in (4.11) is classical in
origin. If A were zero, the motion of the particle in the 1-
2 plane would eventually be damped out. However, the
first quantum corrections to classical dynamics (o:h')
come out as diffusion, hence quantum fluctuations keep
hk 1 2 nonzero.

V. SOLUTIONS OF THE FOKKER-PLANCK
EQUATION

as

It is easy to see that the matrix D,J has two positive and
two negative eigenvalues. The diffusion operator in (4.11)
is indefinite, and the equation itself is mathematically ill-
behaved.

Although mathematical problems can thus be anticipat-
ed, let us still initiate the conventional treatment of the
diffusion equation. First, the motion of the particle in the
direction 3 may be separated from the FPE, and hence-
forth we only consider the spatial directions 1 and 2.
Next, to shorten the ensuing expressions we adopt the di-
mensionless variables

The second-order derivatives in (4.11) define a quadra-
tic form of the vector

~= tee„g=(Mcg, /A)'~ r, 1(=(fiMco, )
'~ k, (5.1)

a
Bx Br, 'Br 'Bk, 'Bk

effectively corresponding to the system of units with

co, =M =%=1. We therefore speak of such units below.
The FPE (4.11) becomes

a 1 a'—y .v+-
a~ 2 a~,ay,

a2 a2 82
.W(g, ~,r)=0.

a~ay, a~', a~,'
(5.2)

The only parameter of the problem turns out to be
y= I /co, . Finally, we define the Fourier transform with
respect to the variables g, t( as

F(R,K)= f d I(d ge'"' +~ 'F(g, a), (5.3a)

F(g, l()= f d R d Ke '" +~ 'F(R,K) .
(2n. )

f =A ))R ) +A (2R )R2+A22R2+B)R )+B2R2+C,2 2

(5.6)

where the coefficients A, B, and C may be functions of ~
and K, but not of R. The function f is a solution to (5.5)
if the coefficients satisfy

(5.3b)

It is easy to derive from (5.2) the equation of motion for
the Fourier transform W of the GIWF W. We divide the
ensuing equation by W, and obtain for the new unknown
function

a
a~

A 11
—A12+ 2yA11 ————,

2
'

a
12 22 + 11 + V 12

c}~

a y
a~

A 22 +A 12 +2/A 22 2

(5.7a)

(5.7b)

(5.7c)

f (R,K) = ln W(R, K)

the equation

a a a a—K —R1 —R2
Bw BR BR BR,

(5.4)
a y

av.
B1—2K1A 11

—K2A 12
—B2+yB1 ————K2,

2

(5.7d)

a =y
a7. B2 —K, A, 2

—2K2A22+B&+yBz ———K&, (5.7e)
2

+ yR ~ f(R,K r) = — (R )K2 R2K(+R ) +R 2). —~ a, , =z- 2 2

BR '
2

a C —K1B1—K2B2 ——0 .
a7-

(5.7f)

We look for solutions in the form

(5.5)

The set (5.7) is conveniently analyzed using the Laplace
transformation for the time variable ~. It turns out that
the coefficients A» (r), . . . evolve from their initial values
A&&(~=0)=A», . . . smoothly to the stationary values
A

~ ~ (r = oo ) =A P~, . . . , which are
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2 )) ——322 ———4, 3 )P
——0;

B )
———K2/2, B2 ——E] /2;

2 2K)+K2 0 0 0 0 2C =C —
2 +[ B&K—2+B2K, +y(B,K&+B&K&)]l(1+y )

4(1+y')

(5.8a)

(5.8b)

+ [K, (&22+yA, z+y 2»)+K, (A» —yA»+y A&2)+K, K2[(y —1)A i2+2y(&22 —&»)]]/(1+y )

(5.8c)

The appearance of the initial values in (5.8c) indicates that
Eqs. (5.7) do not have a unique stationary solution. Con-
sequently, the FPE (5.2) [and (4.11)] does not have a
unique stationary solution either. In fact, because of the
translational invariance of (5.2) in the variable g, if
W' (g,a) is a stationary solution then so is W" (g —g, x)
for an arbitrary P.

In what follows we basically try to solve Eq. (5.2), with
an emphasis on finding a stationary solution. In Sec. VA
we use a 5 function in both g and ir as the initial GIWF
8' . It will be seen that the solution, the propagator of
the FPE, does not exist. We are thus deprived of the most
important tool in the analysis of Fokker-Planck equations,
and the questions of whether the time evolution ever leads
to mathematically well-defined and physically meaningful
stationary solutions of (5.2) are brought to the foreground.
In an attempt to study the existence problems we in Sec.
VB replace the decomposition of phase-space distribu-
tions into 5 functions (which is the idea behind the propa-
gator) by coherent-state representations of the density
operator. We are able to demonstrate that a class of phys-
ical initial Wigner functions leads to a mathematically
we11-defined stationary GIWF, but a proof for all Wigner
functions is still lacking. In Sec. VC we point out that
during the whole time evolution a coherent state remains
a coherent state, thus giving one example where the
GIWF always corresponds to a physical density operator.
Section VD summarizes both the results of our analysis
of the FPE, and the remaining obvious problems.

W ($,~)=5(g—g )5(~—i~ ) . (5.9)

Taking the logarithm of the Fourier transform 8 we
find that the initial function f corresponds to (5.6) with

0 0 03 )] ——3 )2 ——222 ——0,
0 ~ 0 0 ~ 0B]:IK]~ B2:lK2

C =iK P.

(S.loa)

(5.10b)

(5.10c)

Inserting these into (5.8) we obtain the Fourier transform
of the propagator

A. Nonexistence of the propagator

By definition, the propagator S(g,~, oo,'g, a, O) from
&=0 to r= oo of (5.2) is the solution at r= ao with the ini-
tial condition

4

9 (R,K, oo, g, i~,O)=exp g x;G;ixj+W.x

where we have defined the vector
x =(Ri,K~,Ki,R~),

the matrix of the quadratic form is

(S.l la)

(5.11b)

0

0

1

4

1

4

—1

4(1+y')

0

4(1+y')

0

4

1

4

(5.11c)

and the linear term is determined by

0 0 0 0
0 QK2 —K] PK)+K2

O,i g 2+,i pi+, 0
+y2 1 +y2

(5.11d)

Since for y ~ 0 the matrix (5.11c) has two positive and two
negative eigenvalues, the quadratic form in (s.lla) is in-

definite. In some directions in R the function S grows
like e and its Fourier transform, i.e., the propagator S,
does not exist in the class of tempered distributions.

Suppose now the initial distribution W (g, x ) is a
Gaussian function of g, ir, but with a finite nonzero width
in all directions of the 4-plane (g,z). Then its Fourier
transform W (R,K) is also a Gaussian function whose
logarithm is of the desired form (5.6). Since the mapping
of the coefficients of ln( W), (5.8), is continuous, obviously
a narrow enough initial state W (g, i~) again evolves into a
highly singular object W' (g, a). Moreover, the evolution
of the coefficients A»(r), . . . is smooth, so the singulari-
ty already sets in at some finite time ~, . When the initial
distribution is narrow enough, the distribution starts
shrinking in certain directions in the (g, x) plane, becomes
a 6 function in some direction at time ~„and then evolves
further an object whose mathematical nature is unclear.
We stress that the singularity may emerge at some finite
time, and hence is completely different from the singular
evolution from v.=0 to ~= oo of the solutions to the ordi-
nary diffusion equation. In the latter case the propagator
does not exist because the distribution simply keeps on
spreading ad infinitum The singularity .of (5.2) is more
like the one encountered in an attempt to integrate the dif-
fusion equation backward in time.
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A(r)= —,'(BXr), (5.12a)

or in the units with co, =M=A=1,

A(g)= (e'xg) .
2

(5.12b)

In this gauge the Schrodinger equation for the particle in
the constant magnetic field can be interpreted as the
Schrodinger equation for two coupled harmonic oscilla-
tors in the directions 1 and 2.

Let us for the moment forget about the coupling. A
convenient basis in the Hilbert space of the particle states
is provided by the two-dimensional harmonic oscillator
states

l
n l n2 ) with the wave functions

(gl g2) ((1/2 l

n ln2 &

2") +"2
t t

—1/2 ~1= jm2 n )!n2!j e

B. Coherent-state representations

Because the propagator of (5.2) does not exist, we seek
to find solutions by expressing the initial state in terms of
coherent states introduced in the manner presented in Ref.
11. We point out already at the outset that, rather than
assuming a quantized field in the vacuum state, below we
shall use as an initial state the GIWF W (r, k) computed
from the density matrix of the particle p p as if no quan-
tized fields were present. In Appendix B we discuss the
spurious divergencies of the GIWF in the presence of the
vacuum field that forced us to take this route, and offer a
qualitative justification for it.

We choose a gauge where the vector potential reads

2 f d ad PlaP)(aPl
2m2

(5.17)

is a valid resolution of unity. A representation of the
form (5.16) follows where

They are minimum-uncertainty wave packets in that they
minimize the uncertainty products for the operator pairs
ri,p~ and I"2,p2. When the coupling of the harmonic os-
cillators is taken into account, a coherent state evolves in
time. Its form as a coherent state is preserved, and its
center point follows the classical trajectory of the charged
particle in the magnetic field. What happens when also
the radiation reaction field is present is the subject of
Sec. VC.

Coherent states are normalized but not orthogonal.
They form a complete, in fact an overcomplete set. One
may therefore envisage representations of the initial densi-
ty operator of the particle p p in the form

p~= f dp(a, P,a', P')
l
aP&&a'P'

l

p'(aP;a'P'),

(5.16)

where p is a measure on C (or R') or on some subset
(say, a line in C ) thereof. Representations of this kind
are studied in Refs. 13 and 14 for a single-mode theory
where the coherent states are labeled by one complex
number. However, the existence and uniqueness theorems
of these representations heavily rely on the theory of com-
plex functions, and a generalization of the proofs to the
present case would require the theory of analytic func-
tions of several complex variables. We have not gone into
this, but merely give one example of (5.16). Namely,

XH„, (gl )H„,($2) (5.13) dl4=d ad Pd a'd P' (5.18a)

Here H„are the Hermite polynomials. ' The coherent
states and the corresponding wave functions are then de-
fined as

p) —( a/2+ p )/4

is the Lebesgue measure on R, and

p (aP;a'P') = (aP
l pt l

a'P') .
4~

(5.18b)

n&, n2 ——0

ni np

v'2,
n In2

Qn lln2l
(5.14a)

Whatever the representation used in (5.16) is, to find
the density operator after the time evolution from ~=0 to
r= cc it suffices to find the "GIWF" W p. tr(g', K) that
has evolved from the initial "GIWF" 8' p. p (g,K) corre-
sponding to the dyad

l
ap) (a'p'

l

. Then

'P P(kl. k)= &k4'2
I
aP&

exp I
——,

' [El+4—2(ag'1+ F2)
21T

+a, +p„+i (a„a;+p„p;)]I .

(5.14b)

a=a„+ia; and P=P„+iP; (a„,a;,P„,P;HR) are arbi-
trary complex numbers.

The coherent states are centered around the points

(5.15a)

Vl —(Kl) =
2 (a;+p, ), v2 ——(K2) =

2 ( —a„+p;)
(5.15b)

W" (g, K) = f dp W p Ir(g, K)p (aP;a'.P') . (5.19)

I. Euolution of the coherence kernel

The "GIWF" corresponding to the dyad
l

ap)(a'p'
l

is obtained from (3.2) of I and (5.14):

We call W' p. p(g, K) the coherence kernel. In the next
two subsections we address the two obvious questions.

(i) Is 8'
p tr(g, K) well d.efined'?

(ii) When the representation in (5.16) and (5.18) is used,
does the integral in (5.19) converge; i.e., is W (g, K) well
defined'
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W tt. tr(g, ic)= f d u
e'"' "+' " " (g ——,'u

I

aP&(a'O'I g+ —,'u &

4n

expI —[(g)—g&) +(gp —g2) +2(i~) —ic() +(a2 —i~p) +2()~2 —)~2)(g( —g)) —2(i~) —)~, )(g2 —g~) —C]],

(5.20)

where we have defined

k)= 2(a+a*» kz= —,'(P+p*),
K) = [p+f3* i (a——a )], )tz ———[—(a+a *

) i (—p p*)—]
C = ——'(

I

a
I

'+
I

a'
I

'—2aa *+
I
P

I

'+
I

p'
I

' 2pp—*) .

(5.21a)

(5.21b)

(5.21c)

Since this "GIWF" is a Gaussian function of the variables g, ic, a procedure exactly like the attempted derivation of the
propagator can be carried out right away. This time, however, Wat). tr(R, K) is a Gaussian function that does have the
Fourier transform back to the variables g', )t. We obtain

W tt a tr (g, K) = 2 exp[ —[(g) —g') ) + (g2 —gq ) +2)t)+ 2)F2+2)t2(g) —g) ) —2)c)(gp —g2" ) —C] I (5.22)

where g), g2" are

g)" = —,(a+a')—a+a' —i(p —p')+ y [p+p' i(a—a')—]
4(1+y')

p+ p'+i (a —a')+y[ —(a+a') i(p —p')]—
4(1+y')

(5.23a)

(5.23b)

and C is still given by (5.21c). The coherence kernel thus
exists at least at ~=0 and ~= oo.

2. Convergence problem of the representation

To study the convergence of the integral (5.19) we first
note that for each fixed )c and g, 8'"tt. tr(g, )t) in (5.22)
and (5.23) is an exponential of a quadratic polynomial of
the components of the eight-dimensional vector

X =(a„,a;,p„,p;, a'„,a,',p„',p,') .

Let us denote with ~ the matrix of the quadratic form
comprised of the second-order terms of this polynomial.~ depends on y but not on )t, g. We have studied numeri-
cally the eigenvalues of the real part of ~, and found that
for 0 (y & oo the largest eigenvalue is always smaller than
4. When y is fixed, a sufficient condition for the integral

whenever IaI, IPI, Ia'I, IP'I )N.
We provide an example of the use of (5.18) and (5.19)

with the harmonic oscillator states (5.13). Suppose the in-
itial density operator corresponds to a normalizable pure
state

I

4'
& written as a superposition of

I
n ) n 2 &,

nl, n2

(5.25)

where [a„„I is a square-summable sequence of complex
l 2

numbers. It follows from (5.14a) and (5.18b) that

(5.19) to converge at infinity, therefore, is that for every
e ~ 0 positive numbers N and M can be found such that

I+0(aP.aP )
I

e()/4 e)()a) +)P) +)a') +)P'—
) )

(5.24)

nl n2a* p*
t I

nl , n2

o(ap. a~p~) e —()/4)( a) + ) )s) + a' + )
tr )

4 2 1 2 &1+2
1t l, n2,

I Inl, n2

~2 v2 W2 v2

Qn)!nz!n', !nz!
(5.26)

Every term in this fourfold sum separately satisfies (5.24).
Hence, if the sum is finite, the integral (5.19) converges.
Generalizing slightly, we have shown that every initial
GIWF corresponding to a mixture of a finite number of
pure states, each of which is a finite superposition of har-

monic oscillator states, leads to a mathematically well-
defined stationary GIWF. Dropping the restriction "fi-
nite" in this statement, i.e., a convergence proof, is the
part of the problem we have not been able to do. In fact,
(5.24) is a quite crude sufficient condition for the integral
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(5.19) to converge at infinity, and the convergence proof
for an arbitrary square-summable sequence Ia„„ I prob-

ably requires more delicate methods. It is also conceiv-
able that the final state really does not exist for some
physically realizable initial states, indicating a serious
failure of our Wigner-function method. But we have not
found such an example either.

C. Evolution of coherent states

Although we have shown that at least finite superposi-
tions of harmonic oscillator states evolve into well-defined
final Wigner functions, we do not know whether these in

general represent attainable physical density operators.
However, we are now about to demonstrate that a
stronger statement holds for the coherent states. We
stress that, according to Appendix B, we again associate
with the coherent state of the particle the GIWF that
would apply without quantum fields.

Thus, select an arbitrary coherent state a . The cor-
responding initial density operator is Pr =

~
aP)(aP ~,

and the GIWF is W tr. tr(g, v), a special case of coherence
kernels studied in Sec. VB. Instead of the complex num-
bers a,p we for convenience denote the coherent states by
their center point (rI, v) from (5.15). Equation (5.20) then
gives

W () ~(g, s. ) = W~p p(g, a. ).

expI —[(g—r) ) +2(v —v ) +2(K2 —v2)(g~ —'g~) —2(K~ —v~)(gp —'gp)] j~2 (5.27)

We now invoke (5.22) and (5.23). The initial GIWF
(5.27) evolves smoothly into a stationary GIWF at r= oo

which is precisely of the form (5.27) representing a
coherent state. Only the average position and kinetic
momentum have changed,

0 0 0 0yv1+ v2 0 yv2 —v1
g1 —I 1+ 2 ~ 92 l2+1+y' l+y' (5.28a)

(5.28b)

Most importantly, the average velocity is damped to zero.
Using (5.7) it is, in fact, easy to show that if the initial

GIWF is that of a coherent state, the solution of (5.2) [and
(4.11)] is a GIWF of a coherent state at all times. The
center point just moves according to the equations

~ ~ 3q=v, v=vQe —yv . (5.29)

These are recognized as the dimensionless form of the
classical equations of motion for the position r and kinet-
ic momentum k of a charged particle in the presence of a
constant magnetic field be and damping force —I k. A
coherent state retains its form even when radiation damp-
ing is taken into account, and its center point spirals along
the classical trajectory.

rowness of the initial distribution. Mathematically, the
derivation of (4.11) or (5.2) is based on an expansion in
1/b, r and 1/hk, and (5.2) is not valid for too narrow dis-
tributions. On the other hand, the uncertainty relations
imply that physical distributions must not be arbitrarily
narrow simultaneously in all directions in (r, k) space, so
the 6-function initial distribution is physically meaning-
less. The roots of the mathematical troubles may lie in ei-
ther one of these aspects.

However, we have found no counterexample either.
For instance, the highly singular but physical GIWF
5(g~ )5(K2) leads to a stationary state.

Even if the stationary GIWF existed, there still is no
guarantee that it corresponds to a physical density opera-
tor. At present we have obtained no concrete results in
our attempts to address this issue in its full generality.

Finally, the even deeper question "what is the GIWF
corresponding to a given particle state" (and, a fortiori,
the question "which Wigner functions are physical" )
remains open. We forward the opinion that the connec-
tion between the instantaneous state of the p raticleP r (t)
and the GIWF W(r, k, t) should be laid down by assuming
that no quantized fields are present.

VI. SUMMARY AND CONCLUSION

D. Final remarks about the Fokker-Planck equation

The manifestly physical behavior of the coherent states
and the proof that at least finite linear combinations of
harmonic oscillator states stay mathematically well
behaved after time evolution suggest that the FPE (5.2)
may be useful and essentially correct when restricted to
the space of physically allowable Wigner functions.
Nevertheless, serious problems remain.

We have not been able to show that an arbitrary physi-
cal GIWF evolves into a mathematically well-defined ob-
ject under (5.2). As the nonexistence of the propagator
shows, this difficulty is in some way associated with nar-

In this paper we have exploited the property of our
GIWO and GIWF that they can handle quantized elec-
tromagnetic fields. We have outlined a general method to
eliminate the radiation reaction fields from the equation
of motion of the GIWO so as to arrive at a closed equa-
tion for the GIWF, and demonstrated the required pro-
cedures with a charged particle in a constant magnetic
field. We have obtained a Fokker-Planck equation for the
GIWF which explicitly displays the classical radiation
damping and the lowest diffusive quantum correction pro-
portional to A. Although the FPE has defied a
comprehensive analysis, the example of the coherent states
neatly demonstrates how the quantum diffusion maintains
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the Heisenberg uncertainty relations.
Because our formulation is intrinsically gauge indepen-

dent, so, automatically, are all our approximations. In or-
der to justify the commutator (3.25) simplifying the calcu-
lations we have worked out the final results in the dipole
approximation and neglecting recoil effects. However, we
see no fundamental reason why these approximations
could not be relaxed if necessary. Then the inherent
gauge invariance of the theory would likely be a valuable
asset. In the general fashion of Wigner functions the re-
sults are also easily rendered A expansions around the clas-
sical Liouville equation, which offers a lot of fresh insight
into quantum mechanics.

Among the disadvantages of our theory we must count
the general property of Wigner-function formulations that
the algebra tends to be lengthy and cumbersome. More-
over, our approach has got its fair share of both
mathematical and conceptual difficulties, whose resolu-
tion may call for new innovations and methods.

One immediate application of the Wigner-function
machinery we have in mind is to investigate the influence
of the micromotion due to the trapping fields on the per-
formance of laser cooling of an ion in a Paul trap: The
cooling problem has been formulated using ordinary
Wigner functions already, ' and recently optical reso-
nances derived from the micromotion may have been ob-
served. ' Quantum treatments of the scattered field are
also possible using the GIWO, which might open a new
approach to photon statistics of the free-electron laser. '

As a formal extension of the theory we plan to develop a
fully relativistic GIWF approach to the Dirac electron.
In summary, the GIWF has potentials both as a formal
device and as a tool in practical calculations.

APPENDIX A: ON A COMMUTATOR

We shall demonstrate that, under the Markov approxi-
mation and when the particle oscillates in a region smaller
than the spatial scale of the variation of the external clas-
sical fields, the commutator (3.25),

quencies ~ . As these frequencies are well separated and
the positive frequency components of k obviously only
couple to the positive frequency components of E, we

may write for k '+' the equation

k '+'=Q E I+'+ (k '+'yB BX—k '+')
Q Q 2M Q Q (A3)

Here E '+ stands for a linear projection of E '+' that ac-
counts for the statement that the components of various
operators at each frequency co only couple among them-
selves. Finally, we assume that the secular motion com-
mences with an amplitude smaller than the wavelength of
the external fields, so that in the arguments of the classi-
cal fields we may replace r with r(tp).

Within this framework, and within the Markov approx-
imation, we write the electric field from (3.11) and (3.12)
as

E '+'(r, t) =Ec+'(r(t, ), t )

+ g E'+'(q, t)e ' b, (tp) k(—t) .

B(r,t)=Bc(r(tp)) .

We now define the commutators

C.'+'(t) = [b, (tp), k.'+'(t), ] .

(A5)

(A6)

From the commutator of b~(tp) with Eq. (A3) we obtain
the equation

~ (+) ~(+)
Q g EQCQ

(A4)

E&+ ' is the co component of the classical electric
field, E'+'(q, t) contains the filter (if any) used to select
the m component from the free field, and K is a positive
number. The magnetic field is just

[b, (tp), k '+'(t)] =0, (3.25) j,k

holds true.
We begin with the Heisenberg equations of motion for

the kinetic momentum and position operators,

where we have used (A4), (A5), and the commutator

[b, (tp), r(tp)]=0 .

Obviously at to,

(AS)

k =g E+ (k XB BXk)—
2M

(Ala) C'+'(t) =0 . (A9)

r =k/M . (A lb)

k(t) = g [k '+'(t)+H. c.], (A2)

where the components k ' —'(t) roughly oscillate at the fre-

Here E and B contain the classical external fields, the ra-
diation reaction fields and the free quantized fields. How-
ever, to avoid inessential complications we neglect the
quantized magnetic field, and assume that the classical
component of the magnetic field is time independent. We
also assume that the secular approximation is valid,

But since (A7) is a homogeneous equation, C '+ (t) =0 for
all t) tp Hence (3.25) holds true. . In fact, (A7) contains
an explicit damping, and the zero commutator would re-
sult even from nonzero initial values.

The essential premises are the Markov approximation
and the restriction on the amplitude of the particle s oscil-
lations, i.e., the dipole approximation. The rest of the as-
sumptions are basically technical, chosen with an eye on
the problem of Secs. IV and V. In the cases where the
cross term T~, ~z in the equations of motion is expected
to be of decisive importance the commutator (3.25) should
be reexamined without the dipole approximation.
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APPENDIX B. WIGNER FUNCTION
WITH AND WITHOUT QUANTUM FIELDS

p =PI'PI (Bl)

where the field state pz satisfies (3.15), and pt refers to
the particle only. The expectation value of the operator P
in this state is very much analogous to (2.6);

l 1/2
P(r, u) =TrF pFexp —Qu dr A(r +ru)

X ( r + —,
'

u
~ pp ~

r ——,
'

u ) . (B2)

To exploit the property that PF represents the vacuum
state we write the exponential operator in (B2) in normal
order,

&/2

exp —Qu - dr A (r +ru)—1/2

I )=exp —Qu. dr A (r +ru)—1/2

l 1/2
X exp —Qu dr A (r +~u ) e(+) —f(u)

(B3)

In this appendix we show that the GIWF has a diver-
gence even if the quantum field is in the vacuum state,
and suggest that the correct way to associate the GIWF to
the state of the particle is to calculate the GIWF without
quantized fields.

Let us begin by assuming that at some instant of time
the state of the system (particle+ quantized field) is

Qu. g(q)sin(q u /2)
flq u

(B4)

diverges for u&0, implying that P(r, u) is ill defined.
We stress that this divergence is not an artifact of the

GIWF. In fact, the expectation value of the square of the
kinetic momentum k, and hence of the kinetic energy of
the particle, is infinite in any state of the form (Bl).
Divergent fluctuations of the position and velocity opera-
tors that we believe to be of related origin have also sur-
faced in earlier Heisenberg-picture treatments of the
motion of an unbound electron.

The reason for the divergencies probably is that the par-
ticle cannot be separated from its own electromagnetic
field, and the state (Bl) with an uncorrelated particle and
field is therefore unphysical. It seems that the well-
known renormalization procedure (see, e.g. , Ref. 7) needed
to remove the divergent principal-value part from (3.9)
must be supplemented with a redefinition ("dressing") of
the field and particle states and operators in such a way
that they represent the true physical states and observ-
ables.

However, we adopt another approach. First, in view of
the intended use of the GIWF we assume that it refers to
the experimentally observable dynamical variables of the
dressed particle. Second, we assume that to the lowest ap-
proximation the dressed quantized field can be ignored,
and that precisely the ordinary quantum mechanics then
emerges for the dressed particle. We end up demanding
that the correspondence between the GIWF and the state
of the particle should be set up as if no quantized fields
were present, as is done in the main text.

Then the operators A ' —' do not contribute at all in (B2).
Unfortunately, the commutator term
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