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The fine-structure levels of helium from microwave data are coalesced into a single-term-value
table by means of theories. It is found to yield transition frequencies in excellent agreement with
some diode laser measurements and a consistent ionization energy of 198 310.7722(5) cm '. This
value is 1 order of magnitude higher in precision and in accord with Martin s value [Phys. Rev. A
29, 1883 (1984)], subject to the same assumption on the 2'P level. A semiempirical theory is

developed and fitted to all levels (I.)2), The result suggests a modification in the usual usage of
the polarization formula for the direct energy and extends its utility to the exchange energy.

I. INTRODUCTION

The description of a multielectron system greatly sim-
plifies when one optical electron is excited and moves in
the field of an ionic core in the S state. Such excited
states are called quasihydrogenic or nonpenetrating Ryd-
berg states if the orbital angular momentum L is suffi-
cient to preclude the electron's motion from the core re-
gion. Based on this simple picture, the polarization for-
mula has proven to be a very useful tool in analyzing
atomic spectra. ' When the core and the optical electron
have spin angular momenta, additional magnetic interac-
tions will intermix with the electrostatic exchange interac-
tion to produce fine structure.

A particularly simple example is the two-electron sys-
tern. Here the one-electron core is hydrogenic, so all its
properties pertaining to long-range interactions can be cal-
culated analytically as in the works of Drachman. ' In
fact, his calculations enable one to determine helium term
values to an accuracy of 3 X 10 cm ' for G (L =4) and
3X10 cm ' for 8 (L=5) states, provided that the
electrostatic direct spin-free energy can be successfully
disentangled from the fine structure. A complete theory
for the helium fine structure has been formulated by Cok
and Lundeen. They have tabulated results of elaborate
computations of three radial integrals in the magnetic fine
structure for each separate value of L and the principal
quantum number n. For the electrostatic exchange ener-
gy, accurate variational calculations have been performed
for D states.

An abundance of high-precision experimental data
from microwave and field-crossing measurements in heli-
um (including some computed energy levels) has been col-
lected by Farley et al. They analyzed these one- and

two-photon transitions between fine-structure levels
within the same n manifold according to the Rayleigh-
Ritz principle, and obtained a single set of self-consistent
global-fit data for each value of n. From the viewpoint of
traditional spectroscopy, Martin has compiled helium ex-
perimental energies believed to be accurate to 0.01 cm
Later he reevaluated the data in light of new laser mea-
surements for low-n and -L substates. The precision of
many energies has improved beyond 0.001 cm '. By
combining these energies with theoretical term values, he
was able to determine the ionization energy within an er-
ror of 0.004 cm ' with 95% confidence.

In the present work the best experimental data and
theory are collected to produce a unique energy scheme of
high precision and self-consistency for helium. For the
range of 5(n (12 and L )2, the term values are accu-
rate to the 10 cm ' level. By an independent test using
the diode laser measurement of the 5D-6F transitions, '

the crucial inter-n interval is found to be superior to other
works. ' ' "' Similarly the ionization energy derived
from these term values is more precise than and consistent
with the recent values. '

The present energy scheme is based on the global-fit
data enriched with the higher-L measurements' for
n =7 and 8. A simplified fine-structure theory is
developed in Sec. II, where the sublevels are described in
terms of the following three parameters for each value of
n and L. The magnetic constant h depends theoretically
on n and L in a trivial way, and in Sec. III theoretical
values are compared with those derived from the experi-
mental data. The exchange energy X can be extracted
from the global-fit data in two ways. The discrepancy
among the two values is a test of the theory as well as of
the data's quality. For the D states, precise variational
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calculations of X are available for comparison. These
tests show that for the present purposes the simplified
theory may be used instead of the more elaborate theory
of Cok and Lundeen. Finally the direct energy may be
taken from Drachman's Theory for the highest-L com-
plex for which experimental measurements are available.
Then global-fit energies for each n can be fixed to a corn-
mon energy scale, most conveniently expressed as term
values in Sec. IV.

In Sec. V the status of the polarization formula is eluci-
dated by utilizing the present data in Edlen plots. As al-
ready predicted by other theories, ' the result is not a
single straight line. However, the direct energy shifts for
each value of L do form a straight line as well as the
quantity n X. These features may be combined into a
semiempirical theory where linear extrapolations in n (un-
like the nonlinear ones in the global-fit data ) may be
made to fill in missing or low-precision data. Thus im-
provement is made on the global-fit data in the regime of
low n, where the original measurements are sparse and
less accurate.

To facilitate comparison with one-photon measure-
ments, general multiplet intensities are given in Sec. VI,
accounting for singlet-triplet mixing. For the 5D-6F
transition, specific multiplet intensities are evaluated. An
approximate procedure is described for comparison with
the diode laser measurement, ' where the fine structure
has not been completely resolved. In Sec. VII, the ioniza-
tion energy is determined from the present term values.
Finally, in Sec. VIII I discuss the implications of the
semiempirical theory for other atoms.

~mag ~ls +~1S +~sS

where

Hi, ——(Z —1)(21 s)h, (3)

His ———2(21.S, )h, (4)

and

H,s ——4[s S, —3(s.r)(S, .r)]h .

These expressions agree with those in Palfrey and Lun-
deen. ' In the Heisenberg approximation, the magnetic
parameter is

h = —,a R(r )„z ——a R[n3(2L+1)L(L+1)]

The matrix elements in Eqs. (3) and (4) are trivially
evaluated in their appropriate l-s representations. Follow-
ing Bethe and Salpeter, ' the operator in Eq. (5) is found
to be diagonal in the L-S representations, with matrix ele-
ment given by

an may be broken up into a spin-orbit, a spin —other-orbit,
and a spin-spin term. Thus

(LSJ
i H,5 i

LSJ)= —4I'h j(2L —1)(2L +3),

II. SIMPLIFIED FINE-STRUCTURE THEORY

The present system consists of a nucleus of charge Z
and negligible spin, a spherical ionic core (L, =0) with
spin S„and an optical electron with orbital angular
momentum L )2 (and, of course, spin s = —, ). It is con-
venient to separate the Hamiltonian of the system into a
magnetic term H, g

which explicitly depends on spin and
an electrostatic term H„which includes exchange and all
relativistic effects that are independent of spin.

The magnetic-fine-structure theory has been accurately
given by Cok and Lundeen. By applying the Heisen-
berg' (nonpenetrating) approximation to the optical elec-
tron, the spin-dependent Hamiltonian greatly simplifies to

H, s
——(aoa )l(mr )[ ~ (Z —3)l (s+S, )

+ —,(Z+1)1 (s —S, )

+s.S, —3(s r)(S, r)] .

where

Y'=L (L + 1)[S(S+1)—S,(S,+1)+—,]
——,[[J(J+1)—L (L+1)—S(S+1)]

+[J(J+1) L(L+1)—S(—S+1)] ) . (8)

Using Racah algebra, ' the matrix elements of Eqs. (3)
and (4) are easily transformed to the same L Srepresenta--
tion as follows,

(L(sS, )SJ iHi, iL(sS, )S'J)

=2(Z —1)hL (L +1)[(2S+ l)(2S'+1)] i

L — L+ — L — L+—1 1 1 1

2 2 2 2
C

S, J S S, J S'

In Eq. (1), m is the reduced mass of the electron, a the
fine-structure constant, and r the electron's distance in
Bohr radii ( a 0) from the nucleus. Since the atomic core is
assumed to be in an S state, the total orbital angular
momentum L is identical to 1. The magnetic Hamiltoni- and

L

S,

1 1L ——
2 2

J S S, J S'
L — L ——1 1

2 2
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TABLE I. Matrix elements of H, s in terms of h [Eq. (6)] for S, = z .

HIs,

L
L

L —1

L
L+1

0
(Z —1)v L(L+1)
—(Z —1)(L +1)

—(Z —1)
(Z —1)L

0
2VL (L + 1)

2L+2
2

—2L

0
0

(2L +2)/(2L —1)
—2

2L/(2L +3)

((L (sS, )SJ
l His, I

L (sS, )S'J ) )

=( —1) +'4h[(2S+1)(2S'+1)]'

&( (J+1)[(J+—, )(J+—,
'

) L(L—+1)—S,(S, +1)] ',
2 J1

2
S'

Se J+ 2 L Sc J+ p

L Sc J 2 L Sc J 2

+ J[(J , )(J+—, —) L, (L,—+—1)—S,(S,+1)] ',
2 J1

2
S' (10)

In Eqs. (9) and (10),
r

Jl J2 J3

J4 Js

is the usual 6-j symbol.
For the heliumlike configuration 1s nl, the allowed

quantum numbers are S, = —,', S=0,1, and J=L —1,
L,L + 1. Table I lists the matrix elements of Eqs. (3), (4),
and (5) with these values of L, S, and J. The electrostatic
energy can be written in general' as the sum of a direct
term D and an exchange term X,

E„=D+[——, +S,(S, +1)+—,—S(S+1)]X
=D+(S,+ —, )X, S =S,+ —,

h = [E(L 1 L —1) E(L 1 L +—1)]

X [1 6/(4L2+4—L +3)]/(2L +1),
D = , [E(L OL)—+E(L1L)]

+ —,
' [E(L 1L —1) E(L 1L +1)]—

&( [1 6/(4L +4L—+3)]/(2L +1),
X= , [E(L OL)+—E(L1 L)

E(L 1 L —1—) E(L 1 L + 1—)]
+8L (L + l)[E(L 1 L —1) E(L 1 L +1)]—

&C [(2L +1)(4L2+4L +3)]

(13)

(14)

(15)

Combining with the spin-dependent Hamiltonian, the fine
structure energies are obtained by diagonalizing the total
Hamiltonian in the L-S representation,

E (L 1 L —1)=D —X+[3—Z +2(2L —1) '](L + 1)h,
E(L 1L + l)=D —X+[—3+Z+2(2L +3) ']Lh,

(12}
E(L OL)=D —(Z —1}h/2+ I [X+(Z —1)h/2]

+(Z+ 1)'L (L +1)h'] '~',

E (L 1 L) =D —(Z —1)h /2 —[ [X + (Z —1)h /2]

+(Z+1) L(L+1)h )'

For helium (Z=2), accurate experimental energies are
available up to n=12. Then Eq. (12) may be inverted as
a test of the simplified theory. In particular, the three un-
knowns D, X, and h can be evaluated from each set of
four fine-structure levels, with an extra condition to check
for consistency. One finds

(X+h/2) +9L (L+1)h =[E(LOL) E(L 1L)] /4. —

(16)

Of special importance is Eq. (14} which allows one to
correctly extract the spinless electrostatic direct energy
from the four fine-structure sublevels. As discussed by
Curtis and Ramanujam' (CR}, several other procedures
have been adopted for this quantity in application of the
polarization theory. For their study, only the first square
bracket was used. On the other hand, Edlen' assumed a
spinless core, and obtained an expression similar to Eq.
(14) except that the last square bracket was replaced by
unity. Yet others utilized the statistical mean, which re-
moves the magnetic interaction (in contradiction to CR),
but leaves a residual exchange term of —X/2.

In conventional spectroscopy, the triplet sublevels are
usually unresolved. The barycenter position, L,„,weight-
ing each sublevel by (2J+1), is not free from magnetic
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interactions in the second order. For low L states, the
barycenter is found from Eq. (12) to be

3L,„=—X —3L (L +1)h l2X,

where h &&X. For example, the 3D residual magnetic in-
teraction represented by the last term is 0.02 cm ', and
falls off as n for larger n. These variations in the treat-
ment of both experimental data and computational results
make detailed comparisons of other works with the
present work difficult.

III. VERIFICATION WITH THE GLOBAL-FIT
DATA AND DRACHMAN'S THEORY

For the present purpose, a convenient data base is the
"global-fit" compilation of Farley et al. They have col-
lected mostly experimental and some theoretical data for
all transitions within the same n manifold for n ranging
from 3 to 12. Each datum was weighted statistically.
Then fine-structure energy levels were obtained subject to
the Rayleigh-Ritz combination principle. Their precisions
were usually of the order 10 cm ' for n=7 or higher.
However, they worsened rapidly with decreasing n as
more reliance was placed in theory and in extrapolation of
data. For n =7 and 8, even more precise data involving
the H (L=5) states are available from the work of Cok
and Lundeen. '

From the above set of data, the three parameters in
Eqs. (13)—(15) are evaluated for each value of n and L.
In Table II the actual fine-structure splittings, LI
LI +~, are given rather than h. From Eq. (13), h is relat-

ed to the tabulated quantities simply by the multiplicative
factor 0.155 56, 0.12605, and 0.10308 for L=2, 3, and 4,
respectively. It is seen that the simple theoretical values
given by Eq. (6) lie within experimental error for L=3,4.
However, for the slightly penetrating D levels, theoretical
values appear to fall below the experimental ones by 1%.
Even the elaborate theory of Cok and Lundeen improved

the agreement by only a factor of 2. In contrast, a
discrepancy of 20% occurs for the penetrating P levels.

The direct energies D can only be evaluated relative to
another L level with the same value of n. These so-called
electrostatic intervals agree with those of Cok and Lun-
deen' within 10 cm '. Their ramifications for polari-
zation theory will be discussed later in Sec. V. Table III
shows the exchange energies X as determined by Eq. (15)
and by Eq. (16) using Eq. (13) to eliminate h. Usually the
two values agree very well, reflecting the consistency of
the simplified theory with experiment and the quality of
the data. For comparison, values from Cok and
Lundeen's extended adiabatic approach are also shown in
both Tables II and III. For the fine-structure splitting, no
appreciable difference is seen except in the lowest few nD
states. Here their elaborate calculations lead to somewhat
better results. Similarly their exchange energies agree
with the present ones within their stated errors. Further
comparison for nD states (n &8) can be made with the
high-precision variational results from Kono and Hat-
tori. They all concur very well except possibly for the
3D value of Cok and Lundeen. In the simplistic Heisen-
berg approximation, ' X(n, 2) is too low by a factor of 3
and X(n, 3) by a factor of 2. X(n, 4) is less than 10
cm ' and therefore cannot be determined from the data
with the present precision.

For n (6, the larger discrepancy between the exchange
energies from Eqs. (15) and (16) is due to the poorer quali-
ty in the global-fit data. As high-precision measurements
become unavailable, more and more reliance is placed on
extrapolation from higher-n data. It is known that X
must asymptotically approach n, but at low values de-
viation is considerable. In fact, for the 4F level, the X
value from Eq. (15) has an uncertainty equal to the value
itself, and from Eq. (16), the X value becomes complex,
indicating an underestimation of the F3-'F3 splitting. In
order to place the energy levels on an absolute scale, it is
necessary to examine the direct energy more closely. It
turns out that both D and X, using appropriate scaling,
can be plotted on straight-line graphs. Thus, accurate ex-
trapolation may be made as discussed in Sec. V.

TABLE II. Fine-structure splitting I.l &- LI +l. (Values in 10 ' cm '. ) Experimental values are
from Ref. 3. Theoretical values are from Eq. (13).

3
4
5
6
7
8
9

10
11
12

Expt.

4672(3)
1972(1)
1010(1)
585(1)
369(1)
247(0)
173(2)
126(2)
95(1)
73(1)

2
Theor.

4637
1956
1002
580
365
245
172
125
94
73

CL'

4654
1966
1007
582
366

172
125

Expt.

890(240)
449(50)
258(5)
160( 1)
108(1)
76(2)
56(2)
42( 1)
32(1)

Theor.

862
442
256
161
108
76
55
42
32

Expt.

261(49)
149(8)
93(1)
62(1)
43(2)
31(2)
23(1)
18(1)

Theor.

252
146
92
62
43
32
24
18

'Cok and Lundeen theory, Ref. 13. Values for L=3 and 4 are identical to theory.
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TABLE III. Exchange energy X in 10 ' cm

3
4
5
6
7
8
9

10
11
12

Eci. (15)

170469( 5)
98 510(10)
56 749(25 )

34 890(6)
22 738(1)
15 566(1)
11 092(2)

8170(2)
6184(1)
4790(1)

Eq. (16)

170442
98 500
56 805
34 883
22 734
15 563
11090

8168
6183
4790

CL'

L=2
169 617(333)
98 431( 132)
56 829(77)
34 884(50)
22 736(1)
15 564(60)
11091(1)

8142(50)
6158(50)

KHb

170 580( 30)
98 520(20)
56 820( 10)
34 890( 10)
22 740
15 570

Improved'

170456( 13 )

98 505(5)
56 810(5)
34 877(3)

4
5

6
7
8
9

10
11
12

294(240)
240(50)
166(9)
112(1)
82(1)
59(2)
46(2)
34(1)
27(1)

e
173
152
115
81
59
44
34
28

L=3

159
113
82
60
46
35
27

130(3)
201( 1)
158(1)

'Cok and Lundeen, Ref. 5.
Kono and Hattori, Ref. 6.

'Derived from Table V.
Derived from Martin, Ref. 9, otherwise from Table IV.

'Value is complex. See text.

t„L =R(Z —1) /n +b,„L . (17)

Usually the Rydberg constant Ro for He is taken to
be pR = 109722.273 09(11) cm ', where p, =mM/
(m +M) with electron m and nuclear mass M. Recently,
using Jacobi coordinates, Drachman has derived a
second-order nuclear recoil term, which modifies the ki-
netic energy of the Rydberg electron by the factor
(1—m /M ). Thus, the new appropriate Rydberg con-
stant R is

R p(l —m /M ) '=R m(M+m)/(M+2m) .

An obvious interpretation is that the Rydberg electron's
reduced mass is relative to the entire core of mass
(M+m). Hence, the new Rydberg constant for He is
larger than Ro by R I /M =0.00206 cm '. So the
appropriate value of R for He is 109722.275 15(11) from
above based on an unpublished R o or 109 722.275 20(13)
cm ' based on ' R =109737.31534(13)cm

The spin-free energy shift may be expressed as the sum
of the relativistic and nonrelativistic contributions of the
optical electron,

IV. DRACHMAN'S THEORY
AND THE EXPERIMENTAL TERM VALUES

The direct energy D, from Eq. (14), may be regarded as
a term value related to the ionization energy EI by
t =EI—D. It is convenient to separate out the Rydberg
term

(r) (nr)
~nL ~nL +~nL (18)

Formally the relativistic part includes the Lamb shift and
the "retardation correction" effect. The former van-
ishes for states of L )2 because it involves the Dirac 6
function. The latter is usually very small, and is more
conveniently treated as part of 6'""'. Therefore, the rela-
tivistic shift to the accuracy required here is simply due to
increase in electron mass, '

b, '„"L, ——a R(Z —1) [n/(L + —,
'

) ——,]/n (19)

V4 ——a&(r )„L[1+p, ——,", (Za) —a /4a~] . (20)

The correction terms in the square bracket are due to
mass polarization, to relativistic effects on the polariza-
bility, and to the retarded potential which amount to
2.74)& 10, 2.21 && 10, and 0.47 & 10, respectively.
Therefore, the net correction is only 7X10, negligibly
small except for D states where its value is 10 cm ' for
the lowest few n.

The second term in 6' " is given by

Following Drachman, the nonrelativistic term is
separated into a first- and a second-order correction,

The first-order term 6'" is the sum of
expectation values of inverse powers of the optical
electron's distance from the nucleus r. The leading term
in 6'" is due primarily to the induced dipole polarizabili-
ty of the core a &,
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TABLE IV. Term values of helium.

Term n=5
TLsJ

n=6 Term n=9
TLsJ {cm

n=10'
1G

G

lF
F

1D

D

4389.047 01(3 )'
4389.048 70(48 )

4389.053 94( 17)
4389.051 31(49)
4389.538 21( 11)
4389.543 38(48)
4389.550 66( 11)
4389.547 87(49)
4392.379 04(9)
4393.506 88( 34)"
4393.516 33(34)
4393.51698(33 )

3047.941 82(4)'
3047.942 80{8 )

3047.945 85(5)
3047.944 29( 8 )

3048.237 16(4)
3048.240 61(9)
3048.244 71(4)
3048.243 19(9)
3049.898 42{4)
3050.591 66(6)
3050.597 12(6)
3050.597 51(6)

1G

G

1F
3F

1D

D

4
3
4
5

3
2
3
4
2
1

2
3

1354.629 91(2)'
1354.630 20(2)
1354.631 11(2)
1354.630 63(2)
1354.721 60(2)
1354.722 79(2)
1354.723 96(2)
1354.723 55(2)
1355.220 23(2)
1355.440 72( 2 )

1355.442 33(2)
1355.442 45(2)

1097.247 93(2)'
1097.248 15(2)
1097.248 81(2)
1097.248 46(2)
1097.315 23(2)
1097.316 13(2)
1097.31698(2)
1097.31669(2)
1097.679 44(2)
1097.841 85(2)
1097.843 02(2)
1097.843 11(2)

Term n=7
TI sJ

n=8 Term n=11
TLsJ (cm

n= 12

'H
H

1G

'G

1F

F

1D

D

2239.252 75(0)'
2239.253 19(1)
2239.254 44( 1 )

2239.253 79(0)
2239.297 69( 1 )

2239.298 30( 1 )

2239.300 23( 1 )

2239.299 23( 1 )

2239.487 90( 1 )

2239.490 23( 1 )

2239.492 78( 1 )

2239.491 83(0)
2240.540 58( 1)
2240.992 47( 1 )

2240.995 91( I )

2240.996 16( 1 )

1714.426 76(0)'
1714.427 06(0)'
1714.427 90(0)'
1714.427 46(0)'
1714.457 58(1)
1714.457 99( 1 )

1714.459 28( 1 )

1714.458 61( 1)
1714.586 85( 1 )

1714.588 50( 1)
1714.590 18( 1 )

1714.589 58( 1)
1715.294 88( 1 )

1715.604 27( 1 )

1715.606 57( 1 )

1715.606 74( 1)

1G
3G

1F
F

1D

D

906.814 83( 1)'
906.814 99( 1)
906.815 49( 1)
906.815 22( 1)
906.865 65( 1)
906.866 33( 1)
906.866 97( 1)
906.866 75( 1)
907.13968( 1 )

907.262 62{1)
907.263 57{1)

761.975 17( 1 )'
761.975 30( 1 )

761.975 64( 1 )

761.975 48(1 )

762.01446( 1 )

762.015 00( 1 )

762.0]5 49( 1 )'
762.Q15 32( ] )'
762.225 77(1)b
762.321 69( 1 )

762.321 74(1)

'Determined by theory.
Not based on experiments. Uncertainty may be substantially larger than the quoted one.

'More accurate values may be obtained from Ref. 16.

V6 (~2 6P1)(r ~ L (21)

where a2 is the quadrupole polarizability and P& the non-
adiabatic correction to the dipole polarization. Finally,
the last term ( V7+ V8) contains all other higher-order
corrections. It turns out that the last term is numerically
larger than V6 for I' states (L =3), but smaller by at least
an order of magnitude for higher values of L. Regarding4'" as an asymptotic series, Drachman has determined
first-order shifts to be as follows (small errors corrected
later are negligible small for the present purpose),

V4+ V6/2+ V6/2, (22a)
g(&)

Vg+ V6+( Vq+ V8)/2+( V7+ V8)/2 . (22b)

For L )4, the uncertainty is no more than 3 & 10 cm
or 1 MHz (1 MHz=3. 335 64X10 cm ').

The second-order polarization shifts 6' ' have also been
tabulated by Drachman for L & 3. They are much small-
er than either the exchange or the fine-structure terms,
and are less than 3&10 cm ' for G and higher-L lev-
els.

The above theory provides a framework for fixing
high-L, Rydberg levels to an absolute energy scale. For
n =5—12, G levels are always available in the global-fit
data of Farley et al. Further, in the cases of n=7 and 8,
H levels from Lundeen's work' can provide even more
accurate absolute term values. If the microwave (intra-n)
data were sufficiently accurate, the uncertainty in the ab-
solute energies would be about 1 and 0.01 MHz for G and
H levels, respectively. It is recalled that for G levels, X is
less than 10 6 cm ' (and decreases by about 2 orders of
magnitude for each successively higher value of L).
Therefore it may safely be neglected in fixing the singlet
sublevel from Eq. (12) to the absolute scale for each n.
From then on, the above one- and two-photon microwave
data are utilized to construct the experimental energy-
level scheme in Table IV. Details of actual transitions
employed are relegated to the Appendix. It should be not-
ed that the energy levels thus found are accurate to 1 or 2
times 10 cm '. However, the situation for n=5 (and
to a lesser extent for n =6 and 12) is not as good, owing to
lower quality of the global-fit data. Fortunately, it is pos-
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sible to make improvements based on the semi-empirical
polarization theory discussed next.

V. THE POLARIZATION FORMULA
AND A SEMIEMPIRICAL THEORY

In the traditional polarization formula, ' 6'""' in Eq.
(18) is called the polarization shift,

b~ =A (Z)P(n, L)[1+k(Z)q(n, L)] . (23)

A (Z) = (Z —1) o.„where a
&

is the dipole polarizability of
the core and has the value —„ao for He. In Eq. (23),
P =(Z —1) (r ) and q =(Z —1) (r ) /(r ) are
for the present purpose conveniently tabulated by Edlen.
However, owing to the difference in the reduced mass,
those P values should be multiplied by 0.999 884 for heli-
um. In a standard Edlen plot, (Ap/P) is the ordinate and

q the abscissa, therefore Ak is the slope and 2 the inter-
cept.

Litzen has applied the above formula to older data in
helium (Z=2). He concluded that the (3—6)D data
formed a straight line with slope —0.05 and intercept
0.277, while the 5G and the (4—8)F shifts lay on a dif-
ferent line with slope + 1.8 and intercept 0.240. Since
the two lines had opposite signs for the slope and neither
had the correct value for the intercept of 3 =0.28125, he
justifiably questioned the usefulness of the polarization
formula.

It is instructive to examine the implications of
Drachman's theory for the polarization formula. In Eq.
(23), the first term is practically the same as V4 given by
Eq. (20), except for the negligible correction factor of

1.000006, imperceptibly changing the dipole polarizabili-
ty a& from 0.281250 to 0.281252ao. The next term in
Eq. (23) is V6, provided that k(Z)=(a2 —6P&)/a„where
/3, =,'„and a2 ——~ . Now Eq. (22) can be easily
described in terms of an Edlen plot. For L & 3, all levels
lie in a straight line with slope (aq —6P~)= —0.2694 and
intercept a& ——0.28125, as long as the uncertainty in Eq.
(22b) is negligibly small.

In Fig. 1, the quantity 6'"'/P is plotted against q as in
a standard Edlen plot for all L ~ 3 levels from Table IV.
The points (circles) computed from Eqs. (14), (17), and
(18) clearly fit the straight line very well, with the expect-
ed slope (a2 —6P&) and intercept A =a~. Clearly the error
term and effects left out of Eq. (22b) are undiscernible,
and the present procedure of fixing energies to an absolute
scale is validated. A measure of the sensitivity of this plot
is shown by accepting the 7'F3—'I6 three-photon transi-
tion. ' Then, the 7I level would be given by Drachman's
theory, so the 7G and the 7H levels could be determined
from the 7F by one- and two-photon measurements. '
These results for 7H and 7G shown as triangles in Fig. 1

are seen to stray far off the line. The inconsistency of this
difficult three-photon measurement with other results has
been noted and thoroughly discussed by others. '

For L=3, Drachman's theory as given by Eq. (22a)
predicts an Edlen plot whose slope has an uncertainty
equal to its own value of —0.135 and whose intercept has
the value of e&, but with very large error bars. These un-
demanding requirements are well met by the present data
in Fig. 2. They fall on a straight line as indicated except
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FIG. 1. Edlen plot for L =4: ~, present data, 4 from Cok
and Lundeen's 7I-6F measurements ( g indicates off scale).

FIG. 2. Edlen plot for F states derived from Table IV. The
4F value is unreliable (see text), and is replaced by a point on the
straight line in the improved semi-empirical term values (Table
V).
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for the unreliable point for n=4 .The line yields a slope
of —0.150 (k = —0.535) and A =0.28036 which differs
from a' by 0.3%. It is recalled that Litzen's correspond-
ing values for F levels are + 1.8 and 0.240. These
discrepancies are easily traced to his data which deviate
from the present by as much as 0.05 cm '. Both sets of
energies will be compared with diode laser measurements
in Sec. VI.

Next the Edlen plot for L=2 levels is shown in Fig. 3.
Once more, the points form a straight line except for the
n=4 one which is suspect (triangle). It should be re-
placed by the underlying circle which is derived from a
semi-empirical theory to be discussed later. The slope and
intercept are —0.041 63 (k = —0.1513) and 0.27519,
respectively, which are not very different from Litzen's
values.

The above straight-line behavior implies that effects left
out of Eq. (22) scale as q(n, L). As discussed by Drach-
man, they are primarily Ap „' due to penetration of the
optical electron into the core, A~„' which accounts for the
short-range correction to the asymptotic form of the di-
pole polarization potential, and 6' ' the second-order di-
pole polarization shift. The first and the last always
lower the energy (b,;„',6' '&0), while the second raises
the energy (A~„'&0).

Calculations show that all three effects decrease rapidly
as L increases. Indeed for L=4 they are all negligibly
small as implied by Fig. 1. For example, Drachman
found that for the 8 G level, 6p, „' = 1.4 & 10
Ape& 2 4)& 10

&
and 6' '=1.2&& 10 cm '. Actually

the definition of Ap„', is not unique since there is not a

0.266

"proper" way to cut off the dipole polarization potential.
I have chosen the Bethe-Reeh method of calculating the
dipole polarization energy rather than the Callaway-
Temkin cutoff employed by Drachman. My value for
laLp is 8 8& 10 cm

For the F levels, these effects are of the order of 10
cm ' for the lower-n members and certainly not negligi-
ble. Drachman has reported 5'„,„' values for n=7 and 8,
and the values for n =4 and 5 may be obtained from
Heisenberg's two special-case formulas' for n =L + 1

and n =L+2. In Fig. 4, where b~, '„/P(n, 3) is plotted
against q(n, 3), these four points (circles) fall on a straight
line, as was first observed in Cogx by Vogel. For 6' ',

Drachman has calculated all values with n ranging from
4 to 11 and I have computed Ap', „' for the same n values.
Similar to Ap „', these energy shifts are plotted in Fig. 4 in
the same manner, with the former as triangles and the
latter as squares. It is evident that both 6' ' and Ape&

form straight lines too. Not shown are the facts that 6p', „'

for L=2, 6' ' for L=4, 5, and 6 all form individual
straight lines when divided by P(n, L) and plotted against
q(n, L) for the same L. It seems reasonable to infer that
all significant effects not accounted for in Eq. (22) scale
with q(n, L) for L &2. Since all three lines in Fig. 4 do
not extrapolate to the origin, both the slope and the inter-
cept in an Edlen plot will be modified by these shifts as in
Figs. 2 and 3. That penetration effects scale with q for
each L has been noted previously ' but the observation
for the second-order polarization shift appears to be new.

Since these shifts cannot all be calculated unambiguous-

ly (except through a full-scale variational computation, as

by Kono and Hattori ), I favor the semi-empirical ap-
proach advocated by Curtis. Like his semi-classical
theory, three separate plots must be made for D, F, and G
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FIG. 3. Edlen plot for D states derived from Table IV. For
n =4, the triangle is from Table IV and the circle from Table V.
The n =3 value is derived from Martin (Ref. 9).

FIG. 4. Corrections to Drachman's results for F states in an
Edlen plot. ~, penetration A~,„'. 4, second-order dipole po1ari-
zation 5' '. &&, short-range dipole cutoff Ap', „'.
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and all higher-L levels. Carrying this approach one step
further, I note that the exchange energies in Table III do
not scale exactly as n . However, when n X(n,L) is
plotted against q (n, L) the data form a straight line again.
Therefore the Edlen plot can be used for the exchange as
well as for the polarization energy.

The results for D levels are displayed in Fig. 5 ~ On this
scale, differences among the columns in Table III are not
apparent. Upon closer scrutiny a small nonlinearity is
evident, and the point for n = 3 shows a significant depar-
ture from the straight line. I attribute these effects to the
small but non-negligible penetration of D states which is
most evident for the lowest level ( n =3).

Figure 6 shows the same results for F levels. Here X
values from Eq. (15) are shown as triangles and from Eq.
(16) as inverted triangles (except when they coincide with
the circles). Unfortunately, the difference in the two sets
is rather large, and in the case of n=4, X evaluated from
Eq. (16) even becomes complex. As discussed earlier in
Sec. III, the discrepancy is a reflection of the progressive-
ly lower quality in the low-n global-fit data where reliance
has to be placed on nonlinear extrapolations. Actually,
improvements can be made by a judicious choice of exper-
iment and theory. For n =6—11, the 'F3- F3 interval is
already accurately measured by connection to the 'D2.
Reliable theoretical values may be taken from Table II for
the Fq F4 interval. -Then Eq. (16) yields X values shown
as circles in Fig. 6. Working backwards it is now also
possible to redetermine the term values and the new X
from Eq. (15). These new X's from the two equations
now agree to better than 1%. The new values usually lie
between the two old ones, and, more importantly, they

now form a well-determined straight line. Although the
n=5 'F3- F3 interval in the global-fit data has been deter-
mined through extrapolation, when combined with the
theoretical F2- F4 interval, a consistent X value is ob-
tained. Further, the new X (circle) lies on the same line in
Fig. 6. Therefore, the 5 'F—F interval is accepted as ac-
curate. However, that is not the case for n=4. Here
straight-line extrapolation in Fig. 6 yields 0.083(2) cm
for n X. Table III shows that this value for X differs
from the old one by more than a factor of 2. Finally, the
value for the direct energy D is calculated from the
straight-line extrapolation in Fig. 2 of hI"'/P(4, 3)
=0.27723(4)ao. From these values, new or improved
term values are calculated and listed in Table V. Since no
significant improvement is found for the higher values of
n, new term values for n ) 7 are not given.

For the D levels, the global-fit data are based on experi-
mental 'D2- D2 intervals only for n )7, which are then
extrapolated to lower n. For n=6, the measurements of
Beyer and Kollath place the DJ term values at
0.00018(31) cm ' higher than those in Table IV and are
judged to be less accurate. On the other hand, the
5'D 5D,„m—easurement of 1.13632(6) cm ' is a sub-
stantial improvement over the global-fit extrapolation.
Defining the average D level as the (2J+1)-weighted
average of the triplet levels in Eq. (12), the difference
( D,„D2) is f—ound to be [th +3L (L+1)h /X], which
has a value of 0.00165 cm ' using values of h and X
from Tables II and III. Combining with the previously
determined 5 'D2 term value, the improved 5 Dz value is
4392.51705(8) cm '. The 5 D& and D3 levels are then
found relative to this new D2 level from the accurate
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TABLE V. Improved term values (in cm ').
2s+ 1L

VI. MULTIPLET LINE INTENSITIES
AND A DIODE LASER MEASUREMENT

D
1F

F

1D

D

G
1F
F

1D

D

G
1F
F

'Reference 9 combined with El from Table IX.

Martin'
6858.771 90(10)
6858.775 42(10)
6858.794 80(10)
6858.784 05(10)
6864.212 45 (41)
6866.168 27(13)
6866.186 78(13)
6866.187 99(13)

Table IV
4389.538 21(10)
4389.543 33(11)
4389.550 66(11)
4389.547 75(11)
4392.379 04(6)
4393 ~ 507 53(8)
4393.517 01(8)
4393.517 65(8)

Table IV
3048.237 16(4)
3048.240 55(4)
3048.244 72(4)
3048.243 11(4)

Table IV

The above energy-level scheme will now be tested
against laser measurements. For direct comparison with
experiment, it is useful to have the multiplet line intensi-
ties. In a rigorous L-S coupling scheme, the triplet values
have been given by Bethe and Salpeter. ' A more general
formula for arbitrary S is'

1 J J'
I =(2J+ l)(2J'+1)

'2

(24)

@LDL WLO ~L +PL 1 ~L

To account for singlet-triplet mixing when J=L, it is ad-
vantageous to introduce a mixing angle Oz such that

tan(201 ) =(Z + 1)hU'L (L + I)/[X+(Z —1)h /2] . (25)

From Tables II and III, 01 is easily calculated. It varies
slowly with n, recalling the n dependence of h and X.
However, it changes rapidly from 0.5' to 30 to 44' for
L=2, 3, and 4, respectively. Note that 0 corresponds to
no mixing (rigorous L Scoupli-ng) and 45' to complete
mixing. Then in terms of L Swave f-unctions /is, the
actual wave functions in the coupled representation are
given by

and

0L 1L 4L osm~L +4L 1cos~L

(26)

magnetic dipole transitions and listed in Table V. For the
4D state, the global fit data give the 'D term value to a
precision of 41&10 crn ' by averaging the transitions
to the 4 F3 and the 4'I'3. For the 4 D states, substantial-
ly better term values may be obtained from the difference
of the 2 S~ —4 D~ and 2 S& —5 D& measurements.
Thus the 4 D& level is calculated from the 5 D& level in
Table V by adding 2472.66070(10) cm '. As before the
4 D2 and 4 D3 are then found from the magnetic dipole
transitions. These new sublevels are all given in Table V.
They are found to give more consistent X values than
those in Table IV. These improved X values for L=2
and 3 are given in the last column of Table III. Shown in
Fig. 3, the improved energy shifts 6'""' for n = 5 and 6 are
essentially the same as the old values for Table IV, but the
new value for n=4 now falls on the straight line. As in-
dicated in Table V, the 3D term values have to be derived
from Martin's energies and the ionization potential (Sec.
VII).

Now the relative line intensities may be evaluated in the
usual electric dipole approximation from Eq. (26). For
the transition +'LJ +'(L +1)J-,' they are displayed in
Table VI. For high L ()4) transitions, 91 is nearly 45',
so the diagonal transitions in Table VI are of order unity
while the nondiagonal ones are smaller by at least
(2L +2) or 2 orders of magnitude. Therefore one can
usually observe only the four diagonal transitions as noted
by I undeen.

In a recent diode laser absorption experiment, ' the
5D-6F singlet and triplet transitions have been measured
to an accuracy of 0.001 cm '. Nevertheless, the Doppler
width of about 0.008 cm ' precluded the resolution of the
triplet fine structure. As observed by Nagai et al. ' their
transition frequencies differed considerably from those
obtained through Martin's compilations. ' Also shown
in Table VII are the many-body calculations' which, al-
though in reasonable agreement with Martin, are not in

TABLE VI. Multiplet intensities for +'LJ- +'(L +1)J. k=(L +1) ', y=V L (L +2)/(L +1); C,S=cos, sin with the first ar-
gument always O~ and the second Ol +&.

O, L+1 1,L+1 1,L 1,L+2

O, L
1,L
1,L —1

1,L+1

( CC+SSy)'
( —SC+CSy)

0
(A, sinO&+ ~ )

( —CS +SCy)
(SS+CCy)'

0
(A, cosOi + l )

(k sinOI )

(X cosOI )'
(2L —1)/(2L + 1)

A. '/(2L + 1)/(2L +3)

0
0
0

(2L + 5)/(2L +3)
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TABLE VII. Transitions providing a critical test (in cm; E=experiment, T=theory).

Methods

Diode laser (E)'
Martin (E)
Many-body ( T)'
Variational ( T)
Present

'Reference 10.
References 8 and 9.

'Reference 12.
Reference 6 for D and Ref. 11 for F levels.

5 'D —6'F

1344.1404(10)
1344.1089(90)
1344.0931
1344.1440(90)
1344.1399(2)

5D—6F
1345.2712(10)
1345.2470(100)
1345.2123
1345.2798(90)
1345.2721(3)

accord with the laser data. In contrast, variational calcu-
lations are in excellent accord with these high-precision
data.

For comparison with the present work, multiplet line
intensities are calculated from Table VI, where the mixing
angles for the 5D and 6F states are calculated from
Tables II and III to be 0.58' and 31.31', respectively. Tak-
ing the improved term values from Table V, the fine-
structure transition for frequencies and intensities are
given in Table VIII. It is evident that the frequencies
separate cleanly into a "singlet" at 1344.14 and a "triplet"
at 1345.27 cm ' when viewed with a width of 0.01 cm
In the actual measurement, the line position was deter-
mined from the second derivative of the intensity. ' Ef-
fectively this introduced a frequency cutoff factor of half
width 0.004 cm ' into the signal profile (assuming room
temperature and that the diode laser width was less than
0.002 cm '). Thus, the measured line positions corre-
sponded approximately to the weighted mean of certain
multiplet frequencies provided they fell within 0.008
cm ' of each other. Applying this criterion in Table VIII
results in a mean single value of 1344.1399(2) and a mean
triplet value of 1345.2721(3) cm '. As can be seen in
Table VII, these values are in excellent agreement with the
laser measurements. Had the global-fit energies been
used, the singlet result would be unchanged, but the triplet
result would be 0.0006 cm ' closer to experiment.

TABLE VIII. 5D-6F fine-structure frequencies and intensi-
ties. The measured "singlet" corresponds to the weighted mean
of the first three frequencies, while the "triplet" corresponds to
the next four.

VII. THE IONIZATION ENERGY

Another test of the term levels is to see if they con-
sistently lead to a correct ionization energy. Previously,
Martin has obtained a value of 198310.7745(40) cm
with the understanding that the experimental value for the
2'P level has been arbitrarily extended to four decimal
places (from one) to fix the excited-term system. From
large-scale variational calculations, Kono and Hattori
first obtained a value of 198 310.7730(10) and very recent-
ly 198 310.7725(5) cm '. Substituting the present semi-
empirical term values for their variationally computed
ones, I obtain the values listed in Table IX as described
below.

The ionization energies from D states are obtained sim-
ply by adding the term values in Table IX to the energy
levels of Martin. Quoted errors represent the square root
of the sum of squared errors. For the F states, EI cannot
be reliably derived from Martin's energy level (e.g., his
5'F value fell short by 0.03 cm '). Fortunately, the 6F
energy levels can be determined by adding the measured
diode laser frequencies to Martin's 5D levels. However,
the singlet and the triplet energies thus found are weight-
ed averages and similarly weighted term values from
Table V must be added to give the ionization energies.
The errors here are due almost solely to the laser measure-
ments. The ionization energies in Table IX are averaged
by the usual procedure to yield an ionization limit of
198310.7722(5) cm '. This value is totally consistent
with and more accurate than those of Martin and of
Kono and Hattori given earlier, and subject to the same
assumption on the 1 'S—2 'P measurement.

5D
S'

1

1

0
1

1

1

1

1

1

0
0

6F
o- (cm-')

1344.1343
1344.1385
1344.1419
1345.2669
1345.2722
1345.2728
1345.2744
1345.2764
1345.2770
1345.2798
1345.2804

Relative
intensity

0.26
0.00
0.74
0.6
0.66
0.08
1.29
0.1 1

0.00
0.23
0.03

Term

4 D2
5'D,
6 D3
6 F,„
6 'F,„
Limit

Eg (cm ')

198 310.7714(20)
198 310.7722(5)
198 310.7727(9)
198 310.7713(11)
198 310.7726(11)
198 310.7722(5)

TABLE IX. The ionization energy. Term values from Table
V are added to their experimental energies from Martin (Ref. 9)
to give EI. The averaged term values are discussed in the text.
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VIII. SUMMARY AND CONCLUSIONS

—F(n, L)—W(n, L,S,J} . (27)

In Eq. (27), Ei and R can be found in Table X, and b,„'I'

has been given by Eq. (19). The spin-free energy is semi-
empirically represented by

F(n, L)=P(n, L)[A (L)+B(L)q(n,L)] . (28)

and the fine-structure splitting is, according to Eq. (12),

W(n, L, 1,L —1)=X—(L + 1)(2L + 1)h /(2L —1),
W(n, L, 1,L + 1)=X+L (2L +1)h/(2L +3),

(29)

and

W(n, L, 1,L) =h/2+ [(X+h/2) +9L (L + l)h ]'i

W(n, L,O, L)=h/2 —[(X+h/2) +9L (L +1)h ]'i
For easy reference, Eqs. (19) and (6) are repeated here,

b, '„"L ——a R [n /(L + —, ) ——,
'

]/n

h (n, L)=a R /[n (2L + 1)L (L + 1)],
and X has been empirically found to be

X(n, L)=[C(L)+D(L)q(n, L)]/n (30)

The empirical constants A, B, C, and D are displayed
in Table X for all I.)2. Finally, the scaling factors in
the polarization formulas' are

Experimental data on the fine structure of Rydberg lev-
els in helium have been coalesced into a unified set of
term values. They are accurately described by semi-
empirical formulas collected below conveniently for appli-
cations. Each fine-structure level is given by

E (n, L,S,J)=EI—R /n —b, „'"L

The semi-empirical theory given above should fit helium
energy levels accurate to better than 0.001 cm

Although the present results as summarized in Eqs.
(27)—(31) are not new term by term, they embody all
known effects accurate to 10 cm ' and are compatible
with experiments. Further, these effects are grouped in
such a manner as to facilitate generalization to other
atoms. For example, the Rydberg constant for an
electron system is evidently R =m [M+(Ã —1)m]/(M
+Km). The near cancellation of mass polarization, rela-
tivistic correction of the core polarizability, and the re-
tarded potential in He I is fortuitous. Nevertheless, there
is no evidence that inclusion of the retarded potential wor-
sens the agreement of theory with experiment. '' (As
pointed out in Refs. 22, the erroneous retarded potential
term used in Refs. 3 and 14 overestimates by about an or-
der of magnitude. ) In view of the difficulty of calculating
these effects in a larger atom, it is not unreasonable to
delete all three. The linearity of the spin-free energy has
already been found in Si III. The fine-structure theory in
Sec. II is formulated for the general case where the core
can have any arbitrary spin.

The general implications of this work for the polariza-
tion formula seem clear. The usefulness of Edlen plot is
diminished in one respect, but enhanced in another. Since
separate plots must now be made for each value of I, until
L is sufficiently large (L=4 for helium), the procedure
requires a lot more data before it is beneficial. On the
other hand, one can now expect straight-line behavior not
only for the direct but also for the exchange energy. In
view of these considerations, it will be very interesting to
reexamine a similar system such as Mgr, where the core
polarizability is 100 times larger. ' Another interesting
application of the present work is to systems whose core
has a spin other than —,. High-L emission lines in OI
have been recently observed and will be reported else-
where.

R [3n L(L +1)]-Pn, L=
1 1 3

[2n (L ——, }L(L + —)(L + 1)(L + —, )]

q(n, L)=R I35n Sn [6L(L +—1)—5]

+3(L —1)L (L +1)(L +2) I

X [8n (L ——, )(L —1)(L ——, )L (L + —, )(L + 1)

)&(L + —, )(L +2)(L + —, )P(n, L)]

(31)

0.275 19
0.280 36
0.281 25

—0.041 63
—0.1500
—0.2695

—45.2
—0.55

0

401
30
0

TABLE X. Parameters for semi-empirical theory.
EI ——198 310.7722 cm '. R = 109722.2752 cm

D
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APPENDIX: EVALUATION OF THE TERM VALUES

For the n=5 manifold, 65G is taken from Drachman's
theory ' to be 0.15598(3) cm '. The 5G term value is
then calculated from Eqs. (17)—(19) to be 4389.05036
cm '. From Eq. (12), the shift of the 5'G sublevel is
—0.00335 cm '. Therefore, the term value of 'G& is
given in Table IV as 4389.04701(3) cm '. Other sublev-
els are now located by the following transitions given by
Farley et al. , with the error in 10 cm ' in parenthesis:
Dp- G4 (8), D~ G4 (14), D~ F3 (6), Dg F-3 (6), Dz---

'Dg (33), D3 'F3 (32), Dp D, (1), D-3 G3 (34-), D3 'F3--
(32), Dq D, (1), D3 G3 (34), D3-Gg (36-), D3 Fp (36-), -

and D3 F4 (37), and are listed in Tab-le IV. In the n=S
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manifold, no measurements are available for transitions
between sublevels of different I,. So those transitions
used have been derived by extrapolation from higher
values of n, and are judged to be much less reliable than
the stated errors.

fying that the 7 H sublevels thus found are in perfect
agreement with our theory [Eq. (12)].

Similarly for the n = 8 level, it is found that
b, sit ——0.01577(0) cm ', tsII 17——14.42732(0) cm ', and
the term value for 8 'H5 ——1714.426 76(0) cm '. The
F3 Hs(1) transition is utilized to determine the 8 'F3

sublevel in Table IV. Except for the 8 H sublevels which
are calculated from Eq. (12), all other sublevels are ob-
tained from the global-fit transitions D3 'F3 (-0), 'Dz 'F3-
(0), D3 E3 (0), D, - F4 (0), Dz- Fz (0), Dz Fz (0-), D)-
Fz (0), D3- 64 (1), D3 G5-(1), Dz-'G4 (0), and Dz G3-

(1).
Since the cases for n =9—12 are very similar, they are

discussed together below. Starting with the 6 levels, 6'"'
for n=9 and 10 have been tabulated as 0.03337(2) and
0.024 74(2) cm ', respectively. The corresponding values
for n = 11 and 12 can be calculated from Drachman's Eq.
(47) using well-known expectation values of x ' to be
0.018 81(l) and 0.01463(l) cm '. The hydrogen term
values for the 96, 10G, 11G, and 12G states are
1354.597 11, 1097.223 61, 906.796 34, and 761.960 78
cm ', respectively. From Eq. (12), the corresponding
shifts of the '6 sublevels are easily found to be —0.41905
cm '/n . Thus, the term values for the 9'6, 10'6,
11 'G, and 12 'G are, respectively, 1354.629 91(2),
1097.247 93(2), 906.814 83(1), and 761.975 17{1) cm
For each of the above values of n, the other sublevels are
evaluated from these global-fit transitions: 'Dz 'G4 (0), -
'Dz G4 (0), D-z 'G4 (0), D-z G3 (0), D-3 64 (0), D3--
65 (1), D) 63 (1), D-3 F3 (0), D3-Fg (1), D3-'F3 (0), -

and D, Fz (0). —

In the case of n = 12, no experimental data exist for any
D Gtransitions. T-he corresponding global-fit transitions
used above have been obtained through extrapolation in n.
Therefore, the absolute term values of 12F and 126 sub-
levels are less accurate than the stated uncertainties as was
the case for n=5.

Finally, term values for higher values of I. not found in
Table IV can be calculated to an accuracy of 10 cm by
the same procedure.

1. The n=6 manifold

Since no experimental data are available for the 6H
states, I begin with the 6G. According to Drachman,
b,&G

——0. 10015(4) cm '. From Eqs. (17) and (18), we find
that t6G ——3047.943 78(4) cm ', where the number in
parenthesis is the error in the last digit. Now the only ac-
curately measured transition from the 6G level is the
O'E3 —6'64 (0.29534 cm '). I therefore calculate the
term value of the 6'G4 level from Eq. (12) and obtain
3047.94182(4) cm '. Hence, the position of the 6'F3 is
3048.23716(4). Similarly from MacAdam's 6'Dz —6'F3
transition (1.66126 cm '), the O'Dz term value is deter-
mined to be 3049.898 42(4) cm '. Other sublevels are ob-
tained from the global fit data of Farley et al. 7 (error in
10 ' cm ') 'D, 'G, (2), -'Dz 'Dz (5), 'D-, F3 (1), 'D-, -'D,
{1), D3 Dz (1), -D3 F4 {7), D-3 Ez (7), D3-63 (6), and-
D3 6& (6). O-ther given transitions within the n=6

manifold are used to check for internal consistency.
From each I complex, the spin-free term value is found
from Eq. (14) to be 3047.94378(4), 3048.24077(4), and
3050.247 34(5) cm ' for L =4, 3, and 2.

As discussed in Sec. V, the 7 'F3—'I6 measurement' is
considered unreliable. So I begin with the H level, where
b, z~ has been calculated' to be 0.02221(0) cm '. Follow-
ing the same procedure when n =5, we find
t7~ ——2239.253 57 cm ', and the shift of the 7 'H& sub-
level to be —0.00082 cm '. Hence, the term value of
2239.25275 cm ' for the 7'H5 substrate is entered into
Table IV. The other sublevels are determined from the
two-photon transition measurements' 'F3 'Hs (1), Fz-
H4 (1), F4 H6 (0), and -F3 H5 (1) and -the global-fit

data 'Dz 'F3 (0), 'Dz F3 -(0), 'Dz '-G4 (0), 'Dz '-64 (0), -
'Dz G4 (0), D3 'F-3 (1), D3 Dz (-0), D3 D-) (0), D3 F4--
(1), Dz Fz (1), D3- G-5 (1), and D3 G3 (1). It -is grati-
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