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The resonance-frequency shift and the energy of molecules with a large change in the permanent
dipole moments between the ground and the excited levels under an intense oscillating field are in-
vestigated. It is found that the higher-order terms with respect to the Rabi frequency of the Bloch-
Siegert shift cannot be neglected for molecules with a large permanent-dipole difference. Some per-
turbational expressions are derived, and numerical calculations are performed for various sets of pa-

rameters.

The interaction between molecules (including atoms or
ions) and the radiation field is very well represented in
terms of electric-dipole transitions. In the theoretical con-
sideration of the interaction, the electric dipole moment of
two-level or multilevel molecules is almost always as-
sumed to have no diagonal elements, or in other words,
the molecules are assumed to have no permanent dipole
moments.' However, this assumption is not appropriate
to some molecules such as intramolecular weak charge-
transfer complexes, which have a large permanent dipole
moment in the lowest excited state.?

In the present study the authors will describe the shift
of the resonance frequency (Bloch-Siegert shift) and the
“dressed-atom” energy of polar molecules interacting with
a very intense radiation field with perturbational methods
and numerical calculations.

Since the Bloch-Siegert shift® is an effect which takes
place via a counter-rotating wave, permanent dipoles are
expected to affect the magnitude of the shift. There are
some studies®’ of a system with permenent dipoles in an
intense radiation field, or more generally a system where
the Hamiltonian has diagonal and off-diagonal oscillating
elements, both of which are proportional to the external
field amplitude. However, these studies are concerned not
with the position of the resonances but only with the tran-
sition intensity.

We consider a system which consists of a two-level
molecule with large electric dipole moments interacting
with a monochromatic radiation field E (t)=Ecos(wt).
The molecule has two levels | a) (lower level with energy
E,—for example, a level in the electronic ground state)
and | b) (upper level with energy E,—for example, a lev-
el in the electronically excited state) which are connected
with each other by an electric dipolar interaction
—/u'baE (t )

The levels |a) and | b) have permanent dipole mo-
ments p,, and pp,, respectively. The elements of the
semiclassical Hamiltonian H, are given as follows:

Hypo = —ppEgcos(wt)=Hy,, ,
Iibb =Eb —,u.boncos(a)t) ’ (1)
H,,=E,—p.Eqcos(wt) .

In this study, the transition dipoles and permanent di-

poles of all molecules are assumed to be parallel to the op-
tical field. In the case of freely rotating molecules the ef-
fect of reduced transition and permanent dipole moments
should be taken into account, and averaged physical quan-
tities will be also reduced to some extent. Even in that
case, however, the effect of nonzero permanent dipoles
does not vanish, since all the effects treated in this paper
are static ones, and, therefore, even functions of dipole
moments. The problem of the freely rotating molecules is
so complicated to be treated generally that we limited the
discussion in the present paper to the case of rigid molec-
ular system with parallel pt44, tpp, and g, to the incident
field.

After a simple unitary transformation, the Hamiltonian
can be written in one equation as follows, with fi=1,

1 O
0 —1

o

a 1
H. > —2b cos(wt)

1 —a s (2)

where 2b=p,;,Ey is the Rabi frequency, wo=E, —E,,
and 2o =(ppp —ag) /Ups 1 the normalized permanent di-
pole difference.

We can quantize the field and include the field Hamil-
tonian in the total system as follows:

I_Iq:coo./fz+a)afa-—k(a./fz—}-./l\x)(af—}—a) , (3)

where a' and a are the creation and annihilation opera-
tors of a photon with frequency w, J. and .7, are the spin
operators, and A=2b/V'n is the coupling constant with n
being the mean number of photons. For very large n as
assumed in the present study, there is no discrepancy be-
tween a semiclassical and a wholly quantum treatment of
the system.

Note that this system is equivalent to a spin-3 system
under static magnetic field —wy/y and oscillating mag-
netic field which has a component perpendicular to the
static field (—2b/y)cos(wt), and a parallel component
(—2ab /y)cos(wt), where v is the gyromagnetic ratio.

For weak radiation field, i.e., b,ab <<w,w, the energy
of the system can be obtained using a perturbational
method similar to the one described by Cohen-Tannoudji
et al.® Regarding the last term of H, in Eq. (3) as pertur-
bation, the resonance condition was obtained to the fourth
order of b /w for the case of wo~w:
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wo=w—b*/o+(—5+Za®)b* /0’ . @)

The last term of the right-hand side of Eq. (4) becomes
comparable to the second term when b /w~0.3/a is satis-
fied. Therefore, when considering the Bloch-Siegert shift
of molecules with large permenent dipole moments, terms
higher than second order cannot be neglected even for
rather small Rabi frequency.

We can also easily obtain the expressions for the posi-
tions and the widths of the multiple quantum resonances
to the lowest order of b/w. Resonances occur when the
following relation is satisfied:

2
_4p b” , (5)

Wog=pw — p2—1 P

with p being an integer greater than unity. Note here that
multiple photon resonances of both odd and even quan-
tum numbers occur when as40. In the case of a =0, mul-
tiple photon resonances take place only when p is odd.
The above result is in agreement with the result of other
works with =0 when p is odd.’

The widths of two-, three-, and four-photon resonance
transitions are also obtained as follows:

4ab?/w forp=2, (6a)
(%—4(;(2)b3/a)2 forp=3, (6b)
sa(1—3a®)b*/w® forp=4. (6¢)

When o is much smaller than o, then the Hamiltonian
is transformed by the following unitary operator:

172
[a+(a2+1)1/2]

2= A2+ 1)2

xexp[ —(A/e)a?+1)2T (a"—a)]

X {1+2i[(@+ 12 —a)], ] (7)

and we obtain the following equation for n >>1:
S,H,S5 !
=wa'a+oyat+1)12
X {aT, —Texp[(2A/0)(a?+ 1)1 /2

xJ(a'—a)]} . (8)

With this transformed Hamiltonian, the eigenvalues ¢’s to
the third order of wy/w are obtained as follows, by regard-
ing the last term in Eq. (8) as a perturbation:

w,
g=t—(a+ D)7V Aa+75)
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FIG. 1. Energies of the system consisting of the radiation
field and a two-level molecule with permanent dipole moments
as a function of wy, plotted for «=0.3, and b /w is equal to (a)
0.2, (b) 0.4, (c) 0.5, and (d) 0.6.
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4 ,,éo rs
J2
+(@+IP? I = | . (10)
r+0 7
Here the arguments of all Bessel functions are

4b(a*+1)"?/w. The g factor of this system is propor-
tional to the slope of the right-hand side of Eq. (9) at
wo=0, which is a function of the field amplitude. When
a =0, the g factor is goJo(4b /w) which oscillates between
positive and negative values as the field amplitude grows

Time-Averaged Transition Probability

FIG. 2. Time-averaged transition probabilities for the same
value of a as Fig. 1. The values of b/w are (a) 0.2, (b) 0.4, (c)
0.5, and (d) 0.6.
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FIG. 3. Energy of the system as a function of w, plotted for
a=0.3, and b /w, is equal to (a) 0.1 and (b) 0.3.

strong, whereas when a=40, the g factor also oscillates but
is always positive (or negative).

When a=0, Eq. (9) is also used to obtain the resonance
frequency near wo=0. It takes place when 4b/w~j, |,
where jo ; =2.405 is the first zero of Jo. However, Eq. (9)
cannot be used to obtain the resonance condition when
a0, as is explained below. The following condition for
resonance is obtained by equating dq /3wy=0:

172
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D= (11)

The right-hand side of Eq. (11) becomes smallest when
Jo=0 or 4b(a®+1)?/0»=2.40483, and the minimum
value of w, is 0.83w. This is of the same order as w, so
the approximation made for the case wy<<w cannot be
applied to the calculation of the resonance frequency.
The situation will be explained in the following.

In the preceding part, we have described two extreme
cases where one parameter is small and the expressions for
the resonance frequency and the energy can be obtained
using perturbation theory. However, the perturbation
method cannot be used for systems with parameters hav-
ing general values. In this case we can calculate the eigen-
values of the system by integrating the Schrodinger equa-
tion numerically.?

Time-averaged transition probability P,, is also calcu-
lated using Shirley’s formula:’

P, =+[1—4(dg/dwy)] . (12)

This offers a measure of the degree of resonance, and
takes the maximum value of 5 when the external field
frequency is in exact resonance with the molecular sys-
tem.

In Figs. 1 and 2 the energy of the system and the time-
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FIG. 4. Time-averaged transition probabilities as a function
of w, plotted for a=0.3, and b /w, is equal to (a) 0.1, (b) 0.3, (c)
0.5, and (d) 0.9.

averaged transition probability are plotted for a=0.3 as a
function of w, for several values of b/w. When the field
becomes more intense and increases up to about 0.5, the
first and the second peaks, which correspond to one-
photon and two-photon resonances, respectively, become
broader and shift towards smaller values, and at the same
time get closer to each other. The two peaks are original-
ly located at @ and 2w for smaller values of b /w. When
b~0.5 they combine to form a broad peak, of which in-
tensity decreases with increase in b. The first peak near w
does not shift appreciably, and it disappears at a point
near wo=w, whereas when a =0, all peaks shift to smaller
values and then vanish at the point wy=0.7° This corre-
sponds to the fact that the perturbation method cannot be
applied to calculate the resonance frequency for the small
g for @540 systems as mentioned above.

The energy is also plotted in Fig. 3 as a function of w
with fixed values of a and b/w,. By applying weak probe
light to the system, the energy of the system can be exper-
imentally determined. Figure 4 shows the plots of the
time-averaged transition probability as a function of w.
Distances between all two neighboring peaks decrease
with increase in b/wy. The neighboring peaks are then
combined to form one peak and then the intensity is de-
creased, while, when a=0, all peaks move to greater
values of o infinitely.’
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Finally the authors estimate the experimental condition
for the effect of permanent dipole moments on the
Bloch-Siegert shift to be observed. Parameters are chosen
as: Up, =10 D, ppp —pga=30 D, and the central wave-

length is 1 pum. Then the fourth-order term in Eq. (4) be-
comes comparable to the second-order term if the power
density is 1 TW/cm?, which is available with the use of
conventional pulsed lasers.
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