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Detailed properties of the Weibel instability in a relativistic unmagnetized plasma are investigated
for a particular choice of anisotropic distribution function F(p&,p, ) that permits an exact analytical
solution to the dispersion relation for arbitrary energy anisotropy. The particular equilibrium-
distribution function considered in the present analysis assumes that all particles move on a surface
with perpendicular momentum p&

——p&
——const and are uniformly distributed in parallel momentum

from p, = —p, =const to p, =+p, =const. (Here, the propagation direction is the z direction. ) The
resulting dispersion relation is solved analytically, and detailed stability properties are determined
for a wide range of energy anisotropy.

I. INTRODUCTION

A sufficiently large anisotropy in the average kinetic
energy of the plasma electrons and/or ions can provide
the free energy to drive various types of electromagnetic
instabilities in a uniform plasma. Examples range from
the classical Weibel instability' in an unmagnetized plas-
ma, to the electron whistler and cyclotron maser in-
stabilities for wave propagation in the presence of an ap-
plied magnetic field Boe, . The electron whistler instabili-
ty is a natural extension of the Weibel instability to the
case of a magnetized plasma. On the other hand, the cy-
clotron maser instability is inherently relativistic in na-
ture and vanishes in the limit of zero magnetic field
and/or sufficiently dense plasma (as measured by co~/co, ).
Generally speaking, anisotropy-driven electromagnetic in-
stabilities have a wide range of applicability to astrophysi-
cal plasmas, and to laboratory plasmas with intense
microwave heating. For nonrelativistic anisotropic plas-
ma, detailed properties of the Weibel and whistler insta-
bilities are readily calculated' for a wide range of
equilibrium distribution functions FJ(pr, p, ). For relativ
istic anisotropic plasma, however, because of the coupling
of the perpendicular and parallel particle motions through
the relativistic mass factor y = ( l +-p r /m~. c
+ p, /mJ c )'~, stability properties are usually calculated

in the limit of extreme energy anisotropy, or long pertur-
bation wavelength, which allows approximate analytical
solutions to the electromagnetic dispersion relation. Here,

"perpendicular" and "parallel" refer to directions relative
to the propagation direction (the z direction).

The purpose of the present brief report is to investigate
detailed properties of the Weibel instability in a relativis-
tic unmagnetized plasma for a particular choice of aniso-
tropic distribution function that permits an exact analyti-
cal solution to the dispersion relation for arbitrary energy
anisotropy. This calculation is intended to provide quali-
tative insights regarding stability behavior for more gen-
eral choices of equilibrium distribution function. The
particular distribution function [Eq. (3)] considered in the
present analysis assumes that all particles move on a sur-
face with perpendicular momentum pz ——pz ——const and
are uniformly distributed in parallel momentum between

p, = —p, =const and p, =+p, =const. The resulting
dispersion relation [Eq. (8)] can be solved analytically, and
detailed stability properties are determined for a wide
range of energy anisotropy. Extension of the present
analysis to include a uniform applied magnetic field Boe,
will be the subject of a future investigation.

II. THEORETICAL MODEL

We investigate the electromagnetic stability properties
of relativistic anisotropic plasma for wave perturbations
propagating in the z direction with wave vector k= k,e, .
Perturbations are about the class of uniform, field-free
equilibria with distribution function
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f, (p) =n, F,(pi,p, ), (1)
where nj. ——const is the ambient density of the jth plasma
component, pi =(p„+p» )'~ is the particle momentum
perpendicular to the propagation direction, and p, is the

parallel momentum. In the absence of applied magnetic
field, the linear dispersion relation for transverse elec-
tromagnetic wave perturbations propagating in the z
direction is given by

O=DT(k„co) = 1—
cg2 ~i y (co —k,p, /ymj )

k.p. a k.pi a+ FJ(pi,p, ) .
pmj Bpy pm) Bp

(2)

Here, co»~ 4n.njej——/mj is the nonrelativistic plasma fre-
quency squared; ej. and m~ are the charge and rest mass,
respectively, of a jth component particle; c is the speed of
light in Uacuo; y=(i+pi/misc +p, /mjc )'~ is the rel-
ativistic mass factor; the range of integration is

fd p . =2m. f dpipi f dp, . ; and the normal-

ization of FJ is fd p FJ(pi,p, ) =1. In obtaining Eq. (2),
the perturbations are assumed to have z and t dependence
proportional to exp[i (k,z cot)—], where k, is the wave
number and ~ is the complex oscillation frequency with
Imago & 0, which corresponds to instability (temporal
growth). For relativistic anisotropic plasma, we note that
the perpendicular and parallel particle motions in Eq. (2)
are inexorably coupled through the relativistic mass factor
y=(1+pi/mjc +p, /m;c )'~ .

In the analysis that follows, we specialize to the case of
stationary ions ( m; ~ ao ) and consider a single active
component of relativistic anisotropic electrons. Moreover,
for simplicity of notation, the electron species labels are
omitted from co„»m„F,(p i,p, ), etc. The resulting
dispersion relation [Eq. (8)] is readily generalized to the
multicomponent case.

imum energy ymc, parallel speed cP„and perpendicular
speed cPi defined by

pz
P.=„,Pi

ymc

Px

ymc
1/2

pi pz1+ +
m 2c2 m 2c2

(1 P2 P2) —i/2

Ti ——fd p F(pi,p, ),
2ym

2
pz

2 T~~= d p F(p„p, ) .
2/m

Substituting Eq. (3) into Eq. (5) and carrying out the re-
quired integrations over p j and p, give

We further introduce the effective perpendicular and
parallel temperatures defined by

III. WATERBAG DISTRIBUTION IN PARALLEL
MOMENTUM

The dispersion relation (2) can be used to investigate de-
tailed electromagnetic stability properties for a wide range
of anisotropic distribution functions F(pi,p, ). For pur-
poses of elucidating the essential features of the Weibel in-
stability in relativistic anisotropic plasma, we make a par-
ticular choice of F(pi,p, ) for which the momentum in-
tegrals in Eq. (2) can be carried out in closed analytical
form. In particular, it is assumed that the electrons move
on a surface with perpendicular momentum pz
=Pi ——const and are uniformly distributed in parallel
momentum between p, = —p, =const and p, = +p,
=const. That is, F(pi,p, ) is specified by

F(pi,p. ) = &(Pi —pi ) H (p, —p, ), (3)
1 2

2~ps 2p,
where H(x) is the Heaviside step function defined by
H(x) = + 1 for x &0, and H(x) =0 for x &0. Note from
Eq. (3) that fd p F(pi,p, )=1. Because the electrons are
uniformly distributed in parallel momentum for

~ p, ~
&P„we refer to the p, dependence of the distribu-

tion function in Eq. (3) as a waterbag distribution in p, .
For future reference, it is useful to introduce the rnax-

Ti ——, ymc PiG(P—,),
T~~

= —,ymc [1—G(P, )+P,G(P, )], (6)

where G(P, ) is defined by

G(P, ) = ln
2P,

(7)

From Eq. (7) we note that G(P, ) is a slowly increasing
function of P, with G(P, )=1+13,/3+ . for P, «1.
Moreover, in the limit of a nonrelativistic plasma withA. 2P, «1 and Pi «1, Eq. (6) reduces to the expected re-
sults, Ti~ —,'mc Pi and T~~~ —,

' mc P, . Depending on
the relative values of Pi and P„ it is clear that the choice
of distribution function in Eq. (3) can cover a wide range
of energy anisotropy.

For the choice of distribution function F(pi,p, ) in Eq.
(3), the pi- and p, -integrations required in Eq. (2) can be
carried out in closed analytical form. Some straightfor-
ward algebra that makes use of Eqs. (2), (3), (4), and (7)
gives the dispersion relation
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0 =DT(k„co )

C2=1-
CO

(Imco &0) is given by

, &(1—P, )G(P, ) .
2P,

(10)

G(P, )+—
2 (1—P, ) co —c k, P,

(8)
Moreover, when Eq. (10) is satisfied, the corresponding
range of k, corresponding to instability is given by

Equation (8) is readily extended to the case
ponent plasma by making the
(co~/y) . . ~ g, (co~~)/y, ), p, ~p„,
For a single active (electron) component,
expressed in the equivalent form

of a multicom-
replacements

pt~ptj, etc.
Eq. (8) can be

2 A. 2

0(k (ko= —G(P )
yc 2P, (1—P, )

2 2

0=co —co c k, (1+/3, )+
2P 2

2

—G(P, )

y 2P.'(1 P,')—
2

+c k, /3, c k, —
2

—G(P, )

y 2P, (1—P, )

When Eq. (10) is satisfied, and k, is in the range specified
by Eq. (11), the real oscillation frequency of the slow-
wave branch satisfies Reco=O and the growth rate of the
unstable mode is given by

9.0

(9)

which is a quadratic equation for co . In Eq. (9),
co~ =4rrn, e /m is the nonrelativistic electron plasma fre-
quency squared, and G(P, ) is defined in Eq. (7).

The dispersion relation (9) can be solved exactly for the
complex oscillation frequency co. In this regard, a. careful
examination of Eq. (9) shows that there are two classes of
solutions for co, namely, a fast-wave branch correspond-
ing to stable oscillations with Imco=O and (Reco) & c k, ,

and a slow-wave branch which may or may not exhibit in-
stability, depending on the degree of energy anisotropy. It
is readily shown that the necessary and sufficient condi-
tion for the slow-wave branch to exhibit instability

Re QJ

~A )/2
~P r

O. O
O. O Ckz

/gP

9.0

0.9
y =9.0

A 2
J

Imm

co),/y

0
0.0

2P,
2.0

FIG. 1. Region of (Pt, 2P, ) parameter space corresponding
to instability [Eq. (10)].

0.0
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P

FIG. 2. Plots of (a) normalized real frequency Redo/

[co~/y '~ ] and (b) normalized growth rate Imco/[co~/y '~ ] vs

ck, /[co~/y '~ ], for y=9 and several values of P&/2P,' [Eq.
(9)].
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1
Imco =

2

2 2

y 2P,

2

+4c k, P, (ko —k, )

t 1/2

1/2

y 2,'
(12)

Note from Eq. (12) that Imco=O for k, =O and k, =ko,
and that Imu passes through a maximum for some value
of kz intermediate between 0 and k 0.A. 2 P

In the nonrelativistic limit with pt, p, « 1, the neces-
sary and sufficient condition for instability in Eq. (10) be-
comes P 1/2P, ) 1, and the range of instability is given by
0& k, & ko =(co~/c )(p1/2p, —1). In the relativistic re-
gime, however, the instability criterion in Eq. (10) is more
complicated& whgih is illustrated in Fig. l. In Fig. 1, the
region of (p1,2p, ) parameter space corresponding to in-
stability is above the contour connecting the origin to
(Pj,2P, )=(0.580, 0.840), which corresponds to y= ao.
While the detailed form of the instability criterion in Eq.

(10) differs from the nonrelativistic case, it is evident from
Fig. 1 that the condition for instability in the relativistic
regime is qualitatively the same, i.e., the Weibel instability
exists for sufficiently large values of pI/2p, . Put anoth-
er way, for the choice of distribution function in Eq. (3),
the Weibel instability in a relativistic anisotropic plasma
can be completely stabilized by increasing the thermal an-
isotropy 2P, /P j to sufficiently large values.

As a numerical example, shown in Fig. 2 are plots of
normalized real frequency Reco/(co~/y '

) [Fig. 2(a)) and
growth rate Imco/(co&/y '

) [Fig. 2(b)] versus normalized
wave number ck, /[co&/y '

g for y=9 and several values
of energy anisotropy p1/2p, . The real oscillation fre-
quencies for both the fast-wave and slow-wave branches
are presented in Fig. 2(a). Moreover, for y =9, the slow-
wave branch becomes completely stable (Imco=O and
ko ——0) for f3j/2P, =0.697. It is evident from Fig. 2(b)
that the strongest instability occurs for the largest energy
anisotropy, i.e., P, =0 and P j =80/81 (for y=9). More-

A. 2over, depending on the value of pt/2p„ the maximum
growth rate in Fig. 2(b) can be a substantial fraction of

]/2
P
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