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Equations describing small-amplitude motion in the proximity of bifurcation at the triple-zero
eigenvalue, after being reduced to a normal form by nonlinear transformations, display a double-
scale structure that combines relatively fast conservative orbital motion with slow dissipative evolu-
tion of two integrals of motion. The homoclinic explosion occurs when the attractor of the averaged
dissipative equations comes close to a homoclinic trajectory of the fast conservative subsystem. Ap-
plying the method of matched asymptotic expansions allows one to reduce the dynamical system
near this point to a simple next return map possessing an infinite family of invariant manifolds that
can turn into attractors of different character under small parametric perturbation. After the at-
tractor of the averaged system has been expelled from the region of closed orbits, one observes
large-amplitude dynamics with rare events of anomalous intermittency superimposed upon a quasi-
periodic or chaotic attractor of nonuniversal character.

I. INTRODUCTION

The vicinity of a bifurcation at the triple-zero eigen-
value is a natural place to look for different types of
chaotic regimes and routes to chaos in dynamical systems.
One can expect to encounter there a large variety of
behavior characteristic to three-dimensional motion, in
the same way as all kinds of two-dimensional phase por-
traits are observed near a bifurcation at the double-zero
eigenvalue. ' This host of behaviors would be tightly
packed into a narrow parametric patch near the singular
point, and dynamics scaled down to small-amplitude
motions more amenable to analytical study.

Derivation of normal forms and studies of dynamics
near the bifurcation at the triple-zero eigenvalue have
been reported by Arneodo et a/. with the specific applica-
tion to the triple-diffusive Benard convection problem.
Normal forms are insensitive to details of an underlying
physical problem, being dependent only on its symmetry
(for example, quadratic terms are excluded in Ref. 2 due
to special symmetry properties of the Benard problem in
the Boussinesq approximation). The resulting universali-
ty, allowing one to describe systems of different physical
origin by the same set of amplitude equations of relatively
simple structure, is marred, however, by a purely technical
difficulty: equations displaying a rich variety of solutions
turn out themselves to be complex enough to require nu-
merical integration, thus losing much of their appeal.

The prospects would improve substantially if an addi-
tional small parameter finds its way into amplitude equa-
tions. This, in fact, can happen in a quite natural way.
generically, the degeneracy has to be geometrical as well
as algebraic, and the scaling of the projection on the only
eigenvector can be different from that of projections on
other vectors spanning the invariant subspace. This
scaling property manifests itself quite clearly in a hierar-
chy of amplitude equations corresponding to the hierar-
chy of singular bifurcations of increasing codimension at
the double-zero eigenvalue. Members of this hierarchy
possess a double-scale structure combining rapid conser-
vative motion with dissipative motion on a slower time

scale.
As we shall presently see, a similar double-scale struc-

ture rnanifests itself in amplitude equations describing
dynamics in the proximity of a bifurcation at the triple-
zero eigenvalue combined with the cusp singularity of sta-
tionary solutions. The codimension of this bifurcation is
four; nevertheless, it is in no way exotic, and can be
detected, e.g. , in a system as simple as a combination of
consecutive exothermic and endothermic chemical reac-
tions in a stirred vessel or a single exothermic reaction
with an external capacitor.

An attractive feature of cusp singularity (that a generic
bifurcation at the zero eigenvalue does not possess) is the
possibility to consider the region of small amplitudes as
the only attractor of the underlying system. This is
demonstrably so in simple cases when there are no more
than three stationary states and the underlying physics
rules out the escape of trajectories to infinity.

Detecting chaotic dynamics is our main purpose.
Separation of characteristic scales of the conservative and
dissipative motion, allowing the use of orbital averaging,
is the property that makes the problem tractable. We
shall pay most attention to the behavior in the proximity
of homoclinic orbits of the truncated (conservative) sys-
tem. When trajectories of the averaged system cross the
locus of these orbits one can observe a peculiar intermit-
tency phenomenon described by Fowler, superimposed on
a large-amplitude quasiperiodic or chaotic attractor of
nonuniversal character. The analytically tractable small-
amplitude chaos is to be detected under conditions when
the attractor of the averaged equations comes close to the
locus of homoclinic orbits. Using the method of matched
asymptotic expansions we derive for this case an approxi-
mate next-return map (similar to the area-preserving
Chirikov map ) that generates a complex structure of or-
bits with repeated period N-tupling in resonance regions.

II. TRANSFORMATION TO THE NORMAL FORM

Suppose that the dynamical system has been reduced by
projecting on a suitable basis in the three-dimensional ker-
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nel space to the form

u=Lu+ f(u),
where L is the normal Jordan block

0 1 0
L=0 0 1

0 0 0
(2)

and f(u) vanishes at the origin together with its first
derivatives. Generically, only quadratic terms in f(u)
need to be retained near the origin. Applying a nonlinear
transformation

x=y, y=z,
z=(a+x)y+E' (~+Px —x +yz+ay +bxz) . (7)

The coefficient at xy has been reduced to unity by rescal-
ing; in addition, the time scale can be chosen to reduce a
to 1. The remaining italic parameters (a, b ) in Eq. (7)
are defined by the underlying system (1) while those
denoted by Greek characters depend on parametric devia-
tions.

III. WEAKLY DISSIPATIVE DYNAMICS

Equation (7) truncated at e =0 and rewritten as

u=v+p(v) x +xx —ax =0 (8)
with an appropriately chosen quadratic form p(v) reduces
the quadratic part of Eq. (1) to any out of 14 equivalent
normal forms (see the Appendix). Choosing a most con-
venient one, and dropping cubic and higher-order terms,
we rewrite the transformed Eq. (1) as

is recognized as a traveling-wave form of the
Korteweg —de Vries equation. This equation has a con-
tinuous family of stationary states x =q, y =z =0 with ar-
bitrary q, and possesses two integrals of motion:

x=y, y=z, z=pox +pixy+p~ +p3xz . (4)
2E =z —ax ——,x

(9)

Adding a cubic term would be necessary for retaining the
structural stability in a singular case when one of the coef-
ficients p; happens to vanish. The case po ——0, when the
cubic term vx should be added, is of particular interest,
since it corresponds to the cusp singularity of stationary
solutions to Eq. (1) or (4). The advantage of this case is
that a cubic form with v&0, unlike the quadratic form
(4), prevents the escape of trajectories to infinity; thus, a
cubic form can represent realistic global dynamics of a
physical system. Further on, we restrict attention to this
case and replace the last of Eq. (4) by

z=p&xy+p~ +p3xz+vx

The unfolding of Eq. (5) obtained by allowing for small
deviations of parameters from the singular point is

z =K+A, ix+X~+A,3z+p~xy+p~ +p3xz+ vx (6)

Four constants ~,k; depending on parametric deviations
are necessary and sufficient for constructing a universal
unfolding of the codimension-four bifurcation under the
study.

Order-of-magnitude considerations can be invoked at
this stage. The lowest-order form (4) or (6) can replace
the original system (1) only near the origin, say, at
x =O(e). Then Eq. (5) can be balanced only if the
dynamics unfolds on a slow time scale extended by the
factor O(e '~

) so that y =O(e ~ ), z=0(e ), and both z
and xy in Eq. (5) are O(e ~

) while other terms in this
equation are O(e ) We shall assi.gn the following orders
of magnitude of parametric deviations: x =O(e ),
A, , =O(e ), A, 2

——O(E), A, 3
——O(e). This choice, defining the

neighborhood of the singular point in the parametric
space where the following analysis is applicable, is not
unique. One can see, however, that it engenders the
greatest possible variety of behavior by balancing the or-
ders of magnitude of terms dependent on parametric devi-
ations, on one hand, and corresponding higher-order
terms, on another. Rescaling to O(1) variables (x~ex,
etc.) we obtain finally

H= —,y —xz+ —,ax + —,x

The eigenvalues of Eq. (8) linearized near the branch of
stationary points are 0 and +(q+a)'~ . At q & —a, the
stationary point has a one-dimensional stable and a one-
dimensional unstable manifold, in addition to the one-
dimensional center manifold directed along the locus of
stationary points in the three-dimensional phase space
(x,y, z). At q & —a, the stationary point has a three-
dimensional center manifold. To underline this distinc-
tion, we shall call stationary points at q & —cz and

q & —a, respectively, hyperbolic and elliptic.
In addition to the family of stationary states, Eq. (8)

possesses a continuous two-parametric family of orbits
parametrized by the integrals K,H. If

K=KO ———q(a+ —,q), H=HO ——q ( —,a+ —,q), (10)

and q & —a, the integral curve (9) collapses into a single
(elliptic) point x=q, y=z=0. If, again, Eq. (10) holds
but q & —a, Eq. (9) defines a homoclinic trajectory pass-
ing through the (hyperbolic) point x =q, y =z =0. The
branches of elliptic and hyperbolic points meet in a cusp
at q = —a (Fig. 1). Closed orbits exist at K,H within the
region between the elliptic and hyperbolic branches in Fig.
1, while outside this region integral curves are unbounded.

At @&0, both integrals evolve on an extended time
scale:

K=E' G(x y, z), H= —xK,
where G(x,y, z)=v+Px —x +yz+ay +bxz is the "dis-
sipative" function in Eq. (7).

Since H, K evolve on a slow time scale, the right-hand
sides of Eq. (11) can be approximated by corresponding
orbital averages:

e '~ K=(G(x,y,z)),

e '~ H= —(xG(x,y,z)) .

(12)

To compute the averages ( ), we define orbits y(x;K, H),
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z(x;K,H) using Eq. (9): 0.3

z =E+ax+ —,
' x

y =~2(H+Kx+ —,ax + —,x )'
(13)

and replace time averages by averages along half-orbits,
e.g.,

T
(G) =—f G(x(r),y(r), z(r))dr

T 0

+
y 'G x;H, I( dx, (14)

where G(x;H, K) =G(x,y(x, H, K),z(x,H, K)). The
period T can be computed, if needed, in a similar way as

0.1-

0.0-
H
-0.1-

-0.2-

-0.3—

-Q4-

-0 5- (o
-0.6 I I I I I I I

-1.0 -0.8 -0 6 -0.4 -0.2 0.0 0 2 0.4 0 6
K

T=2f '
(15)

0.3

The integration limits x+(K,H) are defined as the two
smaller roots of the polynomial under the radical in Eq.
(13). This polynomial has three real roots when K,H lie
within the cusped region in Fig. 1.

Denoting the averages in Eq. (12) as (G) =F0(H, K)
and (xG) =FI(H,K), and rescaling time by the factore', we obtain, finally, the dynamic equations of H, K in
the form

K=F0(H, K), H=Fi(H, K) . (16)

An obvious stationary solution of this equation, corre-
sponding to stationary points of Eq. (7), is given by
H, =H0(q, ), K, =K0(q, ), where q, & —a is a root of the
cubic form f(q)=Ir+pq —q lying on the elliptic branch
in Fig. 1. A stationary point H=H„E=K, satisfying
F0(H„K, ) =FI (H„K, ) =0 corresponds to a periodic orbit
of Eq. (7) when H„K, lie within the cusped region in Fig.
(3). The orbital averaging implied in Eq. (16) becomes in-
valid when H„K, approach the homoclinic branch in Fig.
1, and Eq. (16) must be modified when the period of orbi-
tal motion increases to T=O(e '~

)—see Sec. IV. Out-
side the cusped region in Fig. 1, where trajectories are un-
bounded, Eq. (16) is not applicable.

The functions Fo(H, K),F, (H, K) in Eq. (16) can be ex-
pressed through elliptic integrals. Stability conditions for
steady orbits can be also obtained explicitly (albeit as awe-
some expressions generated by a symbolic computation
program). In this way one can locate bifurcations of
periodic orbits, and detect the emergence of invariant tori
of Eq. (7) at Hopf bifurcation points of the averaged sys-
tem (16).

Depending upon the values of the five parameters of
the dissipative function G(x,y, z), one can realize dif-
ferent phase portraits of Eq. (16). Two examples [both of
which, as we shall see below indicate chaotic dynamics of
the full system (7)] are given in Fig. 1. The averaged
equations (16) are applicable at all times if this system has
attractors (either stationary points or periodic orbits)
within the cusped region in Fig. 1, including the elliptic
but excluding the hyberbolic branch.

Looking for chaotic dynamics, one is naturally drawn
to situations when homoclinic orbits can be detected in
truncated or averaged equations. One can think of either

0.2-

Q. 1

H
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-Q1-
- 0.2—

—0.3

-0 4-
-05- (b
-06 I I I I I I

-1.0 -0.8 - 0.6 -0.4 -0.2 0.0 0.2 0.4, 0.6
K

FICx. 1. The cusped region of closed orbits, with qualitatively
drawn trajectories of the averaged system (12) corresponding to
(a) formation of a homoclinic orbit of Eq. (12) and (b) escape to
the region of unbounded orbits and reinjection.

the averaged system (16) possessing a homoclinic cycle or
a trajectory of Eqs. (16) passing through a homoclinic or-
bit of Eq. (8) corresponding to K=KO, q & —a.

A simplest suitable homoclinic cycle of the averaged
equations [Fig. 1(a)] would involve two stationary states
x=qI, q2 with q, &ylb &q2 & —a, qI & p/3&qz. These
conditions ensure that both points lie on the elliptic
branch of Eq. (11) and are saddles when viewed as station-
ary points of Eq. (16). Existence of chaotic trajectories of
the full system (7) near such a homoclinic cycle is by now
a standard feature that has been detected in studies of the
codimension-two bifurcation at zero and imaginary eigen-
values (sometimes called the Melnikov bifurcation'). We
refer to Ref. 7 for detailed studies of motion near homo-
clinic orbits of this type.

Chaos associated with homoclinic orbits similar to that
in Fig. 1(a) is strictly confined in the parametric space of
Eq. (7), though it might carry on in the parametric space
of the underlying system well away from the
codimension-four singularity under study. Note also that
under these conditions Eq. (16) should possess another at-
tractor, and the chaotic orbit may well "leak, " i e.,
represent in fact a long transient.
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IV. MOTION ACROSS THE HYPERBOLIC BRANCH

E= —q a+ ——+, H=( —, + , q)(q p),—(17)—
2 6'

and denoting g=q —x, r =a+ q, reduces Eq. (11) to

p' = 2e ' [r 'gG+ O—(p )], (18)

q = e'~ [r '(1 —g/3r)G+—O(p)] . (19)

At p=0(e), (=O(e' ), motion along integral curves
of the truncated system slows down, and, rather than
averaging Eqs. (18) and (19), one has to solve this system
together with the dynamic equation x=y from the full

system (7). Rescaling the variables p =eP, g =e'~ q,
q=qo+e'~ g and expressing y with the help of Eq. (13)
yields, to the leading order,

[ro(n' 0)]'" —0= ——o 'fo

2ro 'nfo— (20)

where fo f(qo) =G(qo, 0,0) =x+P——qo —qo, ro ——a+qo.3

It.is convenient to integrate Eq. (20) with initial condi-
tions P=P', P=g', g=(P')'~ set at the turning point
where y = [ro(g —P)]' vanishes; respectively, the upper
and lower signs in Eq. (20) and below correspond to the
outgoing and incoming branches of the trajectory. The
integral curves of Eq. (20) are obtained in the form

n'=0+ "(4—0')'

1
1

2
~

c
~

71+(sgnc)[1+4c (g —p')]'~
ln

2c 1+2
~

c
~

(y') '"
(21)

(22)

Further on, we shall concentrate on another possible
source of chaos that appears when dynamics generated by
Eq. (16) brings trajectories of the averaged system to and
beyond the hyperbolic branch in Fig. 1. The case when
orbits undergo a qualitative change during the slow evolu-
tion described by averaged equations was studied in
another context by Shimizu and Ichikawa and Fowler.
This qualitative change occurs when the trajectory of
averaged equations crosses the locus of homoclinic orbits
as in Fig. 1(b). In the vicinity of the hyperbolic branch,
the orbital averaging is no longer justified by the separa-
tion of the scales of the orbital motion, on one hand, and
of the evolution of the integrals H, K, on another. The
continuous system (16) should be replaced under these
conditions by a discrete system connecting values of H, K
after each consecutive return into the vicinity of a saddle
point of Eq. (7)—see Sec. V. The evolution becomes then
very sensitive to occasional close approaches to the exact
position of the homoclinic orbit; that leads to the peculiar
intermittency phenomenon described by Fowler.

We shall now examine in more detail motion in the
proximity of the hyperbolic branch of Eq. (10). For this
purpose, it is convenient to replace K,H by the variables
q= —,(x&+x2), p= —,(x, —x2) where x&,xz are the two1 2

largest real roots of the cubic form x + 3czx +6' -+6H
(at p & 0) or the complex-conjugate pair of roots (at

p &0); p =0 corresponds to the hyperbolic branch of Eq.
(10). Using

where c = r o /2f o. Admissible initial conditions are
bounded by P'&P, =1/4c; otherwise the turning point
does not exist. At P'=P„g touches zero as P dips to
P = —P, either on the outgoing (at c & 0) or on the incom-
ing (at c &0) branch of the trajectory. The passage time
diverges logarithmically at p'~p„so that q is ejected
from the vicinity of qo when P' —P, is transcendentally
small.

We see that —eP, = —e/4c is the minimal value of p
that still allows motion along a closed trajectory. At more
negative p, the turning point does not exist, and the trajec-
tories are unbounded. Note that p changes only by an
O(e) increment during the slow phase of the orbital
motion, i.e., at /=0(v e) when the trajectory passes in
the vicinity of a saddle point. On the other hand, the to-
tal orbital increment that can be computed by integrating
Eq. (18) at constant p, q is 0(V e), i.e., bp (qo )

=2v eI(qo ), where

2 f '" Ã(4 q~P) dg
"3'(k q p)

dg.
'o G(g;qo, 0)

ro o Qro g/3
(23)

This means that, under typical circumstances, the aver-
aged equations adequately describe crossing the critical
line p =0 separating regions of closed and unbounded or-
bits of the truncated system (8). One can envisage a situa-
tion when the hyperbolic branch can be separated into two
subsets: Q+, I(q) &0 at q EQ+; and Q, I(q) &0 at
q&Q . Then trajectories of the averaged system (16)
leave the cusped region of closed orbits at q&Q and
enter it at q H Q+, as sketched in Fig. 1(b).

Trajectories of the truncated system escape to infinity
along the open integral curves. "Dissipative" terms in Eq.
(7), however, increase along the way and match the "con-
servative" part at x =O(e ') and, respectively,

y =O(e ~
) and z=O(e ), i.e., when all variables be-

come O(1) on the original scale of Eq. (1) or (6). If, as as-
sumed, the underlying system has no attractors away
from the origin, any trajectory leaving the proximity of
the origin after crossing the hyperbolic branch at some

q =q H Q has to return elsewhere and reenter the
domain of closed integral curves. This can be effected
only by crossing the hyperbolic branch at some q+ P Q+.
On the level of Eq. (16), this corresponds to a jump from
K =EC(q ),H =H(q ) to IC+ =K(q+),H+ =H(q+)
effected on an O(1) time scale fast compared with the dis-
sipative time scale O(e '~ ). Now, if Eq. (16) has no at-
tractors with the domain of closed integral curves, the tra-
jectory returns to Q thus generating a one-dimensional
map M&. Q ~Q or Q+~Q+. A fixed point of this
map corresponds to an attractor of the continuous system
(7) that consists of a segment of a torus cut at both sides
at a homoclinic cross section and tied up by a very long
string extending into the region x=0(e ') and connect-
ing hyperbolic points q and q+ (a shape which suggests
calling this attractor an "invariant necklace" rather than
an invariant torus which it basically is).

Since the motion away from the origin is essentially
three dimensional, the map M& is not necessarily inverti-
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V. MOTION IN THE PROXIMITY
OF A HOMOCLINIC ORBIT

Analytically tractable small-amplitude chaotic motion
can be detected in the case when the integrals H, K remain
close to the hyperbolic branch, or, equivalently, p =0(e).
This can be realized if the integral I(qp) in Eq. (23) van-
ishes to the leading order at a certain qo.

For this case, we shall construct a return map for the
rescaled variables P, g by matching the "inner" solution at
/=0(We) obtained in the preceding section with the
"outer" solution valid at /=0(1).

In the outer region, Eqs. (18}and (19) can be rewritten
after substituting p =ep and q =qp+ v e1t in the form

dP G(g;qo+e' $,0)
e' rQr p

—g/3(1+ @' d /Id')
(24)

dy &ro —k/3-
G(g;qo, 0) .

pro
(25)

As in the preceding section, it is convenient to set "initial"
conditions p=p and /=at at the outer turning point
$=3r; the radicals in Eqs. (24) and (25) have to be taken
with the positive sign on the incoming branch and with
the negative sign on the outgoing branch. The solution is

ble and, in principle, can generate chaotic behavior. Little
else can be added; since the excursion into the large-
amplitude region necessitates inclusion of higher-order
terms of the nonlinearity in Eq. (1},the exact form of the
map depends on a particular underlying system. The only
specific effect associated with the crossing of the homo-
clinic branch is the anomalous intermittency phenomenon
described by Fowler. If, say, the system traverses a limit
cycle corresponding to a fixed point of the map M~ (i.e.,
an "invariant necklace" of the full system), it would
sporadically undertake very rare [with a probability
0(exp( —I/v E))) irregular excursions away from the at-
tractor. Similar rare effects would be superimposed on
any chaotic attractor the map M& may possess.

f ( —g'/3)' ' (27)

denotes terms that do not diverge at $~0. The inner lim-
it of Eq. (26)

P=P +(2c) ' 1n(g/12rp)+kp, (28)

where kp ——P, (0), is to be matched with the outer limit of
Eq. (22)

ln
1

2c

4~-'"cg
2c ( qi )

1/2 —
1

(29)

to obtain the relation between g' and 1(i

~o 1
1

)gp2c(g) +1
(30)

The upper sign corresponds to an orbital segment directed
from the inner towards the outer turning point, and the
lower sign, to an oppositely directed segment. The total
round-trip change of g between two successive passings of
the outer turning point is

p p 1 1'' —1/4c
g„+& f„+ ln ——e

2c 576ro
—2ko . (31)

Next, orbital changes of P have to be computed by in-
tegrating Eq. (24). Straightforward expansion of the
right-hand side (rhs) in e'~ would produce divergences at
the outer turning point that are eliminated by introducing
a strained coordinate g=g( I e'~ P/rp). Th—en expanding
Eq. (24) yields

to be matched with the inner solution (21) and (22) at
(=0(e'r }. Integrating Eq. (25) yields

1++I —g/3rp
P=f'+» +g, (g), (26)

2c 1 — 1 g/—3ro

where

i'„=—(1—&I—g/3)
1

C

2G((+ Wegg/rp'qp+ WE/ 0)[1+WE//rp —WE(1 g/ro )d P/d g]—
dg ~e(ro+v eg)(rp —g/3)'~ (I+V eg/rp)'~

2G(g;qo, 0)
, ~2 +p(g)F)(g)+F~(g),

~ro(ro g/3)— (32)

with

F) (g) = (r —g/3)
ro ro i}g Bq 2ro

The resulting inner limit of the outer solution is

itp=p +c 'ri+k)p +k2+k3,

with

(34)

F2(g) =2rp G (g qp 0)(rp/g —1 ) (33)

where derivatives are evaluated at g= g, q =qp. When Eq.
(32) is integrated from g=e' g to $=3ro, the 0(e '

)
term vanishes due to the condition I=0 see Eq. (23}.

3po 3PO

ki= f, Fi(c)dc, k2= f, F.(c)dc,
3po

k3 ——f g(g)Fi(g)dg .
(35)
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The outer solution for f, Eq. (26), should be used in the
last integral. Matching with the outer limit of the inner
solution (21)

y=y' ——,'c '+c-'g

yields

p =p'+k, g ——,c —k2+k3

(36)

(37)

The overall change of P between two successive passings
of the inner turning point is

p'„+)=p'„—2k)g„—2k3 . (38)

VI. NEXT-RETURN MAP

We have obtained a two-dimensional map, (31) and (38),
with two variables changing in turn in such a way that
their increments at each step depend on the current value
of the other variable. Shifting and rescaling the variables

P'=1/4c +Au, g =k '( —,Av+k3), (39)

yields

un+1 un +vn

v„+ &
——v„—C lnu„+ ~,

(40)

where C=k~/Ac. The parameter A =576e roe is] 2 4k pc

presumed to be O(1); this just ensures that the orbital
average (j ) vanishes in the leading order at p =O(e).

The map (40) is area preserving, even though the con-
tinuous system it has been derived from is not conserva-
tive. The area-preserving property will be, generally, lost
when higher terms in the above asymptotic expansion are
taken into account. Abstracting for the time being from
this weak dissipation (important as it may be) we can no-
tice similarity to the well-known Chirikov map that
would be obtained if v is replaced by k sinv in the first,
and lnu by ln

~

u
~

in the second equation. The common
feature —logarithmic dependence of decrements of v on
u —is, of course, not accidental, since both maps describe
motion in the proximity of a homoclinic orbit.

The lack of periodicity in v bars the map (40) from
sharing large-scale chaotic properties of the Chirikov
map. The latter are most pronounced at C ~&1 when effi-
cient phase-mixing makes decrements of u almost un-
correlated. In this case, repeated reinjection into the re-
gion where the Jacobi matrix of the map has a real eigen-
value outside the unit circle and the transformation is ex-
tensional generates chaotic trajectories that fill a finite re-
gion when the phase plane is wrapped onto a cylinder, i.e.,
v defined modulo 2m.

En our case large values of C are inadmissible since they
would just cause prompt ejection into the region u &0
that corresponds to the runaway of trajectories of the
underlying system to large amplitudes. Alteration of rota-
tional and extensional transformations is also lacking.
The map (40) is extensional at u+v & C/4, and, as nu-
merical experiments confirm, trajectories straying into
this region are eventually ejected across the axis u =0.
The alternative is a trajectory confined to an invariant

manifold lying entirely within the region where the Jacobi
matrix has eigenvalues on the unit circle.

Within this region, while escape to large amplitude is
prevented, trajectories generated by the map (40) retain
the rich structure characteristic of area-preserving maps
studied in connection with dynamics of nonintegrable
Hamiltonian systems. Figure 2 shows successive magnifi-
cations of different trajectories at C=0.296. On the larg-
est scale, one can see that invariant circles nested around
the center at u =1,v =0 are destroyed at the periphery,
and the principal resonance manifests itself in a crown of
"petals, " corresponding to a period-11 invariant circle.
Under the magnification, the period-11 circles are seen, in
their turn, exhibiting secondary resonances and breaking
into higher-period circles. This picture is repeated, ap-
parently ad infinitum, at still smaller scales. The magni-
fied pictures exhibit particularly complex structures. In
some parts, one observes a typical layering of invariant
circles and resonances of different orders, as well as
chaotic orbits passing near saddle points. In other parts,
invariant circles and their resonances appear as islands in
an escape region. Some orbits, represented by clouds of
points, are in fact long chaotic transients and eventually
escape across the line u =0.

The detailed structure of orbits is very sensitive to
changes of the parameter C. Thus, the primary period-11
resonance in Fig. 2 disappears at C=0.29. On the other
hand, a slight increase of C leads to consolidation of in-
variant circles encompassing the region of the primary
resonance. Shifting the parameter to either side makes
the structure of orbits on larger scales less sophisticated
than in Fig. 2, and narrow resonance layers are observed
only in the fringe peripheric belt bordering the escape re-
gion. Rich structure is recovered, however, in other
parametric intervals, while the order of the primary reso-
nance decreases with growing C. Thus, transitions in the
interval 0.55&C&0.56 resemble those in the interval
0.29 & C &0.30, but with the period-8 primary resonance
instead of period-11.

The picture based exclusively on Eq. (40) should be
amended by taking into account, first, reinjection of tra-
jectories that escape beyond u =0, and second, small dissi-
pative corrections to the map itself. The former is most
likely to cause the trajectory, after a number of escapes, to
be trapped in the rotational region. Small corrections
violating the area preservation should play the most im-
portant role, as they either convert some (slightly distort-
ed) invariant circles of Eq. (40) into attractors, or cause
creation of chaotic attractors in the region of sma11-

amplitude motion under the study. The latter is most
likely to occur either within one of resonance shells of Eq.
(40) or in the outer layer stabilized by compensating the
extension by area contraction.

VII. CONCLUSION

The chaotic scenario emerging from the above picture
can start and end as suggested by Fowler. First, a sta-
tionary state situated on the elliptic branch of Eq. (10)
surrenders stability to a periodic orbit via a supercritical
Hopf bifurcation. This orbit subsequently expands as a
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FIG. 2. Orbits {a) generated by the map {40)and their successive magnifications {b)—{e).
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point representing the attractor of the averaged system
traverses the cusped region in Fig. 1 towards the hyper-
bolic branch. Eventually, we find a situation when aver-
aged equations have no attractors in the region of closed
orbits and, as escape to infinity is not allowed, an attrac-
tor shaped as an invariant necklace has to be formed. In
this state, the system spends most of the time spiraling
around a toral segment represented by a path in Fig. 1(b)
that connects some two points of the hyperbolic branch.
In between, it undertakes swift excursions into the region
of large amplitudes. The overall motion can be either
quasiperiodic or chaotic depending on the properties of
the map of the hyperbolic branch onto itself generated by
the returning trajectory; nothing more definite can be said
without exploring dynamics of a specific underlying sys-
tem at large amplitudes. The only chaotic property of
universal character one can observe is Fowler's anomalous
intermittency manifesting itself in transcendentally rare
events of ejection from the attractor.

The moment of transition between the small-scale
periodic and large-scale necklace dynamics is most in-
teresting, and it is near this point of "homoclinic explo-
sion" where the richest variety of behavior can be ob-
served. The logarithmic map (40) gives a most crude
description of dynamics in the proximity of the hyperbol-
ic branch. The area-preserving property of this map can
be viewed as an undesirable accidental symmetry that pre-
cludes formation of small-amplitude attractors. On the
other hand, the universal character of the map containing
a single parameter helps to locate most sensitive areas
where chaotic attractors are likely to appear when small
dissipative corrections are brought in. We find such areas
both in the internal resonance layer where the invariant
circle undergoes repeated N-tupling and in the outer shell
of nested invariant manifolds near the borderline between
rotational and extentional motion.

Apparently, by tuning finely enough the parameters of
Eq. (7), which influence both the parameter C and dissi-
pative corrections, we could guide the system through dif-
ferent sequences of bifurcations on the way from the
small-amplitude periodic motion to large-amplitude neck-
lace dynamics, thus realizing any of an infinite number of
routes to chaos that may exist, as emphasized by Holmes,
in systems described by two-dimensional maps. Different
small-amplitude attractors encountered in this way can be
possibly followed along appropriate paths in the
parametric space of the underlying system away from the
singular bifurcation point under study.

The above chaotic scenario is not the only one that is
possible in the proximity of the bifurcation point at the
triple-zero eigenvalue. As mentioned, formation of a
homoclinic cycle of the averaged system (a feature shared
with bifurcations of lower codimension) presents another
alternative. The most straightforward transition from a
stationary state to chaos can be brought about by moving
a stable stationary state from the elliptic to the hyperbolic
branch through the cusp at q = —a; different scaling is
required to probe dynamics near this point.

Though dynamics in the proximity of the cusp singu-
larity at the triple-zero eigenvalue in no way exhausts the
variety of three-dimensional motion, it is apparently rich

enough to reflect the qualitative jump accompanying the
transition from two to three dimensions. If two-
dimensional dynamics, as reflected by dynamics in the
proximity of a double-zero eigenvalue, involves only a fi-
nite number of distinct regimes and transitions, this num-
ber is apparently infinite in three dimensions.

ACKNOWLEDGMENT

The work has been supported by the US-Israel Bina-
tional Science Foundation.

APPENDIX: TRANSFORMATION
TO THE NORMAL FORM

(i =1,2, 3) . (Al)

The quadratic transformation of the type (3) reducing
(Al) to a normal form is

g, g,. +P',~'+P'2xy+P~'+P~Z+P g Z+P~' (A2)

(with ul ——x, uq ——y, u3 ——z). Using this in Eq. (1) yields
the system of 18 equations for PJ'

0
0 0

1 1

0 P~ MJ

—I PJ ——Mq

J J

(A3)

where I is the 6X6 unity matrix, 0 is the 6)&6 block of
zeros, and

0
0

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 0 1 0

(A4)

There is a number of alternative solutions of (A4) lead-
ing to 14 equivalent normal forms. The transformation
we choose is

x x+[—,Mz+ —,(Ms+M4+2M3)]x

+ —,(Mg+M4+2M3+M6)xy,

y~y —MIx + —,
' (M5+M4+2M3)xy

+ —, (M4 —M3 +M q +M6 )y
~

+ —,
' (2M3 —2M4+M5+M6)xz —Msyz —M6z

z z —Mix —(Mq+2Mi )xy+ —,(M4 —M3+M5)y2 2 2 1 2 2 3 2

+ —,(2M3 —2Mg+M g )xz+Msyz —(M6+M5 )z

yielding the normal form (4) with

3 2 3PO=M1 P1=2M 1 +M2

P2 ——2M1+M2+M3, P3 ——2M1+M2+Mg .1 2 3 1 2 3

(A5)

(A6)

Let the quadratic part of Eq. (1) be presented as

fI~i(x,y, z) =MIx'+M~xy+M'3y'+M'4xz+M5yz+M'6z'
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The coefficient of the cubic term Njx originally present
in the equation of z in (1) is transformed by (A5) to

v=Ni —MiM2 —MiM4+Mi(M2+M4) . (A7)

The last term vanishes when po ——M
&
——0.

For actual computation of coefficients of the unfolding
(6) it is more convenient to use a simplified nonlinear
transformation, taking the rhs of equations for the ampli-

tudes x,y, respectively, as transformed amplitudes y, z.
Since this is a near-identity transformation, it can be in-
verted perturbatively to the required order and then sub-
stituted into the equation of z. Nonlinear terms that are
removed by (A5), but not by the simplified transforma-
tion, are of smaller order of magnitude and can be
neglected; coefficients of other terms are identical to those
generated by (A5).
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