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Nonlinear response and its behavior in transient and stationary processes
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Transient responses and stationary processes with alternating fields are treated in the nonlinear
regime in order to clarify their relations in the time and frequency domains. It is shown that a
frequency-domain experiment in which a weak ac field is superimposed on a strong biasing dc field
corresponds to the transient process of a strong constant biasing field with the sudden application of
weak constant field. Furthermore, it is found that the Fourier-Laplace transform of the second-
order nonlinear transient rise process corresponds to the amplitude for the co component of the sta-
tionary experiment with coupled dc and ac fields with the angular frequency co. For a simple ac in-

put, we demonstrated how the stationary nonlinear response may conveniently be calculated with

the help of the theory of random walk. Also, interrelations among the rise, decay, and rapidly re-

versing transients are clarified.

INTRODUCTION

In a previous paper, Morita' has sho~n how the non-
linear response by an external perturbation may be calcu-
lated once the conditional probability of the unperturbed
system is given. The main purpose of the present paper is
to apply this theory to investigation of the behavior of
transient and stationary processes. This enables us to re-
late nonlinear response in the time domain to that in the
frequency domain arising from the transient and station-
ary processes, respectively. We shall consider a transient
process in which a constant perturbation p is applied for
sufficiently long time for a system to reach equilibrium,
then at time t =0 another constant perturbation, with dif-
ferent strength po, is suddenly switched on. This general
case includes the transient rise, decay, and rapidly revers-
ing processes often used in Kerr effect relaxation experi-
ments. Generally we shall show that the experimental re-
sult for the rapidly reversing field can be produced from
the results for the rise and decay processes if we confine
ourselves to second-order nonlinear terms, while if we
take into account more than the third-order terms, the ex-
periment with the rapidly reversing field provides infor-
mation which is not inherent to the rise and decay pro-
cesses. Also treated is the stationary nonlinear response
induced by alternating fields.

It will be shown how the stationary response due to an
alternating field p(t) =pocos(cot) may be calculated with
the help of the concept of random walk. This approach is
certainly more convenient than the existing one, and we
shall see clearly how complicated the final expression be-
comes particularly for higher-order nonlinear terms.
Hence we shall restrict ourselves to second-order non-
linear terms by considering the stationary case where
p(t)=A cos(toit)+Bcos(to2t), and show that the ampli-
tude of the co& or co& components gives the Fourier-
Laplace transform of the rise transient.

As a new result, it will be shown that higher-order non-

linear terms can be calculated and summed to obtain the
stationary distribution function for the case where
p(t)=p&+p*cos(tot) assuming (p'/pi)((l. It will be
seen that the Fourier-Laplace transform of the transient
distribution function for the special case where p =p &+po
leads to the above stationary distribution function and this
situation gives information missing in the conventional
techniques for the rise, decay, and rapidly reversing fields.
From this general consideration, we will be able to see ex-
plicitly that frequency domain experiments of Block and
Hayes correspond not to the rise transient through linear
response theory as speculated by Ullman, but to this
transient process. This point will be considered extensive-
ly in Discussion.

THEORY

In accordance with the previous formulation, by that of
Morita, we write the time-evolution equation as given by

af(x, t) = [Do(x )+ep(t)D, (x)]f(x, t),at

where f(x, t) is the distribution function of a system
whose natural or unperturbed motion is described by the
operator Do(x ), whereas the perturbed operator is
represented by Di(x), x stands for a set of variables other
than time t for expressing f(x, t), and p(t) is a function of
t indicating the time dependence of the perturbation. It
should be noted that the perturbation term is assumed to
consist of the product of a function p(t) and the operator
Di(x) by separating variables t and x. The formal solu-
tion for f(x, t) in Eq. (I) can conveniently be expressed
using the transition probability density g(x,x', t, t') which
satisfies

"dg(x, x', t, t')
=Dog x,x, t, t'

Bt
and g(x,x', t, t')=5(x —x') at t=t', where 5(x) is the
Dirac delta function. The final result is given by
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fj(x, t)=g f f . . . f D(t r—, )D(t, t,—). . . D(t, ,—t, , )f(r, , r, —)
f&ti & &f ~ &0

~p(t, }p(r, ) . . p(r, }dr,dt, dt, , (2)

where we have written

f(x, r) =fp(x )+sfi(x, r)+e f2(x, r)+ (3)
F (a) —p f(s)

s

and introduced a set of orthnormal functions g„(x)'s
satisfying the following eigen equation:

Do(x)g„(x)= —A,„g„(x),
with n =1,2,3, . . . . In Eq. (3), fo(x) is the equilibrium
distribution function without the perturbation, e is the
small parameter, and —A,„ in Eq. (4) is the eigenvalue. It
was shown that in Eq. (2),

[D(t)];J=f f g (x)g(x,x', t)D, (x')gj(x')dx dx',

fo(x)F " = +po [E—poD(s)] f(s) .
s s

(10)

And for the rapidly reversing field where po ———p, we ob-
tain

F'""'= —p+[E—pD(0)]-'f(0)fo(x)
s s

+p [E—pD(s))[E—pD(0)] 'f(0) .
s

In the case p =0 (corresponding to the rise transient) we
find that

and

[f(t)];=f f g (x)g(x,x', t)Di(x')fo(x')dxdx',
—2p [E+pD(s)] ' f(s)

s

+2p+[E+pD(s)] '[E—pD(0)] 'f(0) .
s

where [D(t)]1 and [f(t )]; are elements of the square ma-
trix D(t) and the column matrix f ( t}, respectively, which
are related to the correlation functions determined once
g (x,x', t, t') is known as seen from Eqs. (5) and (6).

We shall consider the transient process where a con-
stant field p(t) =p has been applied for sufficiently long
time to reach the equilibrium state for t &0, and at t =0
another constant field p(t)=po is suddenly switched on.
In this case, we have to find F(x,s) which satisfies

[s —Do(x) —poD i(x)]F(x,s ) =f,q(x,p ),
where

Finally for the case where po ——p +p * with assuming
(p lp) «1, we find by neglecting terms higher than the
second order in p *,

F' '= +p+[E—pD(0)] 'f(0)fo(x)
s s

+p* [[E—pD(s)] 'f(s)
s

—[E—pD(0)] 'f(0)

F(x,s) =f f (x, t)e "dt =W(f(x, t)),
and f~(x,p) represents the equilibrium distribution func-
tion in the presence of the field p. It follows from Eq. (7)
that

+[E—pD(s)] '[E—pD(0)] 'f(0)I .

(12)

fo(x)
F(x,s ) = + +[E—pD(0)] 'f(0)

po s

+ (po —p ) [E—poD(s)] ' f(s)
s

+p 1 — g —[E—poD(s)]p
po

X [E—pD(0)] 'f(0) .

At this stage, we consider the stationary process with
alternating fields. We first treat the case where
p(t) =pocos(Q)t). To this end, we should calculate f&(x, t)
in accordance with Eq. (2) in the limit of taboo which
corresponds to fj '(x, t) in the stationary state where all
transient effects are removed. For the calculation of the
product p(ti )p(t2). . .p(tj. ) in Eq. (2), we use the relation
p(t)=(po/2)[exp(icot) + exp( icot)]. Lettin—g a =1 or
—1, where 1 &m &j, we find

J
p(ti)p(r2). p(t, )=(pol2}'+exp ice g a t

m=1

This equation immediately gives interesting results.
When p =po, it leads to f,q(x,p) as required, while when
po ——0 (corresponding to the decay transient) we have

(13)

where the first summation g on the right-hand side of
Eq. (13) must be carried out over all possible 21 combina-
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tions of a i,a2, . . . , aj. Equation (13) can be further writ-
ten setting a& ——1 giving

J
=po(pa~2)' 'g'cos ~ g a t (14b)

J
=(po/2)J . g'exp ic0 g a t

m=1
+c.c. . (14a)

where c.c. represents the complex conjugate of the
preceeding term. Now the first summation g' in Eqs.
(14a) and (14b) should be taken over all possible 2~

combinations of a2, a3, . . . , aj fixing a
&
——1. In calculat-

ing fj '(t), we find it convenient to use Eq. (14a) rather
than Eq. (14b). Therefore we can write

FJ(x,s)=W I I I D(t t, )[D—(ti tz)e— ' ' ' ][D(tz t3)e— ' ' ' ]
&0

X[D(t —t , )e ' .' ' ' ' ' ][f(t. , —t )e ' ' ' ' ' ]e ''dt, dt . dt

=D(s)D(s i cob —
i )D(s —i cobq )

. D(s icobj—. 2) f(s icobj.—i)(s i cub~ —). (15)

where b =ai+a2+, +a . It follows from Eq. (15) by assuming only the simple pole in (s icobj i)—' contributes
to f1 '(x, t) in the stationary limit that

J

f~ "'(x,t)= . , g g' [XJ(bj. )cos(cobjt ) XJ (b )Jsi—(nabob tJ)],
2J

where

(16)

X,(b, ) =X,'(b, ) Xj'(b, )—
D t& D t2 tj exp —i& bj t] + bj b i t2 + + bj bj ] tj dt]dt2 dtj

(17)

This result enables us to determine X~(bj. ) by calculating

bz, bj bi, bz b2, .—. . , bz —
b& i ——aj. W—e .find bz ——j (1),

1 —2, (iC, ), j—4 (2C. , ), . . . , j+4 ( 2C—, =j—1),
and —j+2 (J i CJ i

——1) where the number in
parentheses represents the number of times that value of
bJ appears. Similarly, we have bJ —b] ——j—1 and —j+1
(1), j—3 and —j+3 (iC~ i

——j—1), j—5 and —j+5
(qCi i), . . . , bj b2 ——j—2 and ——j+2 (2), j—4 and
—j+4 [2,CJ 2

——2(j —2)], j —6 and —j+6
(22CJ 2), . . . , bj b3 ——j—3 —and —j+3 (2 pCq 3 ——4), .

j—5 and —j+5 [2,C~ 3 4j(—3), . . . , ——and so on.
These values are listed for j=3, 4, 5, and 6 in Table I. We
have shown schematically in Fig. 1 how values of bJ may
be obtained conveniently with the help of the random
walk concept where the walker starts from a

&
——1 through

all the possible paths to the final destination with values
of bJ, taking forward and backward steps for a =1 and
—1, respectively. It is obvious that if j is even, bJ is also
even, whereas if j is odd, bJ is odd. The expression for
XJ(bj ) must be obtained with taking account of the above
considerations, leading to very complicated forms for
large values of j. The case j =2 has been considered pre-
viously.

Because of the complexity in obtaining higher-order
terms for the alternating field, we confine ourselves here
to calculating fz '(x, t) in the case of p(t)=A cos(cuit)
+Bcos(co2t). After carrying out a similar procedure to
the case p(t) =pocos(cot), we find that

b.
6

5

FICz. 1. Diagram showing how bj may conveniently be ob-
tained with the help of the random walk concept.
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TABLE I. Values of bj bj b] bj b2, for j=6, 5, 4, and 3.

b6 b6 —bs b6 —b4

j=6
b6 —b3 b6 —bp b6 —b2 b5

j=5
b5 —b5 bs —b2 bs —b

6
4
4
2
4
2
2
0
4
2
2
0
2
0
0

—2
4
2
2
0
2
0
0

—2
2
0
0

—2
0

—2
—2
—4

5
3
3
1

3
1

1

—1

3
1

1

—1

1

—1
—1

—3
3
1

1

—1

1
—1

—1

—3
1

—1

—1

—3
—1

—3
—3
—5

4
4
2
2
2
2
0
0
2
2
0
0
0
0

—2
—2

2
2
0
0
0
0

—2
—2

0
0

—2
—2
—2
—2

4

3
3
3
3
1

1

1

1

1

1

1

1

—1

—1

—1

—1

1

1

1

1

—1

—1

—1

—1

—1

—1

—1

—1
—3
—3
—3
—3

2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

—2
—2
—2
—2
—2
—2
—2
—2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

—1

—1

—1

—1

—1

—1

—1

—1

—1
—1

—1

—1

—1

—1

—1

—1

5

3
3
1

3
1

1

—1

3
1

1
—1

1

—1

—1

—3

2
2
0
2
0
0

—2

b3

3
1

1
—1

4
2
2
0
2
0
0

—2
2
0
0

—2
0

—2
—2

4

b4 —b3

3
1

1

—1

1

—1

—1

—3

3
3
1

1

1

1
—1
—1

1

1
—1
—1

—1

—1

—3
—3

j=4

j =3
b3 —b2

2
0
0

—2

2
2
2
2
0
0
0
0
0
0
0
0

—2
—2
—2
—2

ba —b2

2
2
0
0
0
0

—2
—2

1

1

1

1

1

1

1

1

—1

—1

—1

—1

—1

—1

—1

—1

b4 —bi

1

1

1

1

—1
—1

—1

—1

b3 —b(

1

1

—1

—1

(x ')= —.g[A D(2i~i)«i~i)e +A D(0)f( —i~&)+B'D(2i~, )f(im, )e '+B'D(0)f(

+ ADB( ot ici+co)f2(ico )e2' ' +ABD(i toi i to2) f( —i t@2)e—
—

& ( CO i +CO~ )t —t ( —Co i +CO~ )f+ABD(itoi+ito2)f(ice, )e ' ' +ABD( iso, +its&)f—( its&)e —' ' +c.c.] .

Now, consider the two-mode case where one of the frequencies is zero, that is, p(t)=p, +p'cos(~t) assuming
(p' jp i ) « 1. It follows by neglecting terms higher than the second power of p* and considering only terms contributing
to the stationary process that

f' '(x, t) fo(x)=gp][E —p&D(0—)] 'f(0)+ &p*g([[E—p&D(iso)] '[E—piD(0)] 'f(0)

—[E—p&D(0)] 'f(0)+[E—p, D(iso)] 'f(ice)Je'"'+c. c. ) .

DISCUSSION

We discuss first the transient case, then later the sta-
tionary process. It should be noted when po ——p+p' that
we obtain information on [E pD(s ) ] ' [E—pD (—0)]
missing in rise, decay, and reversing processes. It is also
interesting to note that for experiments with the reversing
field, F(x,s) is connected to [F.+pD(s)] '[E—pD(0)]
which is present neither in the rise nor in the decay tran-
sients. However, if we restrict ourselves to the second-

-(.)F' —y, (x) + F(' f, ( )—
S S

+2 F ' ——fo(x) +O(p ),
S (20)

order nonlinear terms by neglecting higher-order terms,
we find that

F (rev)
eq &
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where F"(x,s) is found from F '"'(x,s) by replacing p by
—p. Hence it is seen that although the experiment with
the reversing field can be produced by the rise and decay
transients, if we neglect nonlinear terms higher than the
third order, this result gives fresh information absent
from the rise and decay processes if we take into account
higher-order terms. We consider contributions arising
from the permanent and induced dipole moments usually
performed in treating the Kerr effect relaxation by
separating Di(x) into the following two terms:

Di(x) =D„(x)+Ep(t)D (x),
leading to

~[( (K ) )(rev)] ( (K ) )(r)
S

=2p —[D„(s)f„(s)—D„(s)f„(0)], (27)
s

where ((K) ) represents the ensemble average with the
external perturbation p for the corresponding experimen-
tal condition indicated by the superscript and

((K) )'„"'= »m ((K) )'"'.
t —+ oo

Equations (25)—(27) lead to

~[&«) &"+& «) &'"'—(«) &'„"']

F '"'= fo(x)—+p+ f„(s)
s s

=p —D„(s)[f„(s)—f„(0)], (28)

+p 2 [f (s) +D„(s)f„(s)]+O(p '),

F (d)

S

(22)
from which we see that the contribution from the per-
manent dipole moment can be separated out, and for a
pure induced dipole system where D„(t)= f„(t)=0,

W[((K))"]=p —f (s),
S

p f (s)+p' [f (s)+D„(s)f„(0)] +O(p')
s " s

(23)

and

~[(&K) &'"']——« K) &'„'= —p' —"f ( ),
S

F '""'=—f,q(x)
S

+2 —p f„(s)

+p' [D„(s)f„(s)—D„(s)f„(0)] + O(p'),

(24)

where matrices with subscripts p and cz are those obtained
by replacing the operator Di(x) by operators D„(x) and
D (x), respectively. It should be noted that the contribu-
tion from D (x) formally corresponds to that from D)(x)
in the linear regime except the former plays a role in the
second order of p . In fact, if we put D„(x)=0, we just
obtain the distribution function corresponding to that in
the linear regime. For a physical variable K (x) satisfying

E x Oxdx=O

which give the symmetrical property that

& «) &"=&(K)&"—&(K) )'"'.
In the special case of the Kerr effect relaxation for a rigid
symmetric body governed by the rotational Smoluchowski
equation, the normalized orientation factor
@(t)= ( ( P2(cos8) ) )/( (P2(cos8) ) )„ for decay, rise, and
rapidly reversing transients in the limit of infinitively low
fields where 8 is an angle of the symmetric axis making
with the direction of an appled electric field, and Pz(z) is
the second Legendre polynomial has the following proper-
ties:

C" '(t) =exp( 6Dt), —

@(P)(t) 1
3R 2D( R —2

2(R +1) 2(R +1)
3R 2D~ 3R —6Dr

R+1 R+1
and

xf„(s)=0,

a.= JK(x)g(x)dx,

where D is the rotational diffusion constant, and
R =p /hak&T in which p is the permanent dipole mo-
ment, Aa is the difference in polarizabilities along and
perpendicular to the symmetric axis, kz is the Boltzman
constant, and T is the absolute temperature. Hence, we
see immediately that

we find that

(25)

~[((K)&'"']——(«» '„"'

= —p2 —[f (s)+D&(s)fz(0)], (26)
s

W[((K) )'")]=p —[f (s)+D„(s)f„(s)],

e'""'(t)=2[%'"'(t)+e"(t)]—1 .

In order to intepret experimental results carried out by
Block and Hayes who measured the stationary dielectric
dispersion of poly-y-benzyl-L-glutamate induced by an
applied electric field E(t) =E) +Eocos(cot) where the
strength of E~ is much stronger than that of Eo, Ullman
calculated the Fourier-Laplace transform of the rise tran-
sient numerically based on the rotational Smoluchowski
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equation for a rigid symmetric body, and treated the
dielectric dispersion in terms of linear response theory.
Morita found this interpretation was not correct and his
final result did not agree with that obtained in accordance
with the speculation of Ullman. Morita also stated that
the experiment of Block and Hayes should be considered
by taking not linear but nonlinear response into account.
We see directly that the transient time-domain experiment
for Eq. (12) corresponds to the stationary frequency-
domain one for Eq. (19), thus confirming Morita's state-
ment. This technique is particularly useful for investigat-
ing the dynamic behavior of molecules under the strain of
a strong biasing external perturbation in which molecules
suffer from a structural change. An immediate example
is to elucidate dynamic processes of materials exhibiting

We have shown clearly how the stationary distribution
function for the single alternating field may be calculated,
obtaining a rather complicated final result. It can be
shown that the Kramers-Kronig relations which are valid
in the case of linear response also holds for the real and
imaginary parts of nonlinear susceptibilities, XJ.(bj) and
Xj'(bj) in Eq. (17). We have investigated f2 '(x, t) for the
double alternating fields in Eq. (18). The dc component
whose frequency dependence gives information of f(t)
was noticed by Hayakawa who showed that it leads to in-
formation identical to that obtianed by dielectric disper-
sion based on a particular model. However, it should be
noted that Hayakawa's result is not valid in general, since
D(t) may take out different components in f(t) which are
not necessarily equivalent to the ones affecting dielectric
dispersion. After putting co2 ——0 or cubi

——0 in Eq. (18), it is
interesting to note that the amplitude in the cu] or co2 com-
ponent is related to the Laplace transform of the sum of
the rise and decay transients [cf. Eq. (15)]. Of course, this
case corresponds to that in Eq. (12) when f'2"'(x, t) is ob-
tained. The discussion with respect to the 2' component
was made previously, and the frequency amplitude was re-
lated to the Fourier-Laplace transforms of both the rise
and decay transients. '

The single alternating field response corresponding to
the operator in Eq. (21) is given by'

( (E ) ) =kp(co) +k &(co )cos(2cot ) +k2'(co)sin(2cot ), (29)

3

~h

AJ

0.5-
-05 p

0-5 0 5
1 n

FIG. 2. Plots of normalized values of X'(~) (solid monotoni-
cally decreasing curve), X"(co) (solid curve with a single peak),
k2(~) (dotted curve with a minimum), and k2'(co) (dotted curve
with a single peak) vs ln(co). Normalization has been done with
respect to the corresponding maximum values, and the rotation-
al diffusion constant D has been set to be l.

where

k, (co) = —,
' p,'a- f D„(t)dt f f„(t)cos(cot )dt

+ ~tdt

k2 —ikz'(co) = ,'ppK[D~(2i—co)f&(iso)+f~(2ico)] .

It is evident from Eq. (30) that the frequency dependence
of the dc component gives contribution from the per-
manent dipole moment. If the dc component is found to
be independent of frequency, then the system is composed
of molecules with induced dipoles only.

Finally, in order to see how experimental results may be
in the case of p (t) =3 cos(cuit )+Bcos(cozt ), we consider a
specific example of Kerr effect relaxation of the rigid
symmetrical body in the limit of extremely weak fields.
We find the stationary orientation factor @' '(t) contrib-
uting to the coefficient of AB term as given by [use Eq.
(6.14) of Watanabe and Morita ]

2 296+8(co i + co2 —~
& ~2) —~ i~2(co i +~2)2

'(t) cc AB c os [( ci) i +co2 )t ](~i+4)(~2+ 4)[(co,+co,)'+ 36]

96+8(ni+coz+micg2)+~i~q(~i+~2)+ cos [( co i
—cg2 )t ](~i+4)(~2+4)[(co~ —coq) +36]

2(mi + m2)(20+ coi+ c02+ 3~i~2)+ 2 2 sin[(co ) + cuq) t ](~i+4)(~2+4) [(coi+co2)'+ 36]

2(co( —co2)(20+coi+~2 —3~i~2)2 2

+ 2 2 sin[(cubi —egg)t ](~i+4)(~2+4)[(co,—co, )'+36]
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where the rotational diffusion constant D is set to be 1 for
convenience. By putting ~2 ——0 and co& ——co which corre-
sponds to the case of a weak ac superimposed on a weak
dc biasing fields, we have

'(t) 0: AB[X'(co)cos(cot)+X"(co)sin(cot)]

where

2
co +12

(co +4)(~ +36)
and

co(cu /2+ 10)
(co +4)(co +36)

In Fig. 2, we show X'(co) and X"(co) as normalized by the
corresponding maximum values (solid curves) together
with kz(co) and kz'(co) (dotted curves) for a single ac field
determined previously by Ogawa and Oka and by
Thurston and Bowling' who obtained

'(t) cc k 2(co)cos(2cot ) +k z'(co)sin(cot ),

where

and

k2(c0) =
(co +4)(4' +36)
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k2'(co) =
(co +4)(4' +36)

It should be noted that the maximum of X"(co) appears
higher on the frequency side than that of k "(co). In fact,
it follows that the maximum frequencies co,„ for the
former and latter are 2.372 and 1.385, respectively.

It is hoped that theoretical predictions in this paper wi}1
be checked experimentally, and used as useful techniques.
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