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A prototype model of driven nonlinear oscillators with a stable limit cycle is studied. In the fast-
relaxation limit, dynamics can be reduced to a one-dimensional mapping parametrized by the ampli-
tude a and the phase P of the driving force. For a weak force, mode locking with rational winding
numbers occurs. For a strong force, the parameter space may be divided into two subregions: In
the unimodal region, the order of occurrence of the orbits is governed by the Metropolis-Stein-Stein
U sequence of unimodal mappings; in the intermediate region, a transition between mode-locking
behavior and that of the unimodal mapping takes place, and new sequences of periodic orbits occur.
The systematics of the periodic orbits is investigated.

I. INTRODUCTION

Recent interest has focused on nonlinear oscillators
driven by a periodic force, e.g. , anharmonic oscillators, a
parametrically excited pendulum, the forced Brussela-
tor, ' the Duffing's oscillator, and so on. ' Although a
variety of physical systems have been modeled by dif-
ferent sets of equations, the resulting dynamics for large
classes of systems display similar bifurcation and chaotic
behavior. In particular, if the free oscillator has a stable
limit cycle, enclosing an unstable stationary point, one
often (not always, since it depends on the external force)
finds, both in numerical simulations and in real experi-
ments, that the parameter space has similar structure.
For weak external force the limit cycle dominates, and
mode-locking and quasiperiodic behaviors occur. With
the external force increasing in amplitude, the oscillator
passes through a complicated transition region where
period-doubling sequences and chaotic behavior take
place. For very strong external force, however, the oscil-
lator is dominated by the driving force, and the chaotic
behavior disappears. Crreat efforts have been made to re-
veal the fine structure of the parameter space, especially
the transition between these two extreme situations. How-
ever, the results are so far incomplete. The reason is sim-
ple: The treatments are, in general, based on numerical
solutions of the differential equations, and the structure of
the transition is too complicated to be revealed by a direct
integration of the equations of motion.

For a nonlinear driven oscillator with two variables, one
may get a two-dimensional return map from the differen-
tial equations. If the free oscillator can be solved exactly
and is driven by impulse forces, the dynamics can be ex-
actly reduced to a discrete mapping of two variables,
which can be studied further by numerical methods. In
this paper the attention will be restricted to this simpler
case. For other drives the dynamics becomes more com-
plicated, and it will be discussed elsewhere.

However, the model is still too complicated for a gen-
eral discussion of the transition region between the weak-
and the strong-force situations. I propose the following
two steps to clarify the situation. (i) A prototype oscilla-

tor is chosen for simplicity. I claim that this oscillator
contains the essential features of a wide class, and is thus
representative. (ii) The limit of fast relaxation is taken, by
which the dimension of the return map is reduced from
d =2 to d =1, and a map from a circle onto itself (circle
map' ) results. Numerical experience shows that a finite
relaxation rates gives results close to the limiting case.
With these two additional simplifications, the dynamics
can be discussed in a fairly transparent manner, and one
is, in particular, able to make the connection between a
"devil' s-staircase" region with mode-locking behavior' to
a region with a unimodal mapping via a more complicat-
ed region of parameter space. In this intermediate region
new sequences of periodic orbits occur.

The fast relaxation limit is technically important for
the whole discussion in the present paper, since, as men-
tioned above, in this limit the two-dimensional return map
collapses to a one-dimensional circle map. In theory this
is straightforward. In practice, however, considerable
care must be exercised in many cases, such as the model
of Ref. 6. The reason is that the location of the limit cy-
cle in general depends on that parameter which is a mea-
sure of the inverse relaxation time for perturbations off
the limit cycle, and, consequently, the model may not
have a definite limit cycle in the fast-relaxation limit. As
a result, the differential equations cannot be reduced to a
one-dimensional map without variable scaling. The model
of the present paper, however, is such that the location of
limit cycle is independent of the relaxation parameter, and
consequently an exact one-dimensional return map will be
obtained without difficulties.

Notice that the resulting one-dimensional map has to-
pologically different properties for strong and weak exter-
nal force, and is nonanalytic for a critical strength of the
external force. This nonanalyticity is not a mathematical
abstraction, but owes its existence to the unstable fixed
point inside the limit cycle, thus generic in nature. Two
examples are shown in Figs. 1(a) and 1(b). The Brussela-
tor ' describes a hypothetical three-molecular chemical
reaction with an autocatalytic step under far from equili-
brium conditions. The external force is here assumed to
consist of rectangular pulses [Fig. 1(a)]. Figure 1(b)
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FIG. 1. Circle maps 8„+& f(8„) f——or three models. (a) The forced Brusselator x =2—9x+x y+F, y=8x —x y, F=a if
10n & t & 10n +5, or F=0 if 10n +5 & t & 10(n + 1), with integer n. The critical strength here is a, ='0.58. (b) An electronic oscilla-
tor (see Ref. 6) x +sr(20x —1)x+0.5n x(50x —10x'+ 1)= V+„5(t 4n) —The c. ritical strength here is V, =1.0. (c) Three topologi-
cally different versions of the prototype map (2.7) with /3=0 4.

II. THE MODEL

The shape and the location of the limit cycle may be
changed by a transformation of variables, and as a proto-
type two-dimensional nonlinear oscillator with a stable
limit cycle we can take

r=sr(1 —r ), 8=1 (2.1)

in a properly scaled polar coordinate. The parameter s is
a measure of the inverse relaxation time for perturbations
off the limit cycle r =1. This oscillator is subjected to a
periodic force in the x direction, with the following evolu-
tion equations

represents an electronic oscillator tuned with nonlinear
elements and having its frequency synchronized by means
of an external impulsive periodic signal. In each example
the circle map exhibits topologically different properties
for force amplitudes bigger or less a critical strength.
Thus a nonanalyticity must take place when the external
force has a critical strength. Because of the difficulty
mentioned above, these two examples are not really limit-
ing cases, though the relaxation time is very short. One
may presume that a set of rescaled variables will make the
limit cycle definite in the fast relaxation limit.

The motivation of the present paper is to reveal the
structure of parameter space for a wide class of nonlinear
driven oscillators. This class is characterized as follows.
(i) The free nonlinear oscillator has a stable limit cycle,
which encloses an unstable stationary point. (ii) The
external force is such that above and below a critical
strength the circle map exhibits topologically different
properties. It is clear that the present circle map is quali-
tatively different from the sine map which has been inves-
tigated in great detail. ' '" A brief account of some results
of the present study have already been published. '

The remaining part of the article is organized as fol-
lows. In Sec. II a prototype model of nonlinear driven os-
cillators is introduced, and transformed into a one-
dimensional circle map in the fast relaxation limit. The
weak force and the borderline situations are treated in Sec.
III, while the more interesting and more complex strong-
force situation is discussed in the successive sections.

x =sx(1 —x —y ) —y+2a+5(t —2nnP),

y =x ~sy(1 —x —y ),
with p & 0. The summation is over all integers n, and

x =r cosO, y =r sinO .

(2.2)

(2.3)

We now make a "stroboscopic" map of the dynamics,
focusing on the values x„,y„, r„, and O„of x, y, r, and O

immediately after the nth "kick" at time t =2m.np. We
denote the values of these variables immediately before
the ( n + 1)th "kick" at time t = 2m (n + 1)p by x„*,y„', r„*,
and 8„*. It is quite easy to deduce from Eqs. (2.1) that

rn
n p 2 4 ~y2 ~ 8n 8n+[r„~(1 r„)e —~]

(2.4)

with y=sp, since no external force acts on the oscillator
between two successive "kicks." Furthermore, integrating
both sides of the Equations (2.2) from time
t=2n(n+1)p e to t=2n(—n+l)p+e, we find in the
limit e~O that

x„+&
——x„+2a =r„cosO„+2a,

yn /$ yn n On

(2.5)

+[r„sin(8„+2mP)] I'

r„*sin(8„~2m P)
tanO„~ )

——

2a+ r„*cos(8„+2n p)

(2.6)

with r„* defined by (2.4). The uniqueness of the iteration
is guaranteed by the implicit requirements that y„+& and
sin(8„+ 2~p) have the same sign, i.e., sin8„+ ~ and
sin(8„+2') have the same sign. When r„+,——0, the
value of O„+& is arbitrary. However, the next iteration
gives a unique O„+ &

as long as a&0.
Taking y~ oo, the fast-relaxation limit, we obtain from

Eq. (2.4) that r„*=l. This reflects the obvious result that
the oscillator returns to its limit cycle before the next
"kick." In this limit we get from Eqs. (2.6) that the posi-

Thus we obtain the following two-dimensional return map

r„+&
——I [2a+ r„'cos(8„+2m p) ]
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tion on the circle satisfies

sin(8„+ 2n.P)
8„+,=f(8„), tan8„+ i

——
2a +cos 8„+2n.

(2.7}

a one-dimensional circle map with two parameters. Here
a is the measure of the amplitude of the external force
and P is the ratio of two frequencies. Without loss of gen-
erality we may assume a&0, 0& p& 1, and ~—&8„(n.
The iteration, shown in Fig. 1(c), has completely different
properties in the three cases a & —,', a = —,, and a & —,. The
map is invertible for a & —, (weak force), piecewise linear
for a= —,

' (the borderline case), and noninvertible for
a& —, (strong force). As mentioned in the Introduction,
the nonanalyticity of map (2.7) is by no means unphysical.
It is universal for a wide class of driven oscillators, since
this nonanalyticity corresponds to a force just sufficiently
strong to displace the oscillator into the unstable station-
ary point (the origin in the present model). Note also that
since the mapping (2.7) is symmetric (with 8~ —8) about
p= —,

' it suffices to discuss p & —,
' .

The numerical results, of which a few are shown in Fig.
2(a), display the complicated structure of the parameter

1

2 sin[( —,
' —P)n. ]

for —,
' &p& —,',

a, = 1 for —, & p& —, ,
1 3

2 sin[(P ——,
'

)m. ]

otherwise,

(2.8)

period-doubling bifurcation and chaotic behavior are
found. The order of the period orbits is arranged accord-
ing to the Metropolis-Stein-Stein U ("Universal" ) se-
quences. ' The formula (2.8) will be explained in Sec. IV.
The word "unimodal" here means that the mapping has
only one extrernum. The stable orbit for a unimodal map-
ping is independent of the initial condition.

(iii) In the intermediate region —, &p & —, and —, & a & a,
the transition between the unimodal mapping and the
mode locking behavior takes place, and many new se-
quences of periodic orbits occur.

Both regions (ii) and (iii) represent the strong-force situ-
ation. We will discuss these regions one by one in the suc-
cessive sections.

It should be emphasized here that numerical investiga-
tions for the two-dimensional map (2.6) with y= 1 gives
almost the same results as the limiting case. The one-
dimensional mapping is, therefore, representatiue for the
more general finite-relaxation-time situation.

space. We can divide the parameter space into the follow-
ing three regions [see Fig. 2(b)].

(i) In the weak-force region a & —,', the system displays
mode-locking and quasiperiodic behavior. Mode locking
for each (rational) winding number P/Q takes place in
an interval of p. In case a~0, the width of every mode-
locking interval tends to zero, so the probability that the
winding number is rational, for a random value of p, will
tend to zero. With increasing value of a the width of
mode-locking intervals (so-called "Arnol'd tongues") in-
crease.

(ii) In the unimodal region a & a„where

unimodal region

intermediate
region

weak force region

FIG. 2. (a) Location of some periodic (the numbers inside cir-
cles indicate the length) and chaotic regions for the map (2.7).
(b) The three regions in the parameter space. In the intermedi-
ate region the state of the system may depend on the initial con-
dition.

III. THE WEAK-FORCE REGION, a & 2

For a & —, the mapping function (2.7) has a discontinu-
ous point, and is divided into two continuous branches by
this point, as shown in Fig. 1(c}. The discontinuosity for
case a & —,

' comes from the restriction that the mapping is
modulated by 2m, and it can be removed when the right
branch is lifted by 2~. If an orbit constructed of Q's
iterations visits the right branch of the mapping by P
times, we call the ration w =P/Q for winding number It.
is obvious that this definition for the winding number is
the same as usual one. '

The dynamics for case a & —,
' is simple. The mapping

(2.7) is invertible, since it has positive slope everywhere:

do„+i
dO„

1+2a cos(8„+2m p)
&0 for a & —,

'

1+4a cos(8„+2m p)+4a
(3.1)

Then we know that system displays quasiperiodic or
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TABLE I. The mode-locking regions (period & 8 only) at a =
z with P/Q & 2 .

Order

1

2
3
4
5
6
7
8
9

10
11
12

[P/Q]

[0/1]
[1/8]
[1/7]
[1/6]
[1/5]
[1/4]
[2/7]
[1/31
[3/8]
[2/5]
[3/7]
[1/2]

Words

—,L
RL7,LRL6
RL,LRL
RL,LRL
RL,LRL
RL3,LRL2
RL RL LRL RL
RL2, LRL
RL RL RL,LRLRL RL
RL 2RL, LRLRL
RL 2RLRL, LRLRLRL
RL,LR

P interval

[0,0.25000]
[0.25196,0.25392]
[0.25394,0.25787]
[0.25794,0.26587]
[0.26613,0.28226]
[0.28334,0.31667]
[0.31693,0.32087]
[0.32143,0.39286]
[0.39314,0.39510]
[0.39516,0.41129]
[0.41142,0.41535]
[0.41667,0.58333]

winding numbers w and 1 —w are symmetrically placed
on each side of p= —,. The word at p= 1 —p' is the same
as at p=p', except that all R's are turned into L's and
vice versa. For example, for the right end point of [2/3]
we obtain the word 8'=LR which is just the "sym-
metric word" to RL, the word for the left end point of
[1/3] at p= —,', , and the corresponding value of p is

9 19
1 28 28 '

If we keep a = —, and let the value of P increase from 0
to 1, we will find a series of periodic orbits. Each periodic
orbit ig this series corresponds to a rational winding num-
ber w, and its period is the demonimator of this fraction.
The ordering is simply according to the magnitude of w.
For periods not exceeding a given integer N the winding
numbers are the ordered set of all positive rationals less
than unity, in number theory' called the Farey series of
order N. The infinite ordered collection of all periodic or-
bits we call the Farey sequence.

IV. THE UNIMODAL REGION

Now we are in a position to discuss the more compli-
cated region a & —,. In fact, it suffices to consider the re-

gion —,
'

& a & 1, since a) 1 corresponds to the very strong
external force situation where

~

f'(8)
~

& 1 and the stable
orbit of the system has period 1.

For a & 2 the mapping function f(8), Eq. (2.7), has a
maximum

=f(r )

and a minimum

(4.1)

—8 =f(r+),
where

r+ ——(1—2P)m +cos '( I/2a)

and

8 =sin '( I/2a) .

(4.2)

(4.3)

(4.4)

A period orbit visiting the maximum or the minimum is
called a superstable orbit. We will discuss two types:
class-1 orbits start from the maximum at v. , while class-
2 orbits start from the minimum at ~+. The superstable

orbits previously introduced for a= —, are clearly special
cases.

Each periodic orbit corresponds to a finite word con-
structed of L's, M's, and R's. For superstable orbits the
first letter, L or R, denotes whether the orbit starts from
the maximum at ~ or from the minimum at ~+, and the
subsequent letters L, M, or R denote whether the succes-
sive iterations fall in the interval ( —m.,r ], (r, r+), or
[r+,n.], respectively. That is to say, we have the designa-
tion

L if 8&~

M if r &0&~+,
R if 0)~+,

(4.5)

for the letters in the word of the superstable orbit. Thus
the superstable orbits of class 1 have words starting with
the letter L, while those of class 2 have words starting
with R. The word corresponding to a period-S orbit con-
sists of N letters altogether. Notice that our definition of
words is in close agreement with that used by Metropolis
et al. ' for the simpler case of unimodal mappings. In
the present case the unimodal mapping takes place using
the branches L and M, so for this case our notation
differs from the standard symbolic-dynamics notation' in
two ways: R must be replaced by M, and, in addition, an
L for the starting point must be added (omitted in the
standard Metropolis-Stein-Stein notation).

Let us denote the line in our parameter space (a,p) for
which a given superstable orbit exists, as a trajectory. We
will use the same symbolic dynamics word to denote both
a superstable orbit and the corresponding trajectory. Thus
trajectories are divided into two classes, according to
whether the orbits belong to class 1 or class 2. All trajec-
tories must start and end at the endpoints of the periodic
intervals [P/Q] as a tends to —,', since both r and r+
tend to ~ in this limiting case. Figure 4 illustrates this no-
tion.

Another class of orbits, called pseudo-orbits will be use-
ful for the discussion. A pseudo-orbit of class 1 or 2 is
defined as a nonperiodic orbit that starts from the max-
imum at 0=~ and ends at the minimum at 8=~+, or



2674 E. J. DING 35

sin '(1/2a) =(1—2p)~+cos '(1/2a)

with solution

1

2 sin[( —,
' —P)n. ]

for —,
' &P& —,

' . (4.6)

Similarly the pseudotrajectory R —L is determined by the
equation

1

2 sin[(P ——,
' )n.]

for —,
' &P& —,

' (4.7)

.6-

0.3 0.4 0.5

0.55

g 6 5

RL —L
04 LRL —R

~l

FIG. 4. (a) Some trajectories of class 1 for superstable orbits
of U sequence (solid lines). Numbers inside circles indicate the
period. Dotted-dashed lines indicate pseudotrajectories. (b) The
pentagon connected to the interval [1/3]. The dashed lines are
trajectories of class 2 which do not belong to the U sequence (see
Sec. VI).

starts from the minimum and ends at the maximum,
respectively. Notice that (N+1) letters are needed to
denote the pseudo-orbit made of N iterations, since the
last letter is used to identify its end point. We put a dash
before the last letter in the word for a pseudo-orbit to dis-
tinguish it for that of superstable orbit. For example, the
pseudo-orbit starting from 0=~ and reaching 0=~+ by
one iteration, i.e., r+ f(r ), has the word —R— L. The-
length of the word, the number of iterations, is 1 in this
case. The line in parameter space for which a given
pseudo-orbit exists is called a pseudotrajectory. We will
use the same symbolic dynamics word to denote both the
pseudo-orbit and the corresponding pseudotrajectory.

Let us consider the pseudotrajectory L —R, which is
determined by the equation r+ f(r ), i.e., ——

These two pseudotrajectories R —L and L —R will be very
important in our discussion of the structure of the param-
eter space. The Eqs. (4.6) and (4.7) agree for —,

'
& p& —',

with the definition (2.8) of a„ the lower boundary of the
unimodal region in parameter space. When a&a„ the
iterates are confined to a region where f(8) is unimodal
[the dotted square in Fig. 1(c)], and all the usuals'
period-doubling bifurcation sequences, chaotic behavior,
etc. , are found. In particular, the order of appearance of
the stable orbits is given by the universal sequence, the U
sequence. ' As we have mentioned, however, the words
we use here are somewhat different from the standard
words, which are constructed of R's and L's, according to
whether successive iterations of the maximum falls to the
right or the left of the maximum. To have the ordering
given by the universal sequence one must follow directions
in parameter space that intersects each trajectory once (see
Fig. 4), along a=a, (P), for instance. Results for this
choice are shown for periods not longer than 8 in Table II.
Since these superstable orbits visit both the maximum and
the minimum, the Feigenbaum convergence rate for
period-doubling bifurcations is 5=7.284. . . , representa-
tive for the universality class' x„+i f(x„)——
=1—px„+ - . . The results for the series of bifurca-
tions are shown in Table III.

V. THE INTERMEDIATE REGION

The region —,
'

& a & a„—,& p& —,
' is the most complicat-

ed part of the parameter space [Fig. 2(b)]. This region
must contain an interpolation between the U-sequence
systematics along a =a, and the mode-locking behavior at
a= —,'. Furthermore, as we will show later, there are
many new sequences of periodic orbits in this region of
parameter space. In this section we will study the general
systematics of periodic orbits. Several new sequences of
periodic orbits will be given in Sec. VI.

Consider Sz, the point of intersection between the pseu-
dotrajectories R —L and L —R. It is known from the
solutions of the Eqs. (4.6) and (4.7) that this point is p= —,

and a=v 2/2. It is evident that the trajectories RL and
LR must both pass through this point. The trajectory RL
is determined by the equation z+ ——f'2'(r+ ), i.e.,
r+ f( —8 ) by Eq. (4.2). O——n the other hand, we may
obtain from the map (2.7) that sin(8„—8„+i+2np).
=2a sin8„+i. Thus r+ f( —8 ) means-—
sin( —8 r+ +2') =2a—sins+, i.e.,

by the definition (4.1). Using (4.3) and (4.4) we get cos(4mP) =2a sin[2nP —cos '(1/2a)] . (5.1)
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Order

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Period'

2
4
8
6
8

7
5
7
8
3
6
8
7
8
5
8
7
8
6
8
7
4
8
7
8
6
8
7
8
5
8
7
8
6
8
7
8

0.500 000 000 000
0.394 627 357 428
0.390 658 086 411
0.389 533 259 406
0.389 391022 362
0.389 361 753 097
0.388 543 703 305
0.384 566 789 160
0.383 278 376 272
0.362 430 412 114
0.319517205 258
0.318664 122 804
0.318 569 709 261
0.318 379 894 662
0.316213 841 961
0.314948 079 153
0.314895 679 561
0.314 870 893 681
0.314701 624 103
0.314401 958 143
0.314293 824 499
0.303 583 635 838
0.283 741 748 726
0.283 105 404 837
0.282 896 168 745
0.282 034 031 851
0.281 470 411 553
0.281 392 493 400
0.281 258 732 144
0.276 170302 316
0.266 257 577 043
0.265 773 128 482
0.265 468 785 932
0.262 930 313250
0.257 827 074 717
0.256425 985 315
0.253 203 072 843

Word

LR
LRLM
LRLM LM
LRLM
LRLM'
LRLM
LRLM2
LRLM~LM
IRLM2LM2
LRL
LRL 2ML

LRL MLM
LRL 2MLM
LRL 2MLML
LRL M
LRL ML
LRL M
LRL 2M4

LRL M
LRL M LM
LRL ML
LRL2
LRL ML
LRL ML
LRL MLM
LRL M
LRL M
LRL M
LRL'M'L
LRL
LRL ML
LRL M
LRL M
LRL
LRL 'M
LRL

'Period (8 only.
For superstable orbit.

Similarly, the trajectory LR is determined by the equation

TABLE II. The U sequence along the pseudotrajectory
L —R.

TABLE III. A sequence of period-doubling bifurcations
along the pseudotrajectory L R—T. he p values for the super-
stable orbits and the corresponding Feigenbaum convergence
rate 5 (calculated as a ratio of two successive P intervals) are
shown.

Order

1

2
3
4
5

6
7
8
9

10
11
12
13

Period

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

0.500 000 000 000 00
0.394 627 357 427 62
0.390 658 086 41100
0.390 322 422 047 25
0.390279 322 753 92
0.390273 566 515 65
0.390272 781 971 93
0.390272 674 516 12
0.390272 659 774 76
0.390 272 657 751 53
0.390 272 657 473 81
0.390272 657 435 69
0.390272 657 430 45

26.5471
11.8251
7.7882
7.4874
7.3371
7.3011
7.2894
7.2861
7.2851
7.2848
7.2842

[1/2] at a = —, form a pentagon-shaped domain in the pa-
rameter space (for brevity called a "pentagon" from now
on). The trajectories RL and LR divide the pentagon into
three triangular areas, A, B, and C, see Fig. 5. Area A
has three sides represented by the words L—R, RL —L,
and RL. Let us denote the part of a word before the first
letter M as the prefix. Then it follows that all trajectories
of class 2 in this triangular area have words with prefix
RL, since they are between the two lines RL L(third—
iteration at r+) and RL (third iteration at ~ ), and the
third iteration must by continuity fall on (r, r+). In the
limit a~ —,

' the middle part (M) of the mapping f(8)
becomes vertical, and all these orbits with prefix RL now
become in this limit periodic with period 2 and with word
8'=RL. Since the orbits visit the discontinuity point of
the piecewise linear n= —,

'
map, the corresponding value

of p will represent the left end point of the periodic inter-
val [1/2].

By similar considerations as above, it is easy to show
that all the trajectories of class 1 in the triangular domain
C have words with prefix LR. They terminate for

& +a~ —, at the right endpoint of [1/2], since they are lo-
cated between the lines LR and LR —R.

—cos(4n p) =2a sin[2m p+ cos '(1/2a) ], (5.2)

and the pseudotrajectories RL —L and LR —R by the
equations

cos[4np+ 2 cos '(1/.2a) ]

=2a sin[(1 —2P)vr —cos '(1/2a)]

and

cos[4nP 2co—s '( 1/2.a )—]
=2a sin[(1 —2p)m. +cos '(1/2a)],

(5.3)

(5.4) o.5

)i
(.—Rg, pr~ A, '

/

o 5—
0.3 o.4 o.6 o 7

respectively. The pseudotrajectories L—R, RL —L,
LR —R, R —L, and the trajectories LR and RL are shown
in Fig. 5. These four pseudotrajectories and the interval FIG. 5. Pentagon connected to the interval [1/2].
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For values of a and p in the triangular domain B, the
system has a stable period-2 orbit, independent of the ini-
tial value. In order to prove this result, let us consider the
function Gz(8, p)=f(f(8)) 8 —for a fixed a=a, & —,',
and let p increase from p2, corresponding to the trajectory
RL, to p3, corresponding to the trajectory LR. It is evi-
dent that G2(r+, P2) =f( —8 ) r+———0, corresponding to
a superstable orbit of class 2. As P increases from Pz,
G2(~+, P) will be positive, since f( —8 ) increases and r+
decreases, by Eqs. (2.7) and (4.3). However, G2(~, P) is
never positive. Thus we find that G2(8,p) =0 has at least
one root in the interval (r+, m. ) for Pz&P. Similarly, we
can find that G2(8,p)=0 has at least one root in region
( rr, ~—) for p&p3. So an orbit with period 2 is always
present for any (a,p) with pq & p& p3. It remains to prove
stability. The period-2 orbit visits the right branch R or
the left branch L, or both, but we can show that it never
visits the middle branch M. To prove this let us define

on branch L such that f(g ) =~+, and g+ on branch
R such that f(g+)=r, see Fig. 6. Since G2(r+, P) is
positive, we know that f( —8 )&r+, thus g & —8
Similarly, we have g+ & 8 . Assume, hypothetically, that
the orbit visits the middle branch M at the nth iterate,
i.e., w &0„&w+. Then the last iterate 0„1must also
fall on branch M. [Otherwise, 8„ i &/+ or 8„
which is impossible since

~ f (8)
~

& 8 .] Hence the orbit
has to be confined to the middle branch M from the be-
ginning, which is not true. The conclusion is, therefore,
that the period-2 orbit mentioned above will never visit
the middle branch M. Since

~f'(8)
~

& 1 for the two
branches R and L it actually visits, the orbit of period 2
must be stable.

Above we have found analytic expressions for several
simplest trajectories and pseudotrajectories. In principle,
this method may be used to find analytic expressions for
trajectories of orbits with longer periods. However, that
would be rather time consuming. It is in most cases more
efficient to use numerical methods to find trajectories or

FIG. 6. The mapping (2.7) for a=0.55 and P=0.48, parame-
ter va1ues within the area B in Fig. 5.

pseudotrajectories in parameter space. The question is
how this infinite collection of trajectories can be given
structure and order. We will now explain how the param-
eter space can be subdivided into regions with a hierarchal
structure. This hierarchal ordering is connected with tra-
jectory systematics.

Let us consider at the critical line a= —, the set of all
mode-locking regions whose inverse winding numbers are
integers, i.e.,

. . . , [1/N, ],[1/(Ni —1)], . . . , [1/4], [l/3], [1/2] . (5.5)

I.et

F„(P)=f'"'(z+) —r

where the value of a is taken to be a, (p). At S2, the
point of intersection between the pseudotrajectory L —R
and R Lwe —have Fz(P)=r+ —r &0. At S, the right
end point of the interval [0/1], however, we have
F2(p) &0. Thus we know that F2(/3) =0 must have a root
between S and S2. So we can find a point on the pseudo-
trajectory L—R, say S3, which must be visited by the
pseudotrajectory RL —L. Moreover, at point S3 we have
F3(p)=r+ r&0. —At point S we still have Fi(p) &0.
Thus we know that a point S4 between S and S3 on the
pseudotrajectory L —R must be visited by the pseudotra-
jectory RL —L. We may go in this way and find a series2

of points along the pseudotrajectory L —R, say SN with

N] ——3,4, . . ~, which must be visited by the pseudotrajec-
tories RL ' —L with X1 ——3,4, . . . , respectively. No-
tice that the pseudotrajectory RL ' must end at the
left end point of the interval [1/(N, —1)] when a~ —,

'

from above, and that the series of points SN and the
1

series of intervals [1/(N, —1)] have the same relative or-
dering [see Fig. 7(a)]. We can similarly show that a series
of pseudotrajectories LRL ' —R must be present, and
that each of them connects the right end point of [1/N i ]
to a point on the pseudotrajectory RL ' —L between
S& and the left end point of [1/( N—i 1)]. Hence above

any interval in (5.5), say [1/N i ], we have a similar
pentagon-shaped domain as described above for [1/2].
The left end point of [1/N, ] is associated with a word

Ni —I
W] ——RL and its right end point with a word

N) —2
W] ——LRL ' . A pseudotrajectory with word

Nl —1
RL Lstarts at the left en—d point of [I/Ni], and a
pseudotrajectory with word LRL ' —R starts at the
right end point of [1/N, ]. There are two such pseudotra-
jectories for each mode-locking region in (5.5), and a
series of pentagons, shown in Fig. 7(a), can now be con-
structed. The pentagon immediately above [1/Ni] is en-
closed by parts of the pseudotrajectories L —R,

NI —2 Nl —2 NI —1

RL L, LRL ' —R,—RL ' L, and by [1/N,]-
itself.

The point of intersection between L —R and
N) —2

RL —L must be visited by the trajectory of class 1
Nl —2

with word LRL and that of class 2 with word
N) —1

RL . These two trajectories divide the pentagon
above [1/Ni] into three triangular areas A, B, and C,
shown in Fig. 7(b).
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(a)
Since

Bf(8)
& 0 for —m ~ 0 & ~ or w+ & 8(m,

we conclude that

S [1/3] 1/2)

LN;z

[1/Ni ]
+LpLN;z p

FIG. 7. (a) Pentagons connected to intervals of the first level
(sketched only). (b) Blowup of the pentagon immediately above
the interval [1/N, ]

It is easy to see that all the trajectories of class 2 in the
N[ —1

area A have words with prefix RL . In fact, denote
the N1th iteration of 01——~+ by

8', =f ' (&+»

and let p=pi(a) be the locus of the pseudotrajectory
RL ' L, and p=pz(a) —the locus of the trajectory
RL ', so that

8', (P=Pi) =r 8', (P=Pz) =r+ .

(8~, (r+ for Pi (P(Pz
which means that the (Ni+1)th letter in the word of any
trajectories of class 2 in the area A must be M. Thus

N) —1
these trajectories have words with prefix RL

In the limit a~ —, from above the middle piece of the
map f(8) becomes vertical and orbit words with prefix

N) —1 N, —1

RL ' will reduce to a word RL ' exactly. Hence
these trajectories terminate at the left end point of
[I/N&]. By similar considerations, we find that all the
trajectories of class 1 in area C terminate at the right end
point of [1/Ni ]. On the other hand, in the area 8 no tra-
jectories are present at all, and the stable orbit of the sys-
tem has period N1 when the parameters take values in
this area. Derivations are immediate generalizations of
the derivations for the [1/2] case, and are therefore omit-
ted.

The series of pentagons based on (5.5) form the first leu
el of our hierarchical description of the parameter space.
The remaining part of parameter space consists of many
triangular regions immediately above the gaps between
each neighbor pair of intervals in (5.5), between
[1/(Ni+1)] and [1/Ni], say. A group of trajectories of

Xi —1
class 2 intersect the pseudotrajectory LRL —R and
enter this triangle. On the other hand, a group of trajec-t[—1
tories of class 1 intersect the pseudotrajectory RL L—
and do also enter this triangle.

In order to discuss the second level of the structure, let
us consider a series of mode-locking regions of the form
[1/( N i + 1 /Nz )] between the intervals [1/( N i + 1)] and
[1/Ni] at the line a= —,', for a given integer N&. For
N1 ——2, e.g. ,

[2/5], [3/7], . . . , [(Nz —1)/(2Nz —1)],[Nz/(2Nz+ 1)], . . . , (5.6)

lection of pentagons above all mode-locking regions
[1/( N i + 1/Nz ) ] belong to the second leuel of our
hierarchical description.

A trajectory of class 1 with word L (RL) ' and a tra-
N2 —1

jectory of class 2 with word RL (RL) ' divide the pen-
tagon into three areas A, 8, and C, shown in Fig. 8(b).
By the same reasoning as above it is clear that all the tra-
jectories of class 2 in area A have words with prefix

N2 —1
RL (RL) ', hence they must terminate at the left end
point of [Nz/(2Nz+ 1)]. It is also quite clear that all the
trajectories of class 1 in area C have words with prefix

N2L(RL) ', hence they must terminate at the right end
point of [Nz /(2Nz+ 1)]. Again, no trajectories are
present in the area 8 at all. The stable orbit of the system
has a period (2Nz+ 1) for parameters in this area.

This concludes the discussion of the second level in the

between [1/3] and [1/2]. Take any mode-locking region
in (5.6), say [Nz/(2Nz+1)]. It follows from (3.8) that
the left end point of [Nz/(2Nz+1)] corresponds to a

N2word RL (RL) ' and its right end point to a word
N2L (RL ) '. A pseudotrajectory with word

RL (RL) ' Lstarts from the l—eft end point of
[Nz/(2Nz+ 1)] and a pseudotrajectory with word
L (RL) '—R starts from the right endpoint of
[Nz/(2Nz+1)]. For each mode-locking region in (5.6)
there are two such pseudotrajectories. Then we obtain a
series of pentagons, sketched in Fig. 8(a). Derivations are
immediate generalizations of the derivations for the first
level, and are therefore omitted. The pentagon immedi-
ately above [Nz/(2Nz+1)] is bounded by parts of the
pseudotrajectories RL L, L(RL) ' —R, L(RL) '—R, —
RL (RL) ' L, and by [Nz/(2Nz+ 1)] i—tself. The col-
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[1/3]/ P/Sj [~i 7] / .

(~)

4

RL2 (RL) "2 —L

[N, /&2N, +&) ]
FIO. 9. The mapping (2.7) for a=0.52225 and p=0. 40120,

arameter values on the pseudotrajectory RLM —L. The itera-
tion (6.2) (the solid-heavy line) forms a unimodal mapping in t e
interval [g, g ].

FIG. 8. (a) Pentagons connected to intervals of the second
level (sketched only). (b) Blowup of the pentagon immediately
above the interval [N2/(2N2+ 1)]. 0.56

parameter space. We may go on and discuss higher levels
in the same way. At successive levels the words of the
trajectories have longer and longer prefixes, and the penta-
gons become smaller and smaller in size. The set of pen-
tagons corresponding to all intervals [P/Q] will thereby
be ordered in a hierarchy, and will fill the intermediate re-
gion of the parameter space (save a set of measure zero).

Coexistence of ordering of periodic orbits by the U se-
quence in strong-force situations and mode-locking
behavior with rational winding numbers in weak-force sit-
uations has been noted before, ' ', though the connection
between them has apparently never been discussed. In the
present model, the connection is exhibited in a systematic
manner.

a

0.54-

VI. NEW SEQUENCES OF PERIODIC ORBITS

As mentioned above, there are a lot of new sequences of
periodic orbits in the intermediate region of parameter
space, and their ordering may be different from both the
U sequence and the Farey sequences. Since two classes o
trajectories may intersect in the intermediate region, the
stable state of the system may depend on the initial value.

The collection of all the trajectories in the parameter
space can be subdivided into two families. Trajectories
that start and end at the same end point of an interval
[P/Q] are called closed-loop trajectories. The remaining
class we denote Farey trajectories. One can show that to
any region [P/Q] at least one period Q Farey trajectory of
class 1 connects the right end point of [P, /Q, ] to that of
[P/Q], and one period Q Farey trajectory of class 2 con-
nects the left end point of [P/Q] to that of [Ps/Qt, j,
where P /Q, and Pb/Qb are two consecutive fractions in
a Farey series and P/Q=(P, +Pb)/(Q, +Qb) is their

0.52-

0.50~9 0.40 0.41
~~[1/2]

3 0.42

FIG. 10. A sequence of closed-loop trajectories of class 2
with parameter values along the pseudotrajectory RLM —L.
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TABLE IV. A sequence of superstable orbits of class 2 along the pseudotrajectory RLM —L.

Order

1

2
3

5
6
7
8
9

10
11
12

Period'

8
12
10
6

12
10
12
-8

12
10
12

0.394 635 467 931
0.401 199227 553
0.403 461 191020
0.405 389 607 636
0.408 956 470 371
0.410396 245 423
0.412 210 589 092
0.413 744 462 240
0.414 598 934 301
0.415 486 898 124
0.416 180738 809
0.416 536 072 465

0.556463 891 114
0.522 249 719312
0.515 657 987 186
0.511271 720 827
0.505 120 872 620
0.503 383 538 693
0.501 720435 699
0.500 761 998 276
0.500 374 235 418
0.500 122 259 970
0.500 020 955 490
0.500001 513280

Word

RLML
RLMLRLML
RLMLRL (ML )

RLMLRL (ML )

RLMLRL
RLML {RL)2MLRL
RLML (RL) ML,
RLML (RL) (ML)
RRLML (RL )

RLML (RL) ML
RLML (RL)
RLML (RL)

'Period ( 12 only.
For superstable orbit.

mediant. ' The proof is omitted here.
In the intermediate region we find a lot of new se-

quences of periodic orbits. The following are three exam-
ples.

(i) We have mentioned above that one can find the U
sequence of class-1 trajectories along the pseudotrajectory
L R. Consider —any one of them, say the trajectory with

word 8'=LRL X, where X is a syllabus starting with
M. The point of intersection between the pseudotrajecto-

ry L—R and the trajectory LRL ' X must be visited by
Ni —2

the trajectory of class 2 with word W'=RL XL,
which will terminate at the left end point of [1/(Ni —1)]
and form a closed-loop trajectory, since its word has pre-
fix RL ' . If we keep the values of parameters a and P
immediately below the pseudotrajectory L —R, and de-
crease p from —,

' to —,', we will find a sequence of class-2
trajectories which is identical to the U sequence but every
trajectory will be found twice. So the ordering of this se-
quence (with periods not longer than 6) should be

2,4,4, 6,6, 5, 5, 3, 3,6,6, 5, 5,6,6,4,4, 6, 6, 5, 5,6,6. (6.1)

Some of them are shown in Fig. 4(b). Notice that the first
period-2 trajectory appears only once here because the
other one is located in the p & —,

' region.

8.+2=F(8. ) =f[f(8.)]— (6.2)

on the interval [g,8 ]. It is not difficult to see that F(8)
is a unimodal mapping. In fact, the left part R of map-
ping F(8), rI (8(r+, is constructed by two consecutive
iterations of f (8) on the branches M and L, and the right
part L of F(8), r+ (8(8, on the branches R and L,
see Fig. 9. When the value of p increases along the pseu-
dotrajectory RLM L, a sequence —of periodic orbits for
the unimodal map (6.2) must result. Consequently the se-
quence of class-2 trajectories for superstable orbits with
periods not longer than 12, should be ordered as

4, 8, 12, 10,6, 12, 10, 12,8, 12, 10, 12 . (6.3)

These closed-loop trajectories start and end at the left end
point of the interval [1/2], see Fig. 10. Their words can
be obtained from the words in the U sequence based upon
F(8) by changing the letter R to ML and L to RL. With
the values of a and p along this pseudotrajectory one

TABLE V. A sequence of superstable orbits of class 1 along
the pseudotrajectory LRL —R.

(ii) If the parameters a and p take values on the pseudo-
trajectory RLM L, and g—is defined as f ( —8 ), the suc-
cessive iterations from r+ will be —8, rl, and r . It is
clear that r) must fall on branch M. Consider the itera-
tion

g(i J1/3l
0.39 0.40 0.41 P

Order

1

2
3

5
6
7
8
9

10

Period'

6
10
10

8

10
9
7
9

10
5

0.408 884 212 698
0.40S 755 319598
0.408 754 098 280
0.408 752 174027
0.408 752 146 853
0.408 752 146453
0.408 750 273 861
0.408 632 061 939
0.408 621 172 806
0.402 696 927 368

LRLMLM
LRLMLM RLM
LRLMLM LM
LRLMLM
LRLMLM
LRLMLM
LRLMLM
LRLMLM LM
LRLMI M2LM2
LRLML

FICi. 11. A sequence of Farey trajectories of class 1 with pa-
rameter values along the pseudotrajectory LRL —R.

'Period ( 10 only.
For superstable orbit.
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Order

1

2
3
4
5
6
7
8
9

10

Period

16
12
24
48
96

192
384
768

1536
3072

0.408 884 212 697 52
0.408 793 374 733 54
0.408 784 834 029 06
0.408 783 695 052 33
0.408 783 499 023 57
0.408 783 458 686 70
0.408 783 450 108 57
0.408 783 448 274 04
0.408 783 447 881 26
0.408 783 447 797 14

10.6359
7.4986
5.8103
4.8598
4.7023
4.6759
4.6706
4.6694

TABLE VI. A sequence of period-doubling bifurcations
along the pseudotrajectory LRL R.—The p values for the su-

perstable orbits and the corresponding Feigenbaurn convergence
rate 5 (calculated as a ratio of two successive P intervals) are
shown.
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APPENDIX

In this appendix we will prove theorem 1. The proof is
based on the following lemma. '

Lemma 1. Let w =P/Q with 0 & P & Q. Then the
word corresponding to the left end point of the interval
[P/Q) is

8'=Aod) . . Ak . . Ag (A 1)

finds the series of superstable orbits (6.3). The results for
the corresponding values of p and the symbolic dynamics
words are given in Table IV. Notice that all these orbits
have words with prefix RL. The Feigenbaum conver-
gence rate for period-doubling bifurcations should be
5=7.284. . . , representative for unirnodal mappings with
a fourth-order maximum.

(iii) Another example is a sequence of class-1 trajec-
tories, corresponding to a series of superstable orbits with
period

6, 10, 10,8, 10,9,7,9, 10,5, . . . , (6.4)

connecting the right end points of two intervals [1/3] and
[2/5], see Fig. 11. All of these Farey trajectories intersect
the pseudotrajectory LRL —R, which can be well approxi-
mated by

a =0.5+20. 3(P——„) (6.5)

The formula (6.5) is obtained numerically. Along the
curve (6.5) one finds the series (6.4) of superstable orbits.
The results for the corresponding parameter values and
words are shown in Table V. We can give a proof (not
reproduced here) that along the pseudotrajectory LRL R—
every trajectory of class 1, which is located between the
pseudotrajectories RLM —L and RL —L and corresponds
to superstable orbits with periods not longer than 10, is in-
cluded in (6.4).

Moreover, from these periodic orbits one can also find
period-doubling bifurcations with the usual Feigenbaum
convergence rate, ' 6=4.6692. . . . For example, from the
orbit with period 6, the first one in (6.4), the sequence of
period-doubling bifurcations is shown in Table VI.

It is quite obvious that the examples given above belong
neither to the U sequence nor to the Farey sequence.
While the systematics of the (6.1) and (6.3) has been clari-
fied above, the systematics of the series (6.4) of super-
stable orbits is not clear for longer periods. We conclude
by noting that although we have made a systematic con-
nection between the unimodal strong force situation and
the mode-locking weak force region through the inter-
rnediate region, the latter contains an interesting and corn-
plicated fine structure that remains to be unraveled.

with

R if 5(k)=l,
L if b, (k) =0,

where

W=RL ' RL ' . RL ' ' . . RL ', (A3)

where

li(ki)=I(ki+1)Q/PI —IktQ/P) —1, 0&ki &P .

(A4)

Here I x I denotes the smallest integer not less than x.
Proof. Denoting such k which make 6(k)=1 by k',

we have that to each k ' corresponds an integer
k& ——[k'P/Q] such that k*P/Q &k~ &(k' —l)P/Q. So
k' &k&Q/P & k' —1, i.e.,

k'=k'(ki) = IkiQ/P j . (A5)

Here 0 & k~ &P, since 0& k & Q. An R occurs whenever
k~ increases (by unity). Hence the number of letters L be-
tween two consecutive R's must be l&(k&)=k'(k&
+1)—k (k~) —1, and the formulas (A3) and (A4) are
then obtained.

Corollary 1. Corresponding to the winding number

1
Mi =

the word is

W) ——RL (A6)

Putting P = 1 and Q =N, in lemma 2 we find that k&

must be 0, and l, (0)=N~ —1. The formula (A6) is then

b(k)=[kP/Q] —[(k —1)P/Q), 0&k &Q . (A2)

Here [x] denotes the integer part of x. b, (k) is clearly 0 or
1, since kP/Q —(k —1)P/Q =P/Q & l.

The above result has been deduced in Ref. 14, so we
will not repeat the proof here. A more convenient expres-
sion is contained in the following lemma.

Lemma 2. The word (Al) can be written as
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obtained.
Definition .For a given winding number

P
1N)+ + o ~ ~

the sequence of integers SJ (j & 2} is defined by

Sz ——Q Ni P- ,

S3 ——P —N2S2,

S4 ——S2 —N3S3, (Aj)

SJ+2 SJ —Nq. +)SJ+) .

Lemma 3. Let

P 1
0&S2 &P .

2N)+
(A8)

Then the corresponding word is

l (0) l (&)
W'=(WiLWi' )(WiLWi' )

l2(k2 ) l, (S,—]). (WiLWi' '
) (WiLWi' (A9)

where Wi is given by (A6), and with

lz(kz)=[(kz+1)P/Sz] [k,P/S, ]——1, 0&k, &S, .

Putting Sz ——1 and P =Nz in the lemma 3 we find that
kz must be 0, and lz(0)=Nz —1. Corollary 2 then re-
sults.

Lemma 4. Let

P 0 &S3 &S2 .

S3
2+S

2

Then the corresponding word is

13(1) l3(2)W=(Wz' W, )(W,' W, )

l3(k3) l3(S ). . . (Wz' ' Wi). (W,' ' W, ),
where Wi and Wz are defined above, and where

l3(k3)= Ik3Sz/S3 I
—I(k3 —1)Sz/S3 I p 0(k3 (S3

(A15)

Proof. It is clear from (A10) and (A7) that
lz (kz ) = (Nz —I )+b z(kz ), where

bz(kz) = [(kz+ l)S3/Sz] —[kzS3/Sz] . (A16)

hz(kz) must be 1 or 0, since (kz+1)S3/Sz kzS3/
Sz ——S3/Sz & 1. Denoting such kz which make b, z(kz ) =1
for k 2, we have that each k 2 corresponds to an
integer k3 such that (kz+ 1)S3/Sz&k3&kzS3/Sz. So
k z + 1 & k,S,/S» k,', i.e.,

(A10) kz ——kz (k3) = Ik3Sz/S3 I
—1 . (A17)

Proof. It follows from (A4) and (A7} that
li(ki)=(Ni —1)+bi(k, ), where

b, ,(ki ) = I (ki+ 1)S,/P] —
I kiSz/P (A 1 1)

ki ——ki (kz)=[kzP/Sz] . (A12)

Here 0 & kz &Sz, since 0 & k i & P. The formula (A4) then
becomes

Ni if k, =k;
li(ki)= '

Ni —1 if ki~ki
Ni —1

The number of syllables RL = Wi between two con-

secutive RL '=WiL must be lz(kz)=ki (kz+1)
—ki (kz) —1, and the formulas (A9) and (A10) are then
obtained.

Corollary 2. Corresponding to the winding number

b, i(ki) must be 1 or 0, since (ki+1)Sz/P kiSz/—
P=Sz/P & 1. Denoting such ki which make b, i(ki)=1
for k~, we have that each k& corresponds to an integer
k, such that (k', +1)S,/P & k, & k', S, /P. So
ki +1&kzP/Sz &ki, i.e.,

Ni+

the word is

1
N, +

3

N3
W3 ——W2 W) . (A18)

Proof by putting S3 ——1 and S2 ——N3 in lemma 4 which
gives k3 ——1 and 13(1)=N3.

Lemma 5. Let

Here 0&k3 &S3, since 0&kz &Sz. The formula (A10)
then becomes

N2 sf k2 ——k2,
lz(kz)= N —1 if k &k

N2
The number of syllables W i L W i

' ——Wz before the
N2

first WiL Wi, or between two consecutive

WiLWi ' ——Wz Wi, must be kz (k3) —kz (k3 —1)—1, and
the formulas (A14) and (A15) are then obtained.

Corollary 3. Corresponding to the winding number

W2=
1

N2

the word is

N2 —1

W2 ——W)LW) ' (A13)

P

N2+
S4

N3+
3

0&S4 &S3



2682 E. J. DING 35

Then the corresponding word is

14(0) l4( 1)
W = ( W, W,' )( Wz W3' )

l4( k4 ) 14(S4—1 ). . . (W, W," '
)
. ~ (WzW34

where

l4(k4) = [(k4+ 1)$3/$4] —[k4S3/S4], 0 & k4 & S4 .

(A19)

13(k3 ) = N3+1 if k, =k,",
X3 if k3&k3

The number of syllables Wz W1 ——W3 between two
N3+ 1

nearest Wz
'

W1 ——Wz W3 must be k3 (k4+ 1)
—k 3 (k4 ) —1, and the formulas (A 19) and (A20) are then
ob tai ned .

Corollary 4. Corresponding to the winding number
(A20)

Proof. From (A 1 5) and (A7) follows that
l3(k3 ) =%3 +63(k3 ), where

W4 =

63(k3 ) —[k3$4/S3 ) [(k3 1)S4/S3 I (A21)
1

4

k 3 —k 3 (k4 ) = [k~$3/$4] + 1 . (A22)

Here 0 (k4 (S4, since 0 & k3 & S3. The formula (A 15)
then becomes

63(k3 ) is 1 or 0, since k 3S4 /Sz (k3 1 )Sg /S3
—$4/S3 & 1. Denoting such k3 which make 63(k3 ) —1

for k 3, we have that each k 3 corresponds to an integer
k4 such that k 3S4/S3 )k4 ) (k3 —1)$4/S3. So
k3 ) k4S3/S4 &k3 —1, i e.,

the word is

W4 ——Wz W3 (A23)

Putting 54 ——1 and S3 ——N4 in lemma 5 we find that k4
must be 0, and l4(0) =%4. The corollary 4 is then ob-
tained.

Now we shall prove the theorem 1 by induction. The
theorem has already been shown to be valid for j & 4.

In case j is odd, we make the induction assumption that
forj =2n (n & 2) the winding number

P

N1 +
N + +

Szn
' + s2n —1

0 &Sz„&Sz„

corresponds to the word

l „(0) l~„(1) l2 (k2 l (S —1)
W=(W2n 2W2n 1)(W2n 2wzn 1) ' ' ' (W2n 2W2n 1 ) ' ' (W2n 2W2n 1 ) ~

where

(A24)

lzn(kz„) = [(kz„+1)S2n 1/Szn] [k2nSzn 1/Sz„], 0 & kz„(Sz„.
As a consequence the word corresponding to j=2n is

(A25)

Wzn W2n —2 Wzn —1

in accordance with theorem 1 .
It is easy to deduce from (A25) and (A7) that lz„(kz„)=%2„+.b 2„(kz„),where

bz„(kz„)= [(kz„+1)Sz„+1 /Sz„] —[kz„Sz„+1/Sz„] .

(A26)

(A27)

b zn (kz„) must be 1 or 0, since ( kz„+ 1 )Sz„+,/Sz„—kz„Sz„+,/Sz„——$2„+1 /Sz„& 1. Denoting such kz„which make
bz„(k 2„)= I for k z„, we have that each k z„corresPonds to an integer kz„+ 1 such that
(k2 + )$2 +1/$2 )k2 1 )k2 $2 +1/$2 So k2 + 1)k2 +1$2 /$2 +I )k2

k2n 2n(k2n+1 ) I k2n+1$2n/$2n+1 ]

Here 0 & kz„+1 & Sz„+1,since 0 & kz„&Sz„. The formula (A25) then becomes

z„+1 if kzn ——k zn
lz„(kzn ) = .

Nzn if kZn~k zn

(A28)

N&„+ 1

The number of syllables Wzn —2 W2n —1 Wzn between two Gear est Wzn —2 Wzn —1 Wzn Wzn —1 must be
lzn +1(kz„+1) =kz„(kz„+1) —kz„(kz„+1—1 ) —1, and then we obtain
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with

'2n+l" ~ 2n+1 '2n+i "2.+'~
(~2n ~2n —1)(~2n ~2n —1) (~2n ~2n —1) (~2n ~2n —1) (A29)

l2n+1(k2n+1)=Ik2n+1S2n/S2n+1I I(k2n+1 1)S2n/$2n+1) ' 0&k2n+1&S2n+1

and, in particular, that

2n+18 pa+i = Wan 8 zn —i .

(A30)

(A31)

Hence the theorem holds for odd j, which completes this part of the induction proof. It remains to consider j even.
Equations (A29), (A30), and (A31) are useful to prove the theorem for even j. This part of the proof is omitted here,
since it is very similar to that case where j is odd.
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