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In this paper we present an analysis of the theory of the energy deposition of ions in cold materi-
als and hot dense plasmas together with numerical calculations for heavy and light ions of interest
to ion-beam fusion. We have used the GQRGQN computer code of Long, Moritz, and Tahir (which is
an extension of the code originally written for protons by Nardi, Peleg, and Zinamon) to carry out
these calculations. The energy-deposition data calculated in this manner has been used in the design
of heavy-ion-beam-driven fusion targets suitable for a reactor, by its inclusion in the MEDUsA code
of Christiansen, Ashby, and Roberts as extended by Tahir and Long. A number of other improve-
ments have been made in this code and these are also discussed. Various aspects of the theoretical
analysis of such targets are discussed including the calculation of the hydrodynamic stability, the
hydrodynamic efficiency, and the gain. Various different target designs have been used, some of
them new. In general these targets are driven by Bi ions of energy 8—12 GeV, with an input ener-

gy of 4—6.5 MJ, with output energies in the range 600—900 MJ, and with gains in the range
120—180. The peak powers are in the range of 500—750 TW. We present detailed calculations of
the ablation, compression, ignition, and burn phases. By the application of a new stability analysis
which includes ablation and density-gradient effects we show that these targets appear to implode in
a stable manner. Thus the targets designed offer working examples suited for use in a future
inertial-confinement fusion reactor.

I. INTRODUCTION

There has been a growing interest in the employment of
ions for use as a driver for inertial-confinement fusion'
and as a means of producing hot dense plasmas for basic
research. The use of ions for inertial-confinement
fusion was proposed when it was realized that the cold
ranges of MeV light ions or CieV heavy ions were of the
correct value to drive hollow pellets such that ignition
could be achieved in the DT fuel, and also because the
deposition physics of electron beams (due to Bremsstrah-
lung production) was unfavorable. The deposition physics
of laser light was also giving difficulties as it was
found to be anomalous because most of the energy was ab-
sorbed at the critical density, leading to the production of
hot electrons. However, here the use of shorter wave-

lengths or higher-energy photons has made the deposition
more "classical" since then the absorption mechanism is
then mainly inverse Bremsstrahlung. The deposition of
both heavy and light ions is expected to be classi-
ca1.' ' ' This means that no superathermal particles
are generated which would lead to preheat. Preheat
mechanisms are limited to knock-on ions entering the fuel
or Ka radiation excited by electrons falling into core
states, having previously been excited by an incoming ion.

Much of the research in inertial-confinement fusion is
aimed at eventually producing a working commercial
reactor. ' ' ' ' The main advantages of the use of

heavy ions are their favorable range-energy relationship,
that permits high kinetic energy ions to be stopped in the
outer-shell materials of typical size (7 mm —1 cm diame-
ter) inertial-confinement fusion pellets. As mentioned
above the energy deposition is expected to be classical and
not to involve collective instabilities or nonlinear ef-
fects. ' Secondly, the technology of linear accelerators is
well established, and practical accelerators already have
the high efficiencies (20—30%%uo) and high repetition rates
(10 Hz) necessary for a coinmerical power plant. Thirdly,
there is the favorable scaling of cost versus energy (joules)
as target requirements for high gain have reached the
multimegajoule level. Because of the heavy mass of heavy
ions for a given energy the current is low and the density
of ions is small. This allows the use of ballistic focusing.
However, the size and cost of such a heavy-ion-beam ac-
celerator even for experimental purpose is very high. '

The pellet design should be as simple as possible so that
fabrication is feasible and the cost of the pellet should be
as low as possible, preferably a few cents per pellet.

In the light-ion case, ' the deposition physics is again
very favorable and the construction of machines is rela-
tively cheap. It is also an energy-rich technology since the
energy can be stored in capacitor banks. The prob-
lem is to deliver this energy in a short enough time (-10
ns). This is achieved by loading the capacitors in parallel
and discharging in series by closing switches. Even so the
pulse length is of the order of 50 ns and must be shor-
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tened by the use of plasma-erosion switches, inductive
compression, or by bunching the beam in flight by
ramping the diode voltage.

The voltage is led down a transmission line (Blumlein)
often with the use of magnetic insulation and applied to a
diode, pinch reflex, applied 8, etc. The diode produces a
powerful beam of ions, where the voltage is planned to be
up to 30 MeV and the current is of the order of mega-
amperes. Problems are the complicated pulse shape, the
distribution of ion energies, and the contamination with
protons if, say, a lithium or deuterium beam is used.
Furthermore, the ion density is very high and this means
that focusing is difficult. Beam transport to the pellet has
to be carried out by the use of plasma channels, precreated
by a discharge or by the firing of a laser beam. Transport
in narrow plasma channels is more difficult and the di-
ameter necessary is —1 cm. This leads to the need for
targets that are at least 1 cm in diameter.

If one is studying basic physics problems, there is con-
siderable freedom in choosing the type of target, but for a
reactor design certain constraints have to be satis-
fied. ' ' ' ' The fractional burnup and the output en-
ergy needed determine the amount of DT fuel needed, and
the masses and thicknesses of layers have to be adjusted
according to the total DT mass. The size of the target
must be adjusted to the focusing capability. The total
mass of the DT fuel will determine the energy in the
pulse, because it needs to be accelerated to -3& 10 cm/s
in order to reach the ignition temperature after the col-
lapse and compression.

The power level is determined by the acceleration need-
ed to reach this terminal velocity within the distance of
collapse (i.e., the radius of the target) and the pulse must
have a corresponding length, taking into account the fact
that any signal from the end of the range to the inside of
the pellet needs a delay time determined by the distance
divided by the velocity of sound. The shape of the pulse
and in particular the need of a prepulse '" ' ' is
determined by shock timing and the need to deposit
enough entropy in the inner layers of DT to obtain igni-
tion. The prepulse creates a density gradient down which
the second shock from the main part of the pulse moves.
This leads to selective shock heating of the center of the
fuel. Also it is well known that by the use of several
shocks a given compression is achieved with less entropy
production than is created by one shock. This allows the
rest of the fuel to remain on a low adiabat, so that good
compression can be achieved. One of the main obstacles
in the way of achieving inertial-confinement fusion is the
occurrence of the Rayleigh-Taylor instability. This
occurs when the low-density heated part of the pusher
(Pb-Li or Li) pushes and accelerates by thermal and abla-
tion pressure the compressed part of the pusher. This is
basically unstable because the heavier fluid falls into the
lighter fluid in the "gravitational field" created by the ac-
celeration. In order to avoid this the pusher should be
made thick so that the pushed shell does not break up.
However, this costs a lot of energy. The illumination
should be very symmetric as should the fabricated target,
if this instability is to be avoided.

Previously in numerical simulations '" ' ' ' we have

used a relatively simple routine to describe the energy
deposition of ions in the outer-shell materials. In particu-
lar the range and shape of the profile were fixed and the
shape was always a peaked one. Recently we introduced
a method whereby the range changed as a function of E,
T and p (energy, temperature, and density), whereby the
range was recalculated in each layer for each time step but
with an averaged T and p of each layer. In this paper we

study in detail the effects of realistic energy deposition on
the implosion of reactor-size targets, using a new rou-
tine6's' which uses analytic fits to dE/dR (energy
deposition/g) as a function of E, T, and p, whereby the
energy loss of an ion is calculated in each cell, using the
value of dE/dR for the values of E, T, and p in that
cell. ' ' This allows the nonlinear feedback processes to
be calculated ' ' whereby an ion heating the plasma
causes changes in T and p, which cause in turn a change
in dE/dR. dE/dR is calculated for each timestep locally
in each cell up to the end of the range, and in each materi-
al. Furthermore, the energy of the incoming ions can be a
function of time. ' ' The energy deposition is calculat-
ed by the GORGON code' which is an extension of the
work of Nardi, Peleg, and Zinamon. A method of fit-
ting the data analytically has been developed which allows
for fast, accurate, and computing-efficient calculation of
the energy deposition in the MEDUSA-KA code ' '

which is an extended version of the MEDUSA code.
The calculations are carried out on the HIBALL-I

(Refs. 3, 11—14, 34,40—42, 76, and 77) and HIBALL-II
(Refs. 6, 13, 42, 83) reactor-type pellets. Range shorten-
ing which occurs because of transfer of bound to free elec-
trons and also because of the increase of the effective
charge in hot plasmas' ' can be compensated for by
ramping (increasing) the incoming ion energy' ' and by
Marshak wave propagation. ' ' ' ' ' The range shor-
tening (especially if the dynamic, plasma-effective charge
is included) is so large that ion-energy ramping is prob-
ably always desirable, but the amount is dependent on the
temperature that the plasma reaches, i.e., the power that
has to be used. The power level is fixed by the size of tar-
get and the mass of the payload, with reference to the
avoidance of instabilities. The efficiency of radiation
compensation of range shortening is determined very
strongly by the temperature reached and hence by the
power level used. Ion-energy ramping is very convenient
because it provides an "external dial" with which one can
tune the pellet. On the other hand, radiation provides a
totally natural mechanism which does not require changes
in the ion beam or accelerator design.

The organization of the paper is as follows. In Sec.
II A the theory of the energy deposition of heavy and light
ions in dense plasmas is discussed. In Sec. II B we present
the physical model used in the GORDON code for the cal-
culation of the energy deposition of ions in cold materials
and hot dense plasmas. ' In Sec. IIIA we describe briefly
the MEDUSA code and improvements made in order to
carry out these calculations. In Sec. III B we give details
of numerical simulations of HIBALL-I (Refs. 3, 11—14,
40—42, 76, and 77) and HIBALL-II (Refs. 6, 13, 42, and
83) type reactor size inertial-confinement fusion targets,
and discuss the compensation of range shortening by volt-
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age ramping and radiation transport, which proves to be
necessary in order to obtain ignition and high gain. It is
to be noted that various modifications have been made to
the basic HIBALL-II design. ' ' ' ' In this paper the
"cavity region" made of lithium has been substantially en-
larged to obtain a higher gain when radiation compensa-
tion for range shortening is used. Also the pusher-fuel in-
stability problem has been ameliorated by the introduction
of a low Z, low p lithium layer between the radiation
shield and the fuel. Detailed results of the simulation of
the first modified target is discussed later, and results of
the second, including radiation transport in the compres-
sion and burn phase including ablation stabilization of the
hydrodynamic instabilities (in the compression phase) are
discussed in Refs. 7, 43, 85, 86, and 91). In Sec. IV A we
present an analysis of the Rayleigh-Taylor instability dur-
ing the compression phase and its amelioration by
density-gradient and ablation effects. In Sec. VA we
present some theoretical considerations on the ablation,
compression, ignition, and burn and inertial-
confinement-fusion targets. Section V B contains our con-
clusions.

II. THE STOPPING POWER OF IONS; THEORY
AND SIMULATION

A. The theory of energy deposition of heavy
and light ions in hot dense plasmas

Most of the critical issues present in laser fusion
are also valid for ion-beam fusion except for the different
energy-deposition physics. The laser energy deposition is
highly nonlinear and occurs mainly at the critical density.
The ion energy deposition occurs via a multitude of small
energy transfers occurring at each ion-electron collision.
Maximum energy transfer occurs when the ion velocity is
the same as the average electron-excitation energy. Above
and below this energy or velocity the energy loss drops off
quite rapidly. ' '

We now discuss some approaches that have been made
by various authors to the calculation of energy loss in hot
plasmas, making reference to the theory in cold materials
where necessary. The normal approach taken is to divide
the electrons in the partially ionized plasma into free and
bound electrons and then to calculate the stopping power
of each set of electrons separately. This approach has
been criticized by Breuckner et al. who assumed instead
of additivity of the stopping power, additivity of the
dielectric function for the bound and free electrons. How-
ever, the calculation then proceeded to use a rather simpli-
fied form of the dielectric function for both bound and
free electrons and to include collisions in a way that does
not satisfy the sum rules. ' ' Returning to the usual
method [while noting that a combination of a sophisticat-
ed treatment of the dielectric function together with sum-
mation over all states (free and bound) would be more
desirable] the number of free and bound electrons is nor-
mally calculated' ' ' ' either within the Saha model
(which does not apply to dense plasmas) or using the
Thomas-Fermi model &, 3, s7, Io2 —ios The stopping po~er of
the free electrons is calculated using the dielectric-
function theory" "' or the classical plasma-theory ap-

proach'" " originally due to Chandrasekhar" '" and
described by Spitzer" '" whereas the contribution from
the bound electrons is calculated using the Bethe, "
Bohr its —i22 or Bloch theory i23 —&25 The average excita-
tion energy I used in the Bethe theory is calculated either
using the Thomas-Fermi theoryi, 3, s8, &o3 —ios ~~i~g
tivisitic self-consistent Hartree-Fock atomic theory or by
calculating the electron density using methods used in
solid-state physics. Details of the model used in the cal-
culations described in this paper are given in Sec. II B.

The first calculations of the energy loss of ions carried
out specifically for ion fusion were done by Bangeter'
and Mosher. ' Finite-temperature plasma effects were
included by Nardi, Peleg, and Zinamon. ' ' Deutsch and
Long' ' have calculated the dielectric function at fi-
nite temperatures and have shown how to include partial
degeneracy in stopping-power calculations. The main re-
sults is that the stopping power per electron
decreases as the plasma becomes nondegenerate.
Mehlhorn ' has carried out calculations using methods
similar to Zinamon et al. ' ' and to us' ' but with
a scaled calculation of the Bethe parameter and a classical
plasma-theory approach to the loss by free electrons.
Mehlhorn recently has tried to include better atomic phys-
ics and to calculate with real electron densities. The cal-
culations are, however, son.ewhat inconsistent in that the
Saha equation is still used to calculate the number of free
and bound electrons. More has used a Thomas-Fermi
approach whereby the dielectric-function theory has been
used for the electron charge density (both free and bound)
within the sphere of each pseudoatom. Sayasov'
has pointed out that these plasmas are actually nonideal,
for instance, partially ionized lead at solid density and 200
eV has a coupling parameter I = 1.3. He has attempted to
calculate these effects when the nonideality is weak in ful-
ly ionized plasmas. ' He has also emphasized the role of
ion-ion correlations. '

Besides the plasma effects involved in the stopping
power of bound and free electrons and those involved in
the calculation of the Bethe I parameter (due to electron-
excitation effects), the effective charge is also strongly
dependent on the plasma properties. ' This has been
calculated by Zinamon et al. and by More et al. . It
has been found to be a very important effect, and to lead
to additional range-shortening effects by up to a factor of
2 at lower energies. At high energies there is not much
change because the ions are highly stripped. The differ-
ence between the "cold" effective charge and that in the
hot plasma is due to the fact that recombination is easier
via bound electrons than via free electrons. Detailed cal-
culations of energy-loss profiles for heavy-ion fusion have
been carried out by Long and Tahir, ' ' by Breuckner
et al. , and, using simpler methods, by Meyer-ter-Vehn
and Metzler. 8 Mehlhorn 2' and More have also car-
ried out detailed calculations for light and heavy ions, and
Beynon ' has also carried out investigations of ion-energy
deposition for ion-beam fusion.

In general, results obtained are qualitatively similar but
different physics can lead to up to 30% changes in
dE/dR for certain energy ranges. Results are, however,
clearly very sensitive to the effective charge used. One
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very notable difference is that some authors have found
range lengthening as well as range shortening in certain
regions of parameter space, but have proposed different
mechanisms for this. For instance, Breuckner et al.
found range lengthening at lower temperatures especially
for heavy ions. They suggested that this was due to free-
electron —bound-electron collisions. Basko' found that
for Bismuth ions in lead, at densities —10 atoms per
cm, the range first increases with temperature by
10—40% and only then begins to drop. This was attri-
buted to the increase of ionization with temperature
which has a twofold effect on the stopping power. On the
one hand, higher values of the Coulomb logarithm for
free electrons as compared to bound electrons increases
the stopping power. On the other hand, the increase in
the number of free electrons increases the plasma frequen-
cy w& and the mean excitation energy I increases so that
both the Coulomb logarithms decrease leading to a de-
crease in the stopping power. This effect is due to the
partial removal of electrons screening the electric field of
the nucleus. However, these effects are included in the
GORGON code' where they have not been detected, at least
at solid densities. More investigation of these points is
needed. Certainly at high densities where there is consid-
erable pressure ionization, little change in the range would
be expected, until a temperature is reached at which
thermal ionization starts. At solid density this is noted in
the GORC'ON code. ' One should note that at high tem-
peratures the range does start to increase again because
the ion velocity becomes less than the thermal velocity of
the free electrons.

It has also been noted above, that the range should in-
crease due to the removal of degeneracy. This may be
quite important in the analysis of the energy-loss experi-
ments that have been carried out. In particular, ex-
periments have been carried out for the stopping power in
aluminum plasmas. In aluminum metal the three sp
electrons form a hybridised band' ' and are quasifree
conduction electrons with little enhancement in their ef-
fective mass. ' The stopping power of these electrons
should be and is treated using the dielectric-function-
theory approach for a nonideal (strongly correlated) plas-
ma taking into account plasma effects. Further, the Fer-
mi energy is —11.6 eV and so degeneracy effects must
also be considered within the conduction band. Of course,
as soon as the plasma is heated above the melting point
even the lattice loses its periodic order but bands are still
found to exist in disordered systems. ' ' According to
Deutsch' ' the energy loss should decrease as the de-
generacy is lost, which would predict an initial range
lengthening in aluminum. The calculations did not in-
clude the effect of nonideality. In Refs. 22, 23 and 84 we
have given a detailed analysis of the low-energy stopping
power (-1.6 MeV) of protons in aluminum. We have dis-
cussed the attempt of Young et al. to measure the in-
crease in the stopping power or the decrease in range with
temperature. However, in Refs. 22, 23 and 84 we pointed
out that due to the expansion of the foil much of the
range shortening is due to the decrease in the density. In
fact, we showed that this problem in one dimension can be
solved exactly (analytically) and the density profile

achieves a Gaussian (probability) functional form, while
the temperature is constant, after a short characteristic
tim 22, 23, 84

B. The GoRGoN computer code (Ref. 1) for the numerical
calculation of the energy deposition of ions in cold

materials and hot dense plasmas

In order to simulate numerically the energy deposition
of ions in spherical, hollow, multilayer pellets or plane
targets one must first be able to calculate the energy depo-
sition of ions in plasmas from densities of 10p, (p, is solid
density) to p, /100 and temperatures from 0 to 500 eV.
Secondly, one must be able to couple the results into a hy-
drodynamic pellet code in an accurate, computing-
efficient manner. The GQRcoN code' accomplishes the
first task, a method of achieving the second is described in
Ref. 7, and the MEDUSA code is used to describe the
hydrodynamic motion of the plasma and other physical
effects such as equation of-state (EOS), conduction, nu-
clear burn processes, etc.

The GORGON energy-deposition code' ' is based on a
code written for protons by Nardi, Peleg, and Zinamon
which has been extended' ' ' to treat other problems
such as charged particles in DT and heavy ions by includ-
ing some other physical effects. An ion' travelling
through a charged plasma loses energy mainly to electrons
by a series of small-angle collisions. In each individual
collision the amount of energy lost is very small, but be-
cause of the long range of the electrostatic forces, there
are very many such collisions, so that the total loss is
large. From the point of view of transport theory a
Fokker-Planck equation' ' can be used to describe the
transport of ions in a plasma including both a slowing-
down term and small-angle collisions. However, since the
mass of the ion is much larger than that of an electron, a
fast-moving ion (ui »U, ), with a velocity much greater
than the thermal-electron velocity, is deflected through
very small angles, and one can consider that the ion trav-
els in a straight line (cf. charged particle tracks in a cloud
chamber with no applied magnetic field). The projectile
ion is considered to be a point charge with specific mass,
energy, and charge, the last two being time dependent. In
the version of the code used for these calculations the
plasma is considered to be ideal and degenerate or nonde-
generate according to whether the temperature is above or
below the Fermi temperature.

The physical model used in the calculation distin-
guishes between free and bound electrons in the target. In
strongly coupled plasmas where no clear distinction be-
tween free and bound electrons exists, the degree of ioni-
zation may be thought of as a parameter separating the
range of applicability of two asymptotic models for the
electron-excitation spectra. The energy-loss processes are
essentially divided into free-free, bound-bound, and
bound-free transitions, just as in opacity calcula-
tions. ' ' ' The contribution of the bound electrons to
the stopping power is calculated according to Bethe's
theory, ' ' " ' " taking account of the difference in
characteristic excitation energies between a neutral atom
and a plasma ion via the Thomas-Fermi theory. The con-
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tribution of the free electrons is calculated using the
dielectric-function theory for a nondegenerate plasma us-
ing numerical integration with a more simplified (analyt-
ic) evaluation being used if the electrons are degenerate.

In the model used in this calculation knowledge of the
average degree of ionization in the plasma is required be-
cause of the separate treatment of bound and free elec-
trons. This is calculated using the Thomas-Fermi model
of the atom at finite temperature. For this purpose the
Thomas-Fermi model is solved using the method
described by Latter, ' which yields values for the
electron-density distribution in the atomic sphere n (r) for
a given density and temperature of the target material, as
well as the potential V(r) and the chemical potential p.
The number of bound electrons which yields the average
degree of ionization is given in the Thomas-Fermi model
by

Nb —— 1

exp(E a)/kz T+—1

~(,E)
X f m [2m[E+eV(r)]}' r dr,

32 f d

(1)
where E is the total electron energy, m is the electron
mass, T is the temperature, kz is Boltzmann's constant, h
is Planck's constant, and r(E) is the radius which satisfies
the condition

e V(r(E)) = —E, (2)

i.e., where the kinetic energy of the electron just equals its
potential energy. From the number of bound electrons,
the number and density of the free electrons are deter-
mined and used in the calculation of the stopping power
due to the plasma free electrons. The calculated structure
of the ions is used to determine the bound-electron contri-
bution to the stopping power.

The contribution of bound electrons to the stopping
power is calculated by Bethe's theory' '" '" including
corrections due to the differences betwen a plasma ion and
a neutral atom. The basic physical parameter is the aver-
age excitation energy I, defined by

lnI =—g ln(fico; ),1
(3)

l

where N is the number of bound electrons participating in
the slowing-down process and Ace; are the characteristic
excitation energies. In these calculations the m; s are in-
terpreted as the frequencies of revolution, following
Bohr's model. " '" In order to calculate J within the
framework of the Thomas-Fermi model one notes that at
each radius r a spectrum of revolution frequencies is
determined by the Fermi energy distribution at this ra-
dius,

co( r) = [ (2/m )[E+e V(r ) ] )
' /r .

Here E is the total electron energy. The number of elec-
trons per unit frequency having a revolution frequency co

ls

n(co)=(32m co m /ii )

'max'~'
r exp —,'mes r —eV r

]/ak Tjii+ 1) 'dr .

A shell correction is included in the calculation by elim-
inating from the integration in Eq. (7) those electrons for
which

2mv ~ Ace,

where v is the projectile velocity. The solution of the
Thomas-Fermi model provides the required values of V(r)
(the potential), p (the chemical potential) and n(r) (the
electron density) required in the above integrations.

The free-electron contribution to the stopping power is
calculated using the plasma-dielectric theory. '

The energy loss is given by

dE
dR

2e Zeff
2 2

1 1
dk k dp pIm

np 0 D(k, co =kobu

(9)

where p is the density, R =px is a distance into the ma-
terial, v is the projectile velocity, k is the wave number,
p=cosO=k v/~ k

~ ~

v ~, D is the dielectric function of
the plasma and ~ is the frequency. In calculating the
dielectric function a classical, nondegenerate plasma is as-
sumed, and collisions in the plasma are taken into ac-
count. The collision time is given by

r=3m ' (kiiT)' [4(2ir)' e Z,rrn inA] (10)

where n is the free-electron density, Z,ff is the average ion
charge, and lnA is the Coulomb logarithm. The dielectric
function is given by

D(k, co) =1+2x [1+xZ(g)]cop/co

where g=x+iy, Z(g) is the plasma-dispersion function,
x =co/kV„y =v/k V, is the collision frequency, V, is the
free-electron thermal velocity, and V, =(2k~ T/m )'~ . An
upper cutoff wave number is used in the integration in
Eq. (9) following Bethe, " '"

k, =e ~A'/m V, ,

y =0.5772 .

(12)

(13)

The code contains a calculation of the energy loss to de-
generate electrons. This follows the approximate evalua-
tion of the stopping power within the dielectric-function
formulation for a totally degenerate electron gas given by
Ritchie. ' ' ' This is important because in aluminum,
for instance, the outer three sp electrons in the solid form
a hybridized conduction band. These electrons behave
like free electrons with an increased effective mass'
due to the interaction with the core potentials. Effects
due to the nonideality of the plasma (r, —2—5 in metals)
should also be included. Further, in highly compressed
DT in pellet simulations ' ' '" ' most of the DT remains

Here r,„(co) is the radius beyond which the energy that
corresponds to co yields a free electron, i.e.,

e V(r,„(co))= E—.

The effective excitation energy is given, within the frame-
work of this model, by

CO

lnI= — n co ln ~ dao .
0
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on a low adiabat. At a hi h'g density such as 600 g/
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p dx
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where V is thhe electron thermal velocity, Z is th
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'
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FIG. 3. Energy loss of 10-GeV Bi ions in solid-density lithi-
um at temperatures from 0 to 1 keV. Units as in Fig. 1.

some of these modifications are documented in detail in
Refs. 3 and 5. The code is a one-dimensional Lagrangian
hydrodynamic code, where the hydrodynamic motion is
described by the Navier-Stokes equation,

FIG. S. Energy loss to free and bound electrons in cold ma-
terials and hot dense plasmas as illustrated by Bi ions in solid-
density lead at 0 eV, 200 eV, and 1 keV. Units: energy, GeV;
energy deposition as in Fig. 1.

where H; is the thermal conduction due to ions, K;, is the
electron-ion exchange term, Y; is the nuclear burn rate,
and Q is the viscous heating.

pdu/dt = —VP, (18) S,=H, +K;, ,

where u=dr/dt is the velocity, P is the total pressure,
and p is the density, and shock motion is described by an
artificial viscosity and a viscous-pressure term. ' ' The
code treats ions and electrons as separate thermodynamic
subsystems and calculates the temperature of ions and
electrons using two temperature equations of the form

( C„) +(BT); +P; =S;,BT Qp (jU

at Bt Bt
(19)

where i represents electrons, ions, or radiation; T; is the
respective temperature; and P; the partial pressures

BQ.
(C, );= and (BT);=aT (20)

are the specific heat and compressibility as determined by
the equation of state (EOS). "" ' The S s stand for
the source term.

For ions

S;=H; K;, +1'+Q, — (21)

150—
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110—

0 200 400 600 800 1000

TEMPERATURE

FIG. 4. Range of 10-GeV Bi ions in solid-density lithium
plotted as a function of temperature. Units as in Fig. 2.

where H, is the conduction due to electrons and radia-
tion. ' This physical model and the modifications made
to the code which were necessary to include radiation ef-
fects in a radiation conduction approximation are
described in detail in Refs. 6, 7, 42, 43, 76, 77, 85—87, and
91, where

H, =p 'V-KV'T,

K=K, +K, ,

Ã, =1.8&&10 "T'"(1 An) 'Z(Z')

K„=(16ETI3)lg T

(23)

(24)

(25)

(26)

and where the other thermodynamic variables such as
specific heat, compressibility, and pressure have been
modified to include the radiation contribution. Also K,
is the electron conductivity, E„ is the radiation conduc-
tivity, A is the Coulomb logarithm, Z is the average de-
gree of ionization, Z is the average of the square of the
degree of ionization, o. is Stefan-Boltzmann's constant, lz
is the Rosseland mean free path, and c is the velocity of
light.

The specific heat, compressibility, and pressure are all
modified correspondingly for the effect of radiation.
Radiation conduction affects the propagation of
shock waves and produces characteristic Marshak
waves. ' ' ' ' ' The speed of propagation of
Marshak waves for various boundary conditions has been
successfully compared to analytic solutions. ' ' " Both
radiation and electron conduction are flux limited, and in
long mean-free-path situations the radiation conduction is
flux limited by emission coefficients. '

The code has also been improved to take account of ra-
diation as a separate temperature, namely, a three-
temperature model. These modifications have been
described in Refs. 4, 176,177.

The equation of state is a corrected Thomas-Fermi
model, ' ' fitted by analytic formulas to Los Alarnos
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EOS data. "" The ionization routine can be Saha or
Thomas-Fermi depending on the density of ions. The
Saha equation is valid for a gas of intermediate density,
say 10' —10' atoms/cm . The Thomas-Fermi model is
better when pressure ionization comes into play due to
overlap of atomic orbitals. The plasmas in ion-beam
fusion are usually so dense that the Thomas-Fermi model
is a better model for ion-beam fusion. The energy-
deposition model is described in Sec. II B and is based on
the Thomas-Fermi model as well. The code has hence a
physically consistent model for EOS, ionization, and ion
energy deposition. It also uses a simple but globally
correct escape-fraction treatment of nonlocal a-particle
energy deposition. ' This method shows that about 20%
of the energy of the a particles escape the fuel agreeing
macroscopically with more sophisticated treatments'
and with analytic estimates. ' ' The range-temperature
curves in Ref. 164 include the energy loss due to ions and
electrons (nuclear scattering has also been included Fig.
13) and are calculated using the coRooN code. Degenera-
cy effects are included in the electron energy loss when

kz T & cz. This causes the a particles to stop very quickly
in the cold degenerate fuel surrounding the burning-
propagation phases. The electrons in the highly
compressed lead tamper are also degenerate when it is
cold. The various processes included in the compression
phase are shown in Fig. 6, and the processes in the burn
are shown in Fig. 7. The only processes not included in

the code are the neutron transport in the burn' and the
effect of the energy loss of the knock-on ions which they
produce. All these effects can be included by an escape-
probability technique' ' or the escape-fraction tech-
nique' " among others.

The void is filled with DT at a vapor pressure of 14 K,
although the burn in this region is turned off. There are
two reasons for using this inner-boundary condition. The
first is that in a reactor scenario pellets are fired into the
reactor chamber at 4 K, but the radiation and friction
heating of the background gas are so great that even in
the short time taken to reach the center of the chamber
(-1 msec) the inner boundary of the DT heats up to 14 K
in the heavy-ion case. ' ' The situation could be even
more serious for the light-ion case because the gas in the
reactor chamber is at a higher density (because it has to
support beam transport in a preformed plasma chan-
nel). ' ' Secondly, the first shock will heat the DT inner
surface up to 10 eV, setting it in motion. Molecular eva-
poration' ' will then take place into the void with a
time constant given by t p,

t,„,p ——a, (A /V)Q(ka T/2vrM ), (27)

where A is the area (4mRo), V is the volume ( —,m.Ro), M
is the mass of the DT ion, kz is Boltzmann's constant,
and T is the temperature (surface). The vapor pressure is
given by an expression of the form, 's5'8 see Fig. 8,

lnP, = +B lnT+ C,S (28)
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inertial-confinement-fusion target.
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(ov)DT ——9.10 exp —0.476 ln
69

(29)

where (ov )DT is in m s ' and T is in keV, and calculates
the usual nuclear reactions.

B. Numerical simulation of reactor-size targets.
Results of realistic energy deposition in HIBALL-I

and HIBALL-II -type reactor designs,
and its compensation by voltage ramping

and radiation transport

The coupled version of the GORGON-MEDUSA code
described in Secs. II and III has been used to calculate the
HIBALL-I (Refs. 3, 6, 11—14, 40—42, 76, 77, and 81) and
HIBALL-II (Refs. 6, 7, 43, 82, 86, and 87) -type reactor-
target designs. The purpose was to investigate the effects
of the inclusion of more realistic energy deposition'
in the pellet calculations as compared to those previously
performed for the HIBALL-I and HIBALL-II -type tar-
gets. A comparison of energy deposition calculated by the
GORN code and experimental results is given in Table I.
The other purpose was to find ways of restoring the gain
to an acceptable level if as expected' the gain went to
zero as range shortening occurred due to the increase in
the payload mass which makes the achievement of the re-

where A, B, and C are constants, and P, is the saturated
vapor pressure. The time to reach a pressure where the
mean free path is of the order of the void diameter is
short compared to the pulse length. The code (which is
hydrodynamic) does not calculate this process as (this is a
problem in rare-gas dynamics necessitating the use of the
Boltzmann equation' ' but one can simply put a gas
pressure in the void initially. This plays no role in the
calculation until near void closure, where the back pres-
sure can reduce compression. At a vapor pressure greater
than that at 18 K, this starts to reduce the gain. ' '

The code calculates with an improved DT cross section
of the form'

2.25

Tamper p = 11.3
(255.7m g j

Pusher p = 1.26
(67.2 mg)

Pb
I

0. 368cm

0.354 cm

0.317crn

0.302 crn

Fuel
(4.0 mg)

p = 0.22

0

FIG. 9. Schematic diagram of the HIBALL-I target, and tar-
get initial conditions with densities given in g/cm .

quisite payload velocity needed for ignition impossible
without increasing the input energy. Calculations per-
formed for plane targets to investigate the compensation
of range shortening by radiation are reported in Refs. 84,
85, 7, and 23.

The target designs are shown in Figs. 9 and 10 and the
pulse shape used in both cases is the same and is shown in
Fig. 13, Ref. 13. The prepulse" ' has a relatively low
power of a few TW and so the material is only heated to
about 10-20 eV during this time. Thus there is relatively
little range shortening up to this time. One can see in Fig.
11 that the high-density part of the payload has already
formed, the density being much higher in this region than
in the other part of the Li-Pb or lithium as the case may
be, whereas the temperature is very low. In this region at
14 ns the temperature is 5.4 eV and the electrons in the
Li-Pb —Li target are partially degenerate. The plasma is
also a nonideal plasma at this point. Therefore it is clear
that these effects should be included in the energy-
deposition calculations.

From 21 ns on there are two types of calculations to
discuss. In the first case we continue with the given ion
pulse and allow the range shortening to run its course, and
allow compensation by radiation. In the second case the
energy of the incoming ions is increased linearly (Fig. 12).
The initial energy of the ions (Bi) in the case of the
HIBALL-I target is 8.6 GeV, and this is increased linearly
in time to 10.9 GeV from 21 to 28 ns. In the case of the
HIBALL-II target the initial energy is 8 GeV rising to
10.3 GeV. In the case where the ion energy is ramped the
power of the main pulse is 650 TW whereas 500 TW was
used before for HIBALL and is still used when there is no
ion-energy increase.

We show in Fig. 13 the energy deposition in the pellet
with and without ramping of the ion energy at 25.4 ns, for
the HIBALL target. In the second case (without ramp-
ing) the ion enters the lithium-lead layer with only 2.77
GeV, whereas in the first case the ions enter the lead layer
with an energy of 10.2 GeV (not 8.6 GeV) and by the time
they reach the lithium-lead layer they have an energy of
4.4 GeV. This allows them to penetrate to more or less
the same point as they did at the beginning of the simula-
tion.

In Fig. 14 we show the simulation results for the case
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FIG. 12. Energy of ions as a function of time. The ion voIt-
age is given in CxeV.

FIG. 10. Same as in Fig. 9 for HIBALL-II target.

where there is no voltage ramping, in the Li-Pb and Pb re-
gion, the other cells being DT and the central fill gas. By
this time the range has shortened considerably because the
temperature has risen sharply when the main (500—600
TW) pulse is applied. The temperature has risen to about
200 eV and it remains around this value. Constant-range
peaked depositions used previously tended to produce a
higher temperature at the end of the fixed range. This
can lead to the generation of faster-moving Marshak
waves than is really the case, which move too far in a
given time.

As the range decreases and is compensated for, the en-

ergy is deposited fairly uniformly in the whole pusher, so
that the temperature in this region is fairly constant. The
high-density part of the pusher (in the case without ramp-
ing) contains much more mass and there is a shallower
density gradient on the pushing side especially in the case
without ramping. This leads to an improvement in the
Rayleigh-Taylor-instability growth rate (see Sec. IV). In
Fig. 15 we show the results with ramping. In both cases
the original cold range is marked by the first arrow and
the actual range at 25.4 ns is shown by the second arrow.

(30)

where t is the time, a =4o./c, o. is the Stefan-Boltzmann
constant, lz is the Rosseland mean free path, T is the
temperature, C„ is (specific heat)/cm, R is the Lagrang-
ian variable px, and c is the velocity of light.

In the case of the ion-beam ablation wave,

R(E)=AE (31)

where 3 is a constant dependent on temperature and den-
sity [(see Ref. 7)],

(32)

The temperature rises to about 250 eV and as remarked
above is fairly constant throughout the pusher. The den-
sity gradient is still less sharp than the case where the
range is kept (artifically) constant and hence the stability
is improved. It should be noted that both radiation and
ion-energy ramping can compensate for range shortening.
However, the effects are not additive and if the ion-
deposition ablation wave moves faster than the Marshak
wave, then the radiation does not play much of a role. It
will then slightly reduce the ramping energy needed. The
velocity of the Marshak wave is given by ' '

1/2
p al~cT

dt 2.28C, t
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FIG. 11. Implosion of the HIBALL-I target with realistic en-
ergy deposition at 14 ns, without radiation, showing range shor-
tening. The ordinate scale is log)o.

FIG. 13. Energy deposition and ion energy in HIBALL-I tar-
get with and without ion-energy increase, showing range shor-
tening at 25.4 ns.
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FIG. 14. Implosion of a HIBALL-I target without ion-

energy increase at 25.4 ns. The ordinate scale is log&0.

FIG. 16. Energy deposition and ion energy in HIBALL-I tar-
get with and without ion-energy increase, showing range shor-
tening at 29.0 ns.

where
(33)

(34)

dR/dt=(dR/dE)(dE/dt)=AaE ' Eo
(t2 —t~)

(35)

=aR (E) . (36)
AE 1

t2 —t)

If a=1.5, R(E)=0.2 g/cm, DE=2.0 CxeV, tz t, =7—ns,

p = 1 g/cm, and E(t)= 10 GeV, then p
' dR /dt =8 X 10

cm fs.
At 2.5&10 K and 7 ns in Li-Pb, the Marshak wave

will travel at 5.6X10 cm/s. This is seen to be slower
than the ion ablation wave. The speed of the latter can be
increased by increasing hE, say to 4 G-eV, which doubles
the speed to 1.6X 10 cm/s, which is much faster than the
Marshak wave. The speed of the Marshak wave is much
slower in lead, being reduced by roughly a factor of 30,
due to the much smaller mean free path. Opacities are
taken from Refs. 149—151,195 with division by 3 to allow
for bound-bound transitions' in high-atomic-number
materials. At 29.9 ns the energy deposition (Fig. 16) and
implosion in both cases are shown, for the HIBALL-type
target with and without ion-energy ramping, Figs. 17 and

18. In the case without ramping the range is coming back
to the lead —lead-lithium boundary. With ramping the en-

ergy has had to be increased to 10.9 GeV in order to com-
pensate for the range shortening. Radiation conduction
also contributes to this process with one or the other dom-
inating depending on which moves the ablation front for-
wards most quickly.

The pellet gain with a fixed range was found to be
179."' ' When realistic energy deposition is included
the gain falls to zero because the mass of the compressed
part of the pusher which, together with the fuel, forms the
payload is too large for it to be accelerated to the requisite
velocity required for ignition. This confirms preliminary
results given in Ref. 14. With ion-energy ramping the
gain can be restored to 165. Inclusion of nonlocal a-
particle transport' plus a corrected DT cross section
brings the gain down to 150. A full set of results with
ramping are included in Tables II and III. The above cal-
culations did not include radiation conduction but all fur-
ther calculations do include radiation conduction in the
compression phase although in some of them it does not
play an important role. In the burn phase we only consid-
er Bremsstrahlung radiation losses, which is a reasonable
approximation for the ignition. The effect of radiation
transport on the ignition and burn of inertial fusion tar-
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FICx. 15. Implosion of a HIBALL-I target with ion-energy
increase at 25.4 ns. The ordinate scale is log~o.

FIG. 17. Implosion of a HIBALL-I target at 29.9 ns without
ion-energy ramping. The ordinate scale is log&o.
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FIG. 18. Implosion of a HIBALL-I target at 29.8 ns with
ion-energy increase. Results are given in Table II. All scales are
log&p on the ordinate.

TABLE I. Comparison of experimental results and calculat-
ed results for the energy deposition of uranium ions of different
energy in room-temperature gold.

E (GeV)
p

' dE/dx {keVcm /g)
Expt. Calc.

2.5
1.25
0.62
0.3

5X10'
4. 6&& 10'
4. 1&& 10'
3 ~ 1~10'

5. 14~ 10'
4.82' 10'
4. 15 X 10'
3.01)& 10

gets has been reported upon in Refs. 7, 85, 90, and 176.
In Fig. 19 we show an implosion of a HIBALL-II -type

pellet with a 5-pm-thick lead layer and a 600-pm-thick
lithium layer at 25.2 ns, using 550 TW for the main pulse.
The range shortening is compensated for by raising the
ion energy from 8.0 to 10.3 GeV over a period of 21—27
ns. Radiation conduction is included in the calculation
but does not play an important role because the ablation
front is moved faster by the ions. The maximum tem-
perature is 215 eV, so that any Marshak wave would
move rather slowly. The pellet ignites and yields a gain of
149. The full set of results is given in Table III. The
deposition profiles as 23.06 and 29.9 ns are shown in Figs.
20 and 21. In Fig. 22 we show the implosion of a
HIBALL-II-type target with a 30-pm-thick lead layer.
We employ the technique introduced by Hazlet et al. and
ramp the ion energy so strongly that the ions enter into
the lead and ablate part of this away. It is claimed' that
this yields a better compression. The ion energy is
ramped from 8.0 to 11.6 GeV over a time from 23 to 28
ns. Here also the temperature at 28.5 ns is only 240 eV so
radiation effects (although included) do not play any de-
cisive role. For this target the ignition configuration is
shown in Fig. 23. Ignition occurs at 42.75 ns, much later
than 36.6 ns registered for the HIBALL-I target because
the payload is much more massive. The gain achieved is
166. A full set of results are given in Table V.

In the next calculation we tried to implode a HIBALL-
I-type target using radiation transport alone to compen-
sate for the range shortening. The range shortening is,

4. 10. 2 '

0

~TEMPERATURE T (K)

FUEL L!TH IUM

20
t, i, t,

40 60

LAGRANGIAN CELLS

LEAO

80

however, quite large, as the deposition goes back towards
the lead tamper. Therefore in order to make the radiation
wave travel fast enough we had to raise the temperature
by raising the power to 750 TW. However, unfortunately
this causes increased range shortening due to the tempera-
ture rise and the transfer of bound to free electrons. We
show a successful implosion at 25.4 ns in Fig. 24 where
one can see a Marshak wave with a temperature of 200 eV
compensating for the range shortening. The rest of the

TABLE II ~ HIBALL-I target with range shortening and
compensation by ion-energy ramping.

Input parameter

Prepulse power P&

Intermediate pulse power P2
Main pulse power P3
Prepulse duration ~&

Middle pulse duration r2
Linear rise time ~3
Main pulse time ~4

Input energy
Initial energy of Bi+ ions

Final energy of Bi+ ions
Initial time at which ion

energy rises
Time at which ion-energy rise

ends
Initial energy of ions

entering lithium
Final energy of ions entering

lithium
Thickness of tamper
Thickness of lithium layer
Thickness of radiation shield
Thickness of fuel layer
Mass of fuel
Gain
Output of energy

Units

(TW)
(TW)
(TW)
(ns)
(ns)
(ns)
(ns)
(MJ)
(Gev)
(GeV)

(ns)

(ns)

(Gev)

(GeV)
(pm)
(pm)
(pm)
(pm}
(mg)

(MJ)

Results

2.4
30.1

630
15
6
3
7
4.98
8.6

10.8

21.0

28.0

2.93

4.88
140
370

150
4.0

159.(7)
796.(7)

FIG. 19. Implosion of a HIBALL-II target (6-pm lead
shield) at 25.2 ns. Results and parameters are given in Table
III. Ordinate scale is loglp.
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Input parameter

Prepulse power P&

Intermediate pulse power P2
Main pulse power P3
Prepulse duration ~~

Middle pulse duration ~&

Linear rise time ~3

Main pulse time ~4

Input energy
Initial energy of Bi+ ions
Final energy of Bi+ ions
Initial time at which ion

energy rises
Time at which ion-energy rise

ends
Initial energy of ions

entering lithium
Final energy of ions entering

lithium
Thickness of tamper
Thickness of lithium layer
Thickness of radiation shield
Thickness of fuel layer
Mass of fuel
Gain
Output of energy

Units

(TW)
(TW)
(TW)
(ns)
(ns)
(ns)
(ns)
(MJ)
(GeV)
(GeV)

(ns)

(ns)

(Gev)

(Gev)
(pm)
(qm)
(pm)
(pm)
(mg)

(MJ)

Results

2.4
30.1

630
15
6
3
7
4.99
8.0

10.3

21.0

28.0

2.18

4.11
140
600

6
150

4.0
149.(2)
746

pusher has been heated to 100 eV before the range has
come back to its present position. By 29.9 ns the tempera-
ture, Fig. 25, has risen to 350 eV and the Marshak wave
progresses far enough to produce a successful ignition at
39.7 ns. One needs 750 TW and 6.4 MJ to do this. The
gain is 120. The results are described in detail in Table V.
In general it proved harder to compensate for range shor-
tening by radiation conduction than by voltage ramping.
The temperatures needed are higher so the implosion is
less efficient.

In Fig. 26 we show the implosion of a HIBALL-II tar-

TABLE III. HIBALL-II target with range shortening and
compensation by ion-energy ramping (6-pm lead shield). p1dE/dx

""-ENERGY

12-

10—

6 — LEAO

2—

0
40 60 70

LAGRANGIAN CELLS

FIG. 21. Same as for Fig. 20 at 29.9 ns.

90

7 13.5.

TPp—

get with a 6-pm lead layer. The range shortening is com-
pensated for by radiation conduction only. We illustrate
this by showing the temperature and density profiles at
29.08 and 39.5 ns. Ignition is reached at 41.87 ns. We
used a power of 750 TW in the main pulse and 6.4 MJ. A
full table of results is given in Table VI. The gain is
121.5. We show the ignition profile of the temperature in

Fig. 27. The energy deposition profile at 29.08 ns is given
in Fig. 28. This shows that the deposition has practically
come back to the inner lead boundary of the tamper. Also
in Table VI we show the results for a target in which the
cavity-lithium-thickness region has been increased from
600—1000 pm. This allows more energy to be deposited
in the lithium region even at high temperatures, as the ion
energy can be increased to 90 CxeV. This improved design
was tuned to give a gain of 140. This maximized gain
was achieved by doing calculations for various ion ener-
gies.

In conclusion we can say that both the HIBALL-I and
HIBALL-II targets are viable targets. The HIBALL-I
target is more stable in the pusher-fuel region. Due to ab-

16—
p-" dE/dX

ENERGY

12-

10—

6. 12. g.

5. 11. 3.

r

t
(A BLAT ED
&PART OF
ILEAD
, LAYER

I

,

7. 53x104

4.71 x 1p
2 p7

SONIC POINT
ION

WZZr Al
BEAM

v=0

2 — LEAO

0
to 50 60 70

LAGRANGIAN CELLS
BO

FIG. 20. Energy deposition in HIBALL-II target and ion en-
ergy at 23.06 ns with ion-energy ramping. Energy is in GeV.

0, 10. 2.

20

30 pm 600 pm

LEAD LITHIUM
t t=o

00 60

LAGRANGLAN CELLS

140 pm

LEAD
I f 1 1 I I

80 90

FIG. 22. Implosion of a HIBALL-II target with 30-pm lead
shield at 28.5 ns and ion-energy ramping into lead shield. Re-
sults and parameters are given in Table IV. Velocity is in m/s.
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9. 17. 7.

TPp
P

8. 16.6.

PRESSURE P (Pa)

DENSITY P (kc)lITI ) Input parameter Units Results

TABLE IV. HIBALL-II target with range shortening and
compensation by ion-energy ramping and radiation transport
and 30-pm-thick lead shield.

7 1'5. 5.

TEMPERATURE T (K)

400 eV
200eV

I

20 30

LAGRANGIAN CELLS

I

40 50

FIG. 23. Ignition profiles for HIBALL-II target at 42.75 ns.
Details are given in Table IV. Ignition temperature is 5 keV.

lation the targets implode in a stable fashion. We discuss
this later. It is easier to produce implosions by voltage
ramping because one has some external control over the
implosion. However, radiation can also be used to corn-
pensate for range shortening but one needs higher tem-
peratures.

We now discuss two more calculations whose results are
given in Tables VII and VIII. In Table VII we show de-
tails of a HIBALL-I calculation which includes realistic
energy deposition, ion-energy ramping, and radiation
transport (cf. calculation in Table II). In this case we
were able to implode the target with 500 TW and an input
energy of 4.42 MJ compared to 630 TW and 4.98 MJ.
The ion energy needed to be increased slightly less, but the
inclusion or of radiation conduction did not reduce this
very much. It is not clear if the use of a lower power is
due to the inclusion of radiation or due to better tuning of
the pellet. The gain is reduced so clearly the compression
obtained is less due to the lower power. Some of the other
parameters are also different, for instance, the ramping
takes place from 25 to 28 ns instead of from 21 to 28 ns in
the first case. In Table VIII we present results from a
HIBALL-II-type target with lead-lithium as pusher in-

Prepulse power P~
Intermediate pulse power P2
Main pulse power P3
Prepulse duration ~~

Middle pulse duration ~2

Linear rise time v3

Main pulse time v4

Input energy
Initial energy of Bi+ ions
Final energy of Bi+ ions
Initial time at which ion

energy rises
Time at which ion-energy rise

ends
Initial energy of ions

entering lithium
Final energy of ions entering

lithium
Energy of ions entering lead

shield
Thickness of tamper
Thickness of lithium layer
Thickness of pusher lead

shield
Thickness of fuel layer
Mass of fuel
Gain
Output of energy

(TW)
(TW)
(TW)
(ns)
(ns)
(ns)
(ns)
(MJ)
(GeV)
(GeV)

(ns)

(ns)

(GeV)

(GeV)

(GeV)
(pm)
(pm)

(IMm)

(pm)
(mg)

(MJ)

11.3
24.0

630
15
6
3
7
5 ~ 13
8.0

11.6

23.0

28.0

2.18

5.91

2.32
140
600

30
150

4.0
165.(6)
849.(5)

stead of lithium. The main pulse has a 650-TW power
level, and the calculation includes ion-energy ramping
from 8.6 to 10.9 GeV over a period 21—28 ns and includes
radiation conduction. The lead shield has thickness of 10
pm. The input energy is 4.98 MJ and this target gives the
highest gain of 171. This shows that a high compression
was achieved in this calculation.

TPp

7. 14. 5.

TPp I I I I I I I I I I I I I I I I I I I I I I I

7. 14. 5.

6. 13.4.
P +100 eV

TEMPERATURE T (K)

200 ey~ MARSHAK

E P

MARSHA K

WAVE

6. I3.4.

TEMPERATURE T (K)

350 eV

PRESSURE P ( Pa)

4. 11.2.
5040

5. 12.3.

J T=O, t=O

~OENSITY p (kg/m
o

I

25 4ns
~zuuua ION BEAM

I I

60 70 80

LAG RANG IAN CE L L S
90

5 123 -P
~

~~

OENSITY p (kg/m') ~'

i/
4. 11. 2. I I I I I I I I I I I I I I I I

40 50 60 70
LAGRANGIAN CELLS

80 90

FIG. 24. Implosion of a HIBALL-I target with range shor-
tening compensated by radiation at 25.4 ns. See Table V for re-
sults.

FIG. 25 ~ Implosion of a HIBALL-I target with range shor-
tening compensated by radiation transport at 29.9 ns. Results
and parameters are given in Table V.
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7. it
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13.5. 39.5 ns

IGNITION AT 41.87ns
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FIG. 26. Implosion of a HIBALL-II target with radiation
compensation for range shortening at 29.08 and 39.0 ns. Igni-
tion is at 41.87 ns. Details of results and parameters are given
in Table VI. The ignition temperature is 8.5 keV.

14. 3. 5. I I Il

0 10 20 30 40 50

LAGRANGIAN CELl S

FIG. 27. Temperature ignition profile at 41.87 ns for target
of Fig. 26.

IV. THE STABILITY
OF INERTIAL-CONFINEMENT-FUSION

PELLET IMPLOSIONS

TABLE V. HIBALL-I with radiation compensation and no
ramping of ion-energy.

Input parameter

Prepulse power P&

Intermediate pulse power P&

Main pulse power P3
Prepulse duration ~&

Middle pulse duration 72
Linear rise time ~3
Main pulse time ~~

Input energy
Initial energy of Bi+ ions
Final energy of Bi+ ions
Time at which ion energy rises
End time of ion-energy rise
Initial energy of ions entering

lithium
Final energy of ions entering

lithium (main pulse)
Thickness of tamper (lead)
Thickness of lithium layer

(lithium-lead)
Thickness of radiation shield
Thickness of fuel layer
Gain
Output of energy

Units

(TW)
(TW)
(TW)
(ns)
(ns)
(ns)
(ns)
(MJ)
(GeV)
(GeV)
(ns)
(ns)

(GeV)

(GeV)
(pm)

(pm)
(p,m)
(pm)

Results

2.4
30.1

750
15
6
3
7
6.57
8.6
8.6

2.93

2.04
140

370

150
118.9
781

We note that the HIBALL-II-type-target design implies
the inclusion of a radiation shield as its basic element.
However, various improvements and variations on this
basic theme have been calculated. The basic HIBALL-
II-type target is unstable at the boundary between the ra-
diation shield and the fuel. This can cause mixing of lead
into the fuel after the void closes and the fuel and the ra-
diation shield decelerate. This situation can be ameliorat-
ed by the inclusion of low-p, low-Z material(s) such as
lithium between radiation shield and the fuel (one can, of
course, also include more DT, but this could be more ex-
pensive}. This design has been calculated in Refs. 7 and
43 and 85, 86, and 87.

—
I dE

16- p dX

12-

10—

MARSHA K

WAVE

6—

FUEL I ITHIUM

0
40 50 60 70

LAGRANGIAN CELLS
80

0
90

FIG. 28. Energy deposition for target in Fig. 26 at 29.9 ns.

A. Density gradient and ablation-induced
stabilization of the Rayleigh- Taylor instability
in inertial-confinement-fusion pellet implosions

One of the most critical problems for inertial fusion is
the occurrence and possible suppression of the Rayleigh-
Taylor instability, at least to the extent that the shell does
not break and one obtains ignition and propagating burn
and a sufficiently high gain. This instability occurs when
the low-density hot plasma is pushing the cold much-
denser pusher part of the payload. Across this region the
pressure is decreasing inwards (Fig. 17), and the density is
increasing inwards so that VP~Vp is negative. It also
occurs after void closure when the denser fuel is decelerat-
ing the pusher. In the first case the instability is due to
the formation of bubbles and spikes, and it can cause the
shell to break up with consequent pusher-fuel mixing,
which causes loss of compression which leads to a loss of
gain or even a failure to ignite. The second case also leads
to very bad pusher-fuel mixing, which, when the pusher is
a high-Z material, causes poor burn conditions due to an
increase in Bremsstrahlung radiation.

In the case of ion-beam-driven inertial fusion, the sta-
bility question ' ' " has been analyzed by Lindl
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TABLE VII ~ HIBALL-I target with range shortening and
compensation by ion-energy ramping and radiation transport.

0( =Inc

kl= 2m-'
L

Z

FIG. 29. Density profile and definition of variables for an
implosion with a density gradient to be used in the Rayleigh
analysis of the Rayleigh-Taylor instability with a density gra-
dient.

et al. ,
' ' McCrory et al. ', Long and Tahir ' and

Metzler and Meyer-ter-Vehn among others. In the first
three cases the stabilization due to a density gradient has
been investigated for the case of laser driven and ion-
beam-driven implosions. Recently, Mikaelian'9 2
has developed solutions for any step-like density profile.
However, here we restrict ourselves to the use of an ex-
ponential density gradient in our analysis because there is
an exact analytic solution derived by Raleigh.
Bodner and Takabe et al. ' have investigated the
Rayleigh-Taylor instability in an ablating plasma, and we
also investigate this problem specifically for the case of
ion-beam-driven implosions.

Input parameter

Prepulse power Pj
Intermediate pulse power P2
Main pulse power P3
Prepulse duration ~~

Middle pulse duration ~&

Linear rise time v.
3

Main pulse time ~4

Input energy
Initial energy of Bi+ ions
Final energy of Bi+ ions
Initial time at which ion

energy rises
Time at which ion-energy rise

ends
Initial energy of ions entering

lithium-lead
Final energy of ions entering

lithium-lead
Thickness of tamper
Thickness of lithium-lead layer
Thickness of lead radiation/

pusher shield
Thickness of fuel layer
Mass of fuel
Gain
Output of energy

Units

(TW)
(TW)
(TW)
(TW)
(ns)
(ns)
(ns)
(MJ)
(GeV)
(GeV)

(ns)

(ns)

(GeV)

(GeV)
(pm)
(pm)

(pm)
(pm)
(mg)

(MJ)

Results

2.4
30

500
15
6
3
7
4.42
8.6

10.5

25.0

28.0

2.93

4.60
140
370

150
4.0

134
592

Input parameter Units

TABLE VI. HIBALL-II target with radiation compensation
for range shortening and no ion-energy ramping.

Results

TABLE VIII. HIBALL-II target (DT-Pb-Pb —Li-Pb) with
realistic energy deposition plus compensation for range shorten-
ing by ion-energy ramping and radiation transport.

Prepulse power P&

Intermediate pulse power P2
Main pulse power P3
Prepulse duration ~&

Middle pulse duration T2

Linear rise time ~3
Main pulse time v.4

Input energy
Initial energy of Bi+ ions
Final energy of Bi+ ions
Initial time at which ion

energy rises
Time at which ion-energy rise

stops
Initial energy of ions

entering lithium
Final energy of ions entering

lithium
Thickness of tamper
Thickness of lithium layer
Thickness of radiation

shield
Thickness of fuel layer
Mass of fuel
Gain
Output of energy

(TW)
(TW)
(TW)
(ns)
(ns)
(ns)
(ns)
(MJ)
(GeV)
(GeV)

(ns)

(ns)

(GeV)

(GeV)
(p,m)
(pm)

(pm)
(pm)
(mg)

(MJ)

2.4
30.1

750
15
6
3
7
6.58
8.0
8.0

2.18

0.94
140
600

6
150

4.0
121.5
800.

2.4
30.1

750
15
6
3
7
6.58
9.0
9.0

3.42

2.44
140

1000

6
150

4.0
140
933

Input parameter

Prepulse power P&

Intermediate pulse power Pz
Main pulse power P3
Prepulse duration ~~

Middle pulse duration ~q

Linear rise time v3

Main pulse duration 74
Initial energy of Bi+ ions
Final energy of Bi+ ions
Initial time at which ion

energy rises
Time at which ion-energy rise

ends
Initial energy of ions entering

lithium-lead
Final energy of ions entering

lithium-lead
Thickness of tamper
Thickness of lithium-lead layer
Thickness of lead radiation

shield
Thickness of fuel layer
Input energy
Output energy
Gain

Units

(TW)
(TW)
(TW)
(ns)
(ns)
(ns)
(ns)
(GeV)
(GeV)

(ns)

(ns)

(GeV)

(GeV)
(pm)
(pm)

(pm)
(pm)
(MJ)
(MJ)

Results

2.4
30.0

650.0
15.0
6.0
3.0
7.0
8.6

10.9

21.0

28.0

2.93

5.42
140
370

10
150

4.98
856

171(7)
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Lindl et al. suggested the use of a density gradient as
a stabilization mechanism. The density gradient must be
produced in such a way that the mass of the payload is
not increased, otherwise the hydrodynamic efficiency of
the implosion decreases, with consequent loss of ignition.
A density gradient can be achieved by a spread of ion en-
ergies within the ion beam, but it is also naturally pro-
duced by range shortening and eventual compensation by
radiation or voltage ramping which increases the ion ener-

gy during the implosion. The stability of this whole pro-
cess needs to be investigated because it requires exact
spherical compensation over large distances.

The Rayleigh-Taylor instability with an exponential
density gradient was solved exactly by Rayleigh, and
the solution has been discussed by Chandrasekhar and
recently by Mikaelian, ' ' Kull, and Jacobs. '

Rayleigh discussed the two important types of behavior,
namely, when Pl is large and one obtains the discontinuity
solution for the growth rate y,

y =(gkA )'~ (37)

4kl0 6= tanh
(P212 4k 2/2 82) 2

(38)

or

8 (Pl ) —4(kl )
g coth

2 4kl

g2

4kl

16-- CASE WHERE y ~ 2

where g is the acceleration, k =2m/A, , A, is the wavelength,
and A is the Attwood number, A =(p2 —p~)/(p2+p~), and
the case where Pl (Fig. 29) is small. Here we have used a
calculator to obtain a numerical solution. Different algo-
rithms are used in different regions of the parameter space
in order to obtain convergence of the nonlinear equations.
In the following we discuss these solutions and their ap-
plication to ion-beam-fuison implosions.

The solution is given by two equations in Ref. 203,
namely, Eqs. (31) and (32) (see Fig. 29 for definitions of P
and I), which are reproduced here as Eqs. (38) and (40),

and

—4(kl) gP
[(Pl )'+4(kl )' —8']

—4(kg )klPI

[(Pl )'+ 4(kl )' —8']

(40)

(41)

z —4gkPlkl
n

[(/31 )'+4(kl )'+P'] (42)

—kg Pl
[2kl+P cot(P/2)] ' y&0

[2kl+ 8 coth(8/2)] '

(43)

(44)

One can see that P =P( kl, Pl ), or 8=8( kl, PI ) and that

n = kgn'—(PI,kl, g)

kgn'(Pl, kl )—.

(45)

(46)

For the determination of 8 or P, y and kl serve as useful
independent parameters.

In order to apply the theory to the analysis of pellet cal-
culations a number of approximations need to be made.
The theory needs to be applied to a shell of thickness L
which is being accelerated either by ablation or by a pres-
sure from a hot expanding gas. We assume that the wave-
length with the greatest growth rate is that which is equal
to L The param. eter P can be determined from the simu-
lations as the inverse of the length over which the density
is falling. One needs to evaluate the parameters PI and kl,

Equation (38) or (39) has to be solved for 8, which when
substituted in Eq. (40) or (41) gives n, the growth rate
squared. The density profile is shown in Fig. 29. The
density for all values of z &0 is pi and for all values
greater than I is p2 ——p~ exp(Pl). The transition from one
density to the other is pz

——p&exp(Pz ).
There are many solutions to these equations but one is

interested in the solution with the greatest growth rate.
When the parameter y =[(Pl) 4(kI)—]/4kl is greater
then 2, 8 is real, and when y &0, 8=i/ is imaginary.
When y =2, 8=/=0. The largest growth rate is obtained
by the largest value of 8 and the smallest value of P.
When y &0,

2 y=
(Ol) -4(kl)

(0 kl ) Pl=In(p2/p, ), kl=kL(1/L)=2m!/L . (47)

'!2--

10-

1 is determined from the simulations, as are pz/p& and L.
From the parameters p1, kl, and k =2m. /L, the fastest

growth rate can be determined (and by working out the
growth rate as a function of k, the most dangerous wave-
length can also be evaluated). It is useful to work out
an»ytically two limiting cases. When [(pl)~ —4(kl)2]/4kl
becomes very large the solution for 8 is pl, as can be seen
from Fig. 30. Around this point one can use 8=p1 as the
starting point for an iterative solution. One has

I I I 0
-3 -2 -1 0 1 2 3

8
5 6 7 8 —Bcoth(8/2) =8 /(4kl)

4kl
(4&)

FICx. 30. Solution of Rayleigh problem for y & 2 (see text for
details, Sec. IV A). and by substituting 8=131 into the expression 8coth(8/2),
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0.5

0.0
-2-
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1.0
2.0
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f]l= 2.0/'k[ =4.0

f3 l = 2.0; k l = 8.0

g2
4kl

6 2It

z=4 cot

CASE: y&2

NOTE SCALE CHANGE FROM
POSITIVE TQ NEGATIVE y

Since

n2/gk =
2kl+ P cot(P/2)

= —[Pl /kl ],
n =——gp.2

When kl is small and Pl « kl, y =0,

P cot(P/2) =P /4kl,

P =8kl .

Then, from

(57)

(58)

(59)

(60)

(61)

f3 l = 2.0; k l = 16.0

FIG. 31. Same as in Fig. 30 for y & 2.

n /gk= 4klP—l

[(Pl )'+ 4(kl )'+ 8kl ]
—4klPl Pl

ski 2
'

(62)

(63)

8~ = (pl ) 4(kl ) —4kl pl c—oth(pl/2),
—[4(kl)(Pl)]

n /gk=
[8(kl) +4(kl)(pl)coth(pl/2)]

—Pl
[2kl+(pl )coth(pl/2)]

For kl « pl, one obtains the result

n /gk = —tanh(Pl /2) = —gkA,

A =(p2 —p, )/(p2+p&) =tanh(pl/2) .

(49)

(50)

(51)

(52)

(53)

This is the standard result for a large density jump.
When [(pl) ]—4(kl) ]/4kl is large and negative,

kl »Pl. In this case 8=i/,

n /gk=A, where A =tanh2 Pl Pl
2 2

(64)

and

—4klPl

[(Pl) +4(kl) ]
(65)

for pl~0. These limits are given by Rayleigh, but this
represents a clearer and simpler analysis. The last case
can be seen in another way from Fig. 31. When Pl and kl
are small and pl « kl, y~kl -0. The factor p /4kl rises
very quickly and so the solution is $-0, or $~=8kl. It
should be noted that the solution 8=/=0 is obtained
when y =2. In this case,

n —4klPl
[(Pl )'+ 4(kl )'+P']

and one looks for the solution with the smallest P,

(Pl) —4(kl) =8kl, y=O,

n /gk= =[2kl+(kl) ]'~ /(kl+1) .
l

(2kl +2)

(66)

(67)

P cot(P/2) = +(Pl )~ —4(kl ) (55)
The above so1ution Eq. (67) is valid near /=9=0. When
cot(P/2) =0, P =m,

Since kl & Pl, P-2n. , then (see Fig. 31)

cot(P/2) = —kl/P . (56)

n /gk= 1

2kl

For this case,

4(kl ) —(Pl )

4kl

(68)

(69)

LOW DENSITY
HEATED REGION TAMPER

—4kl pl
8(kl )

from formula (70),

(70)

2kl —~ /4kl
(71)

RADIATION SHIELD (Pbj
(High density)

RANGE
SHORTENING

FIG. 32. Target in its working configuration with range
shortening and ablation, plus compensation by radiation trans-
port or ion-energy ramping.

In Table IX we show the evaluation of n /gk when y & 0,
and compare the results to the approximate solution given
by Rayleigh. One solves iteratively Eq. (55) for P and
then substitutes this result in Eq. (54). In Table X we
show the results of some evaluation for y & 0.

The above analysis has been used to analyze the stabili-
ty of the implosion with and without ramping of the ion
energy. In the first case one gets ignition and in the
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TABLE IX. Evaluation of n /gk when y &0 and compar-
ison with solutions given by Rayleigh. Case

TABLE XI. Comparison of the values of I at 26 ns.

0.01
0.1

0.2
0.5
1

2
4

n'/gk

0 A.AA.

0.394
0.386
0.383
0.38
0.28
0.20

n /gk (Rayleigh)

0.385
0.294

Pl /kl

n /gk=5,

5= —4klPl

[(Pl) +4(kl) +P ]

(72)

(73)

We define k'=5k. Now n=iy and the growth rate is
1 =yt, where the magnitude of growth is equal to exp

~

I
~

. In Table XI, we will compare the values of I at 26
ns for the HIBALL case," ' the case with ramping, and
the case without (Cases 1,2,3). These values are calculated
using Eqs. (54) and (55) and solving Eq. (55) by iteration.
Different iteration schemes have been used in different re-
gions of parameter space. We use 1 as a figure of merit.
Case 2 is much better than it seems because the accelera-
tion is 50% higher than Case 1 because a higher power
was used. Case 3 is much lower because the acceleration
is much lower and 5 is much smaller because of the fairly
gradual density gradient. In Case 3 no ignition is
achieved because the pusher velocity is too small (one is
trying to accelerate too much mass with too little energy).
One knows that y depends essentially on the aspect ratio
(R o /PRO )(Ro inner initial radius, b Ro shell thickness) so
in order to improve stability ARp must be larger. This re-

3.6
3.6
3.6
3.6

TABLE X. Evaluation of n /gk when y & 0.

0
0.1

0.5
1.0

n /gk

0.946
0.929
0.911
0.90

second one does not, and so the second case may seem not
to be relevant, but it is included to show what improve-
ment one could obtain in the stability with a distributed
deposition which very much favors the creation of a den-
sity gradient. Lindl' has suggested that this is one of
the most promising ways to improve stability. In this
analysis we have at first ignored ablation or the discon-
tinuity in velocity between the pusher and the pushing
material.

All calculations are carried out for the "most dangerous
wavelength" here assumed to be X= 1/L, where L is the
pusher thickness. More accurate calculations of this
wavelength can be calculated within this model by
evaluating the growth rate as a function of k for fixed l
and Pl.

We now discuss the stability results for the simulations
made. We have from Eq. (54)

)4.4
12.7
2.67

0.187
0.097
0.073

quires a thicker pusher shell and hence higher input ener-
gy. The other factors which would improve stability are
various suggested stabilizing mechanisms, one of which is
ablation. If

I =yt =v'k'g t= &5kg t (3 =1) (74)

(constant acceleration), and g=2RO/t„where t, is col-
lapse time, then

1/2
2Rp Rp5, t, = 45~

1/2

(75)

8
p —v+v Vv = —VP+pl, ,at

(77)

Therefore 1" is dependent on v 5 and Q(RO/ERp), where
R 0 is the minimum in-flight pusher-shell thickness.

In target implosions the situation is very different from
the classical case of two fluids of different density being
accelerated. In this case the acceleration is considered to
be imposed by an external force. In the case of ion-beam-
driven target implosions, the acceleration is driven mainly
by the thermal pressure generated in the fluid by the ion
beam. A pressure gradient is developed between the end
of the ion-beam range or the ablation-thermal front,
where the Marshak wave has progressed to, and the inner
front of the fuel. As the pressure is approximately con-
stant across the thermal-ablation front, in the hot region
the density is low and the temperature is high, whereas in
the compressed part of the pusher, the density is high and
the temperature is low (Fig. 32). The classical growth rate
must be modified by the effects inherent at the pushing
front, such as ablation-flow, radiation and electron con-
duction, a highly inhomogeneous density profile, the
compressibility of the plasma, and the effects of a real
equation of state. Also, however, the effect of realistic en-

ergy deposition should be taken into account together
with range shortening and radiation or ion-energy-
increase compensation. Here we discuss and apply a
method which takes at least some of these effects into ac-
count. Because the effects taken into account were found
to be inseparable it was found necessary for a quantitative
study of the implosion stability to use a self-consistent
treatment of the ablating plasma.

In Refs. 206 and 207 the fiuid equations are used in a
frame moving with the ablation front which is accelerated
by the ablation pressure. This effect is "simulated" by the
introduction of an intertial force pg which is included in
the equations of motion which are then given by,

Bp
Bt

+T pv=0, (76)
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pC, +v VT = P—V v+V(KVT),T
at (78)

where p, v, and T are the density, velocity, and tempera-
ture of the ablating plasma. An ideal-gas equation of
state was used, together with a Spitzer electron conduc-
tivity E. However, even this approach has its limitations.
Firstly, due to the double-layer effect, " '3 the electron
conductivity is very much reduced by a factor of -20.
Thus the real mechanism of conduction is radiation con-
duction in such inhomogeneous plasmas. ' ' ' Then
this approach does not include the realistic mechanism
producing acceleration, namely, the energy deposition by
ions. Further, one should also include the effects of a real
equation of state. However, despite these limitations this
approach represents a significant advance over previous
treatments of the problem.

In Refs. 206 and 207 the background ablating plasma
whose stability was investigated is the stationary solution
to Eqs. (76)—(78). The solution in normalized form was
found to be characterized by two dimensionless parame-
ters (G,R&), where G=

~ g ~

/(c, /R, ) where c, is the velo-
city of sound at the sonic point and R, is the radius of the
sonic point. The sonic point is the point where the fluid
velocity is the same as the local velocity of sound, and can
be shown to be where the temperature profile has a max-
imum. ' Further Rz ——p, /p„where p, is the density
at the ablation front (in the dense material) and p, is the
density at the sonic point. This ratio is of the order
10—10 in our calculations.

The equations (76)—(78) are linearized in the deviation
f~(r, t) from the zeroth-order solution fo(r). Separating
variables with the aid of the expansion

f& (r, t ) =g f™(r) exp[y(l )t] Y (0,$)
l, m

in spherical harmonics, where y(l) is the growth rate of
mode I; the linearized equations are reduced to an eigen-
value problem for the [f&' (r) with the growth rate y(l)
as the eigenvalue.

Takabe et al. ' found that the results for the
growth rate could be fitted empirically by the simple ana-
lytic formulas

where G =g/(c, r, '), g being the acceleration of the abla-
tion front, and Rz ——(p, /p, ).

From the expression for the growth rate y one can see
that above a certain wave number k, perturbations do not
grow and that there is a wave number k at which the
growth rate is a maximum. One can find k, by setting
y=0,

a k,g=P k, v, ,

k, =a g/P u, .

(84)

(85)

k, =2a r, R&/(P r, hR, ) .

One can find k by setting dy/dk =0,
—,'aQ(g/k )=Pu. ,

k = —,'a g/(P u, ),
1 =k r, = ,'ra g/—(P v, ) .

(86)

(87)

(89)

There is thus a natural wave number at which the growth
rate is a maximum in this theory and this has been con-
firmed by analytic calculations, ' which we discuss brief-
ly below. Previously this wave number at which the
growth rate is a maximum was taken to be
k =2m/AR;„where AR;„ is the minimum in-flight
shell thickness. It was argued that small k values grew
more slowly due to the formula for the growth rate, and
larger k values for which k ~ hR;„grew more slowly
due to nonlinear saturation effects.

The growth rate is exp(yt, ), where t, is the implosion
time. Using the classical expression one obtained
I =y t, which gives

I' =2v'nA. (90)

where 3 =Rp/AR;„, and Rp is the initial shell radius.
Using g =P, /p, bR;„and P, =2p, c, =2u, p, r, /(p, r, ),
we obtain

Since g=P, /(p, bR, ) where P, is the ablation pressure
and AR, is the in-flight shell thickness, and

P, =2p, c, .

Then

y =av'kg —Pku, , (79)
I =y t, = z(a /P)&A (r /r ) (p /p ) (91)

2 2
~apa Ua ="sps Cs

2 2
va spsCs/( apa ) ~

(80)

(81)

where k =2m/A. =1/r„where k is the wavelength of the
perturbation, r, is the radius of the ablation front, and u,
is the ablation velocity (in the cold material). At the abla-
tion front mass is conserved, so that

If one assumes that (r, /r, )(p, /p, )' =- 1, then

I' '=-,'(a /P)V'2

Therefore

I' '= —,'(a /2PMm. )I" .

For example, if a= 1, and P=3,

(92)

a =0.96
P=3.1G (R /50)P

(82)

(83)

where c, is the velocity of sound at the sonic point, p, is
the density at the sonic point, p, is the density of the ab-
lating material, and r, is the radius of the sonic point.

Takabe et al. found that

r"=r" /21. (94)

If we put 2~/AR;„=k, then for the pellet calculations
reported on in this paper since AR;„ is small k &&k
Therefore k g«k g. Further, the growth rate y(k ) is
half the classical value at k . However, the important
point remains that the reduction in the growth rate occurs
mainly because the high growth rates at high k values are
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stabilized by ablation, so that the k value of maximum
growth is substantially reduced. The further reduction of
50% over the classical value is an extra bonus, but it is
not as significant.

In our calculations

c, =&P/p=10 m/s (95)

and using U, =(r, /r, ) (p, /p, )c, for the ablation velocity
and (r, /r, ) —3, p, /p, —10, we obtain v, —10 m/s.
Therefore for a= 1, P= 1, 2, 3, and 4, exp(I ) is given by
50, 7, 4, and 3 where g —10' m/s and the time of the
implosion is taken to be 10 ns. These growth rates are
considerably smaller than those obtained without con-
sideration of convective stabilization. A typical value of
P in our calculations is 2. However, the results are very
sensitive to the values of g and v, . One can also estimate
the value of v, by calculating the velocity of the Marshak
wave. This starts from the end of the hot range and trav-
els 200 pm. This yields an average v, of 3.10 m/s. Fur-
ther, one can use

Ug ——(p, A) 'dm/dt, (96)

V. ANALYTIC THEORY OF THE IMPLOSION,
IGNITION, AND BURN PHASES

OF INERTIAL-CONFINEMENT-FUSION PELLET
DYNAMICS

where dm/dt is the mass-ablation rate, A is the area, and

p, is the density. The mass ablated is 40 mg and p, =10
kg/m . The area is 1.2&10 m, and v, =4&&10 m/s.
These values give very low growth rates.

Finally, we note that Kull and Anisimov ' have ob-
tained similar results to Takabe et aI. using analytic
methods. In their work a generalized surface wave-
dispersion relation for arbitrary step profiles is derived.
This allows them to give a systematic overview of dif-
ferent regimes of convective stabilization and the connect-
ed growth reduction. Numerical solution of their analytic
results for the growth rate give results similar to those of
Takabe et al. Recent work by Emery, Gardner, and
Bodner ' also shows reductions of the growth rate for
implosions driven by short wavelength lasers by factors of
three to four. This is also said to be due to mass ablation.
However, the calculations are ig two dimensions and this
allows the introduction of vorticity into the problem. The
authors then state that it is the ablative convection of vor-
ticity away from the unstable ablation surface which both
controls the interchange of the two fluids and leads to the
reduction of the growth rate. In respect to energy deposi-
tion an ion beam is, of course, like a fictitious laser beam
of zero wavelength. Thus with an ion beam one would ex-
pect even greater reductions in the growth rate according
to these calculations.

IDF QabsgAPQPF ~ (97)

22mFV
IPF

—,mp Vp+ —,mF Vp

(9&)

m&+ mF
(99)

where Vz is the velocity of the payload needed to produce
ignition -3X10 cm/s, mF is the mass of the fuel, and
mz is the mass of the payload comprising the fuel and the
inward-moving part of the pusher shell composed of lead,
lithium, or lead-lithium as the case may be, so denoted by

Pb/Li
mp =mp +mF (100)

The fue1 mass is an input parameter for the model as is
the initial inner radius of the fuel. The mass m&" "' is
determined by the condition that this layer should be
thick enough to protect the fuel from radiation preheat,
by the Marshak wave ' ' ' ' or by high-energy pho-
tons, and that after ablation it is thick enough not to be
broken through by the bubbles and spikes produced by the
Rayleigh-Taylor instability. Basically it is the last condi-
tion which determines the final thickness of material
which move inwards at a high velocity together with the
fuel shell. In its compressed state the shell is not very
thick, —10—20 pm in our calculations. Of course, if this
shell is imploded by ablation it was initially much thicker
and this is actually the case and is why the implosion is
stable. During ablation the spikes or perturbations of the
RT instability are eaten away while the shell becomes
thinner. Since the instability decays exponentially in-
wards, the instability is prevented from growing and can
even be damped out.

Let us now calculate gAp in a simple approximation.
We will consider the payload at the end of the main pulse,
after ablation has finished. Then from conservation of
momentum,

where g,b, is the absorption efficiency of ion-beam energy
into thermal energy in the pellet and is —1. g&p is the ef-
ficiency with which energy is transformed from absorber
energy into kinetic energy of the pusher shell, which
moves inwards. Most of the ion-beam energy is used to
heat the lead tamper and the lithium layer which produces
the thermal and ablation pressure which drives the pay-
load including the fuel inwards. This energy includes the
energy needed to ionize the atoms. gpF is the efficiency
with which energy is transferred from the payload kinetic
energy into energy for the fuel. Some energy is used to
heat the fuel and some is for compression,

A. Theoretical analysis of pellet dynamics,
including ablation, compression, ignition, burn, and gain

mph
—m pb Vpb (101)

In order to reduce the input energy needed to compress
and ignite a pellet it is important to have a high beam-fuel
coupling efficiency. ' This efficiency can be expressed as
IDF~

where vz-3/10 cm/s, mpb is the mass of the lead
tamper, and vpb is its outward velocity. At this point we
assume that the payload moves inwards, the tamper out-
wards, and the lithium (lead) in between is stationary.
Then



2652 KEITH A. LONG AND NAEEM A. TAHIR 35

2 2 & 2'g~p= ~ m&UD(m E&+mpbEpb+ ~ m&Up+ Tmpbvpb)

mp m, E, +mpbEpb mp
PAP 2 + +

mpb mpbvp mpb

m

mpb

(102)
—1

2

Rp ——

1/3
3m' v p

8P,
(114)

where mz is the shell mass and V=4~Rp is the initial
volume. 2 or Rp/ARp is fixed by the growth of the RT
instability and the magnitude of the initial perturbations
6p.

Let,

(103) Pb/Li
m~ =mF+m~

m&
' ——47TR

happ

5R p

(115)

(116)
m E +mpbEpb

2
mPbVP

=Bx+y (104)

2mc Ec 2
2EPbB= 2, y = 2, x=

mz vp up

Then

mpb
(105)

g&p ——x[y +(1+B) x+ x] (106)

dr)zpldx=0, x=mplmpb, mp fixed at mp .

This leads to

(107)

x=xp ——y .

where E, is the energy/per gram needed to heat the cavity
material to the working temperature Tp, m, is the cavity
mass, and Epb is the energy/per gram needed to heat the
lead tamper.

At a maximum,

where ARp is fixed by the maximum RT growth allow-
able. Thus mF and Rp fix the thickness of the fuel layer.
Then mp is fixed by Eq. (115) and mpb is fixed by the
maximum-efficiency condition. The thickness of the
lithium layer is fixed by the range shortening that occurs
and the need for the lead to travel outwards. If it is too
thin then the range comes back into the lead, and some
lead travels inwards; if it is too thick then some material
is heated which does not need to be heated. Thus the
thickness of the layers can be determined. The ablation
pressure is fixed by Eq. (113). The total energy needed is

I 2EIB——P, V+ —,mpb Vpb+m E +mpbEpb
2 2

= —,mp Vo(1+y)+ —,mp VDB+
2

= —,
'

(mp Vo)(1+y )+B+y

Therefore,
2 (mp Vo )/( lAp ) (117)

MAX y
l2y'+(1+B)y]

where, in this case,

(108) where mz is determined by the mass of the fuel plus the
RT instability thickness of the pusher shell.

The energy in the fuel is given by

m pb ——ymp (fixed) (109) EF IDFE IDFEIB (118)

for the efficiency to be a maximum.
Let us now assume that the ablation pressure is P, . '

Then

d dR
dt ~ dt

= —P,4~R (110)

P, = —,poVO(A) (112)

where A =Rp/ERp is the aspect ratio. This can be
rewritten as

2P, V= —,mpvp (113)

where we use a simple model for the implosion which can
be replaced by the homogeneous isentropic compression
model of Kidder. ' In this equation R is the shell ra-
dius, P, is the ablation and thermal pressure generated by
a radiation conduction wave, an ion-beam ablation wave,
or ion-beam heating. Then

P
3 pphR

where Rp is the initial radius, ARp is the initial thickness,
and pp the initial density,

gDF has been determined above. From the mass of the
fuel, the (pR)r„,i and the mass of the hot spot one can
determine the gain. "' ' ' This depends on the distri-
bution of EF between hot-spot formation, compression,
and heating of the rest of the fuel. The ablation pressure
needed determines the power level of the beam. The abla-
tion pressure itself is determined by Rp or vice versa.
Therefore the radius of the shell is determined by the
power level available in the beam. Lower power levels
mean larger pellets which, according to the stability
analysis, remain stable.

In order to complete this zero-dimensional model"'
for the prediction of the gain we use a mode1 developed by
Long and Tahir in Refs. 11 and 12. This is an extension
of a model developed by Kidder and reviewed by
Bodner. In Kidder's model a constant density profile is
assumed in the fuel. A constant-pressure model was
developed by Meyer-ter-Vehn but a general profile
model was presented earlier by Long and Tahir"' and as
a two-density —two-temperature profile model in Ref. 12.

In this section we use the model developed in Refs. 1l
and 12 because it includes this general fuel profile, the ef-
fect of tamping, a correct treatment of Fermi degeneracy,
the energy of the ions, and symmetry considerations.
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Only a simplified version is employed here. For full de-
tails see Refs. 11 and 12. The fuel configuration is shown
in Fig. 2 in Ref. 12, where the hot spot, compressed re-
gion, and tamper are shown. A schematic diagram of the
density and temperature profiles at ignition are given in
Fig. 5, ' see Fig. 23 for an actual example. The density
and temperature of the hot spot are given by pq and Tq,
and the density and temperature of the compressed region
are given by p, and T, . The radius of the hot spot must
be greater than R (Tf, ) (Refs. 11, 12, 164, and 228), the
range of a particles in DT at Tq, implying that
pf, Rp, &0.4 g/cm if 25% of a-particle energy is allowed
to escape, or pqR„&0.8 g/cm if 12% can be allowed to
escape in order to obtain ignition. In order to obtain igni-
tion and nuclear and compressional heating must be
greater than the losses due to a-particle escape and radia-
tion (Bremsstrahlung) losses. The a-particle loss fractions
for pf, and Tf, can be estimated from formulas given in
Refs. 140, and 229—231 as 7,„„

—,'( —, —2r —„r'), 0—&r& —, (119)

mined by solving Eq. (123), and Fk(2)'), k= —,', —', , . . . are
the well-known Fermi-Dirac integrals

k

Fk(2)') =J, dx,(e" "+1)
S is the entropy, and the pressure is given by

PE = ,
' (ET ) —/V,

(125)

(126)

where

=2mh (127)

4 3
mh ———,7TRh ph (128)

where V is the volume, and PE is the electron pressure.
We use an enlarged hot spot to include the transition re-
gion between the hot spot and the compressed region, with
a radius Rh ——4Rh. The mass of the enlarged hot spot
mh is given by

mf', = —, f(fR )hBph

+out '3 1

4 3~
1 '7)

120~
(120)

The minimum ignition energy ElGN (in J/g) is given by
Ref. 12 as

gDFEraN =mheh (129)
More complicated expressions have been worked out in
Ref. 188 for the case where the reaction rate is of the
form a+br+cr, where r=(R /RF) ', where R is the
a-particle range and RF is the fuel radius.

This was used in Refs. 142 and 164 as the basis for a
fast method of computing a-particle transport. It is very
useful and accurate for calculating the ignition tempera-
ture, see Figs. 7 and 8 in Ref. 164, where results for the
HIBALL-I pellet are shown. Here the ignition tempera-
ture was found to be 8.5 KeV, with the inclusion of a-
particle transport, compressional heating, nuclear reac-
tions, and Bremsstrahlung radiation loss from the hot
spot. The effect of neutron heating on the hot spot is
small -3% of a-particle heating. ' Another condition
on Rh is that is must be greater than PRO where c is a
symmetry factor' and Ro is the initial radius of the
fuel tamper shell. Therefore

e, = k~T,
[ —, +F3/2(vl', )/Fl/2(vl, ')] .

MDT
(131)

The total energy in the compressed region is then
I

Ec =mcec (132)

(130)

where gDF is the driver fuel coupling efficiency calculated
above, and MDT is the mass of the DT ion. For a general
mass mF of the fuel, where mF & mf'„mh is heated to the
ignition temperature Th and the rest of the DT, mz —mh,
is compressed to a density p, at a temperature T, . The
energy per gram in the compressed region including both
the partially degenerate electron and the ion contributions)
is given by

R =max(R, PRO) . (121) m, =mF —mh .

Then

(133)

Er/Nkfi T =F3/2(i)')/Fl/2(q'), (122)

k~T
1 = Fl/2(2)')

2 Ep
(123)

In this model we use the "jellium" model of a plasma, in

which the electrons are degenerate or nondegenerate as the
case may be, and the ions move as a separate system and
are treated as an ideal gas. Thus polarization effects are
ignored' but could easily be included by the method due
to Breuckner and Gell-Mann. ' ' Then it can be
shown that"' for the electrons

Rf ——
rIDFEiB+ fr(R~ ) e' —

3
m—p&(Rh ) ef,

4 I

3 ~pcec

The fractional burn is given by

/DFEIB fuel (mF —mfI ) +mi

The (pR )f„,l is given by

(pR )f„,l pi, Rf, +p, R, . ——
The radius of the fuel Rf ——R, +Rh is given by

' 1/3

(134)

(135)

(136)

7~[F3/2(9 )/Fl/2(2) )] rI (124)

where ET is the total electron energy, g'=p/k&T, where
p is the chemical potential and EF is the Fermi energy,
kz is Boltzmann's constant. The value of g' is deter-

p = (pR )f /[p'+ (pR )f], (137)

where P' is =6.3 g/cm, P'ee +Ting/(ov), where . Tfi is
the burn temperature and (ov ) is the DT cross section
averaged over the Maxwell-Boltzmann distribution. The
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gain is given by

Q ™FyeB/EIB (138)

a =4o./c, where o is the Stefan-Boltzmann constant, and
c is the velocity of light, also

where es is the fusion energy (J/g) for a 50:50 DT mix-
ture equal to 3.4&10" J/g. Results of this model for
three efficiencies are given in Fig. 5 of Ref. 12.

This now completes the zero-dimensional analytic
model developed here. Given the input energy and power
it is now possible to predict the gain, the mass of the fuel,
the inner radius of the target, the driver fuel coupling effi-
ciency, and the masses and thickness of all the layers ex-

cept the cavity layer. This seems to be fixed by considera-
tions of range shortening and hydrodynamic stability.
Clearly the lithium layer must be thick enough so that
ions neither go into the fuel when the target is cold nor
end in the tamper when the target is hot. The ion energy
needed is fixed by the tamper and cavity-layer thicknesses.
For a given cavity thickness there is clearly an optimum
ion energy which maximizes gDF due to the optimized
thickness of the tamper layer. If ablation plays an impor-
tant role the efficiency can be determined by use of the
rocket-model formulas modified by the presence of the
tamper. However, this must yield the same expression as
Eq. (106) at the end of the implosion since this is derived
on the basis of conservation of momentum.

In the rocket model if mz is the initial mass of the pay-
load and mp is the final mass, moving with a velocity Up,

where u is the velocity of the ablating plasma in the target
reference frame, then

P~(t) =P, (t) 1—
Rp

(145)

where Ro(E) is the range of the incident ions in lead, and

RI is the thickness of the lead. We assume that the
power flow is used to heat up material and ablate it by the
mechanism of a Marshak wave. Then

P~(t)t =p, x (t)C, , (146)

where p, is the density of ablated material and Cs is the
specific heat/per gram.

P~(t) t =3p.x (t)N, [1+Z(t) ], (147)

t, =~T
and C„ is specific heat per unit volume. Numerical simu-
lations and comparisons to these analytic solutions have
been carried out in Refs. 7 and 83. These results show
that the numerical methods used in this paper and Ref. 7
are correct.

We now consider a simple model of radiation-induced
ablation, whereby we do not take into account the role of
the tamper, or of hydrodynamic motion. Let us simply
consider that a reduced power is heating the cavity ma-
terial. This we denote by P (t), where for constant depo-
sition

Then

dU
P dt

—Qdm p

dt

Vp =ln
I

mp

mp
(139)

Z(t) =ATt'.

Let us also assume that

(148)

where Z(t) is the degree of ionization and Ng ——1/m; is
the number of atoms per unit mass. We assume that

F 2
IAp= & mp Up/Eabs = Up Up

exp
u

—1 . (140)

However, this model is not easily applicable if there is
tamping. This reduces u hence increasing the efficiency.

We have discussed briefly in Sec. IV A and Refs. 84 and
85 the compensation of range shortening by radiation
transport. There we showed that the concept of Marshak
waves ' ' is useful. In this section we summarize some
results of the motion of nonlinear radiation waves for
various boundary-temperature —time variations.

For a boundary temperature of the form

P (t) =Pot, T= Tot /to,

I".t +'=I at"P+ "/23m WT~

where p= —, and 8 is given from Eq. (142), m =3,
3 1/2

Qc 1g Tp Tp

2C„t", +"[1+p(m+4)]

T3/2
p~ &+& gg (6p+&)/23 3p/2

p =Pa 3p /2
tp

(149)

(150)

(151)

T(0, t) = Tot /to

we obtain the result '

(141) 6p+4+ 1+3pa+1 =
2

(152)

aTpclztP' + '+'
X'(t) =

(2.28C, t~()' + '[1+p (m +4)]
(142)

where for p =0 we recover the constant boundary-
temperature ' case

p =[2(a+ 1)—1]/9, (153)

a=0, p= —,; a=1, p= —,; a=2, p= —,; a=3, p= 9,'
a=4, p=1.

If the Marshak wave is causing ablation, then the abla-
tion pressure is given by

1/2
aToclti t

X
2.28C„

(143)
2

P bi= x (t)
ps

(154)

The case of an exponential boundary-temperature varia-
tion with time has been derived in Ref. 7. In Eq. (142)

where p, is the density of the ablated material, for a=1,
p = —,', and P,b~ increases linearly with time.
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p, acljt(To)Tot~' + ' [p(~ +3)+1]2
(155)

p, 2.28C„rPo
+ 4I(p) 4

P(p) = [1+p(m +4)]
for a=2, p= —', , and

p t 21/9 t 7/3
ab1 ~ (156)

Thus the ablation pressure rises linearly with time when
the power is rising linearly in time. It rises as t when the
power rises as t . For a full treatment of this problem
one should include the hydrodynamic flow but this is
more complicated when one has a tamper.

B. Discussion and conclusions

It has been clearly shown in this paper that the detailed
physics of the energy loss of ions in hot dense plasmas
plays an important role in ion-beam-driven fusion pellet
implosions. The physical behavior of the ions can lead to
problems in obtaining ignition but it is also advantageous
in avoiding for instance, radiation preheat or preheat from
knock-on ions. In Secs. IIA and IIB we have discussed
some aspects and problems of the theory of the calcula-
tion of the energy loss of ions in dense plasmas. We have
emphasized that the distinction between bound- and free-
electron states is an oversimplification, because in fact the
states change gradually from one to the other as the ener-
gy increases. Also problems connected with degeneracy,
nonideality, and more detailed calculations of electronic
states in the disordered potentials existing in the plasma,
as well as the atomic electron states within the plasma
background, must be solved. Calculations have been
presented using a definite physical model and were corn-
pared briefly to other methods. The energy deposition of
charged particles during ignition and burn has been brief-
ly discussed. We have presented a method of coupling
microscopic energy-deposition data into any hydrodynam-
ic code and analyzed its efficacy by giving examples. The
physics in the MEDUSA code, especially the extensions,
have been described. Using this renovated and extended
version of the coupled code we have carried out detailed
numerical simulations of various reactor-size target
designs for heavy ion beams. It was shown possible to
compensate for range shortening by ion voltage ramping
and/or radiation transport. It was discovered that one or
the other mechanism dominates depending on which can
move the ablation front fastest and that these two effects
do no add linearly. It seems one can only heat the plasma,
one way or the other (reminding one of the saying that
you do and you do not step into the same river twice). In-
itially it appears that range shortening is deleterious be-
cause one loses ignition, due to the increase in the payload
mass. However, this effect can be used to advantage by
compensating for this range shortening by ion-beam-
driven ablation or radiation-driven ablation. Both pro-
duce very smooth, gradual implosions with gentler or gen-
tle density gradients. This occurs to such an extent that it
was found that using various new analyses of the
Rayleigh- Taylor instability including ablation, thermal
conduction, compressibility, and ablation-induced density

profiles that these implosions appear to be stable, in the
sense that growth rates are tolerable, and that later on the
instability appears to be damped out. Actual density pro-
files appear to be even more favorable, if they were to be
combined with the self-consistent linear analysis used.
However, one needs detailed two-dimensional simulations
or theory to confirm these results. In fact, a one-
dimensional theory including all these phenomena would
be very useful as it would, it is hoped, confirm these nu-
merical results. One possible such theory was discussed
rather briefly due to lack of space, but this tends to con-
firm that slow ablatively driven implosions of thin shells
are stable, i.e., do not lead to shell breakup . The targets
used all gave high gains, and the various target designs
were compared both from a physics point of view and
from the reactor point of view, i.e., cost and ease of fabri-
cation. In general, the HIBALL-I design was found to be
more stable than the HIBALL-II design. An interesting
HIBALL-II design is, however, one with a very thick
lead-gold or even, say, aluminum layer into which ions are
gradually driven. At first material is compressed and
then the ions penetrate into this compressed layer giving
increased energy deposition per gram.

This may increase the hydrodynamic efficiency al-
though one would need to prove this by a very careful
analysis. However, it is always a question as to whether
the extra cost introduced by extra layers in the target is
offset by the increased gain. In general, all these targets
have a high gain, and with reasonable input energies. In
view of the good stability situation the power can be re-
duced by having larger targets (with a larger inner radius)
and thinner layers. It is an interesting question whether
or not various targets can have lower input energies for
the same gain. However, the stability situation would al-
ways have to be carefully monitored. The materials used
in these pellets are compatible with the reactor system and
lead to a manageable radioactivity problem. We have also
discussed how pellet heating in the reactor chamber ef-
fects pellet performance via the generation of a DT vapor
pressure in the void.

A detailed zero-dimensional analytic model has been
discussed which has proved very useful in designing these
pellets and in interpreting the results. It is also very use-
ful for providing ideas on how to improve pellet perfor-
mance. For a given pellet fuel mass, it allows one to
design the target by fixing layer thicknesses and to fix the
energy input and the power levels for a given gain and a
given inner radius. The mass of the fuel is also related to
the gain and the input energy. Thus one can considerably
reduce the number of variable parameters and make pellet
tuning considerably easier. The achievement of ignition
through shock timing has also been analyzed. Improved
methods of obtaining ignition allow one to reduce power
and energy levels substantially, by reducing the necessary
pusher velocity.

Finally, one can say that any deleterious effects of
range shortening on ion-beam pellet performance have
been banished and in fact range shortening has proved to
be advantageous because of the reduction of preheat, the
improvement of stability, and the simplification of the
pellet structure. The pellets designed here, in particular,
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the proposed HIBALL design for the HIBALL-I target
design have been proved to be admirably suited for use in
a future reactor system as proposed in Refs. 7—11 and
234. Of course, one cannot rule out that additional phys-
ics effects could reduce pellet performance, such as
frequency-dependent radiation transport or plasma effects
on the effective charge. Much larger range shortening
than the already large effects seen here could cause prob-
lems, especially if one wants or has to compensate by radi-
ation transport. On the other hand, compensation by
voltage ramping is always possible from a theoretical
point of view. But it may be difficult to do this in prac-
tice. However, dual energy beams should be able to be

produced and these would probably be sufficient. Here
one would have one energy for the prepulse and the begin-
ning of the main pulse and another larger ion energy for
the remainder of the main pulse. The ion energies would
be fixed so that no ions would go into the fuel, although
this has also been proposed.
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