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Closed-farm analytical model of the electron whistler and cyclotron maser
instabilities in relativistic plasma with arbitrary energy anisotropy
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Detailed properties of the cyclotron maser and whistler instabilities in a relativistic magnetized
plasma are investigated for a particular choice of anisotropic distribution function F(p&,p, ) that
permits an exact analytical reduction of the dispersion relation for arbitrary energy anisotropy. The
analysis assumes electromagnetic wave propagation parallel to a uniform applied magnetic field

Boe, . Moreover, the particular equilibrium distribution function considered in the present analysis
assumes that all electrons move on a surface with perpendicular momentum p& ——p& ——const and are
uniformly distributed in axial momentum from p, = —p, =const to p, =+p, =const (so-called
"waterbag" distribution in p, ). This distribution function incorporates the effects of a finite
momentum spread in the para11el direction. The resulting dispersion relation is solved numerically,
and detailed properties of the cyclotron maser and whistler instabilities are determined over a wide

range of energy anisotropy, normalized density co~ /m„and electron energy.

I. INTRODUCTION

The classical cyclotron maser' ' and electron
whistler' instabilities in a uniform plasma are trans-
verse electromagnetic instabilities driven by an aniso-
tropy in the average kinetic energy of the constituent elec-
trons. These instabilities have a wide range of applicabili-
ty to astrophysical and space plasmas, ' ' to laboratory
plasmas with intense rf heating, ' ' and to relativistic
electron beams used for microwave generation. ' ' Since
the late 1950's (see citations in Ref. 1), the cyclotron
maser instability has been the subject of ongoing research.
In astrophysical applications, Jupiter's decametric radio
emission ' and Earth's auroral kilometric radiation '

have been attributed to the cyclotron maser instability. In
laboratory experiments, ' ' a very notable application is
to the gyrotron device, used for coherent radiation genera-
tion. The electron whistler instability was first investigat-
ed by Sudan' in the nonrelativistic regime. Recent stud-
ies of the whistler instability by Gladd' have included
relativistic effects.

For nonrelatiUistic anisotropic plasma, detailed proper-
ties of the whistler instability are readily calculated for a
wide range of distribution functions F(p i,p, ). Here, we
assume electromagnetic wave propagation parallel to a
uniform applied magnetic field Boe„and the terms "per-
pendicular" and "parallel" refer to directions relative to
Boe,. For relatiUIstic anisotropic plasma, however, be-
cause of the coupling of the perpendicular and parallel
particle motions through the relativistic mass factor
1'=(1+pi/m c +p, /m c )', properties of the cyclo-
tron maser and whistler instabilities are usually calculated
in limiting regimes which allow approximate analytical
solutions or substantial simplification of the electromag-
netic dispersion relation. These limiting regimes range
from weak energy anisotropy, to very strong energy aniso-

tropy, to long perturbation wavelengths, to short perturba-
tion wavelengths. Moreover, the distribution functions
used in the analyses of these instabilities range typically
from a weakly relativistic loss-cone (Dory-Guest-Harris)
distribution, ' to m.onoenergetic equilibria' ' in which
the influence of a spread in parallel or perpendicular
momentum is neglected. While the DGH distribution
may represent a realistic model for the particular applica-
tions considered in Refs. 3—14, these analyses ' are re-
stricted to mildly relativistic electrons.

The purpose of this paper is to investigate detailed
properties of the cyclotron maser and whistler instabilities
in relativistic magnetized plasma for a particular choice
of anisotropic distribution function that permits an exact
analytical reduction of the dispersion relation for arbi-
trary energy and arbitrary energy anisotropy. This calcu-
lation is intended to provide qualitative insights regarding
stability behavior for more general choices of equilibrium
distribution function. The particular distribution func-
tion [Eq. (7)] considered in the present analysis assumes
that all electrons move on a surface with perpendicular
momentum pi ——pj ——const, and are uniformly distributed
in parallel momentum between p, = —p, =const and
p, =+p, =const. (so-called "waterbag" distribution in
p, ). This distribution function incorporates the effects of
a finite momentum spread in the parallel direction. For
this choice of F(pi,p, ), the integrations over pi and p, in
the dispersion relation [Eq. (2)] can be carried out in
closed form. The resulting dispersion relation [Eq. (19)] is
valid for arbitrary energy anisotropy Pi/2P, and can be
used to investigate detailed stability properties over a wide
range of system parameters. Here, Pi and P, are defined
by Pi ——Pi/ymc and P, =P, /ymc, where y=(1+pi/
m c +P, /m c )'~ . Although the present stability
analysis is restricted to parallel propagation (i.e., ki =0 is
assumed), the calculation does allow for arbitrary electron
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energy and is not restricted to weakly relativistic elec-
trons. '-'4

The organization of this paper is the following. In Sec.
II we outline the theoretical model (Sec. IIA), derive the
electromagnetic dispersion relation (19) for the choice of
equilibrium distribution function in Eq. (7) (Sec. II B), and
(for completeness), show that Eq. (19) reduces to familiar
results in the two limiting cases P, =O and 80=0 (Sec.
IIC). In Sec. III the dispersion relation (19) is solved nu-
merically, and detailed stability properties are investigated
for both the cyclotron maser and whistler instabilities
over a wide range of system parameters P~/2P„co~/co„2 2 2 2

y, and ck, /cue Her. e, co, =eBO/mc and co~=(4rrne /
m)'~ are the nonrelativistic electron cyclotron and plas-
ma frequencies, respectively, and k, is the axial wave
number of the perturbation. Finally, in Sec. IV we obtain
the electromagnetic dispersion relation [Eq. (35)] for the
case where the distribution in parallel momentum p, cor-
responds to thermal equilibrium [Eq. (29)].

II. THEORETICAL MODEL AND DISPERSION
RELATION

A. Electromagnetic dispersion relation

In the present analysis we specialize to the case of sta-
tionary ions (m;~ ao ) and consider a single active com-
ponent of relativistic anisotropic electrons. Electromag-
netic stability properties are investigated for perturbations
propagating in the z direction parallel to a uniform ap-
plied magnetic field B0e,. Perturbations are about the
class of spatially uniform equilibria with distribution
function

f'(p)=nF(pi p. » (1)

where n =const is the ambient electron density,
p~ =(p„+p» )' is the particle momentum perpendicular
to the magnetic field B0e„and p, is the parallel momen-
tum. The linear dispersion relation for circularly polar-
ized electromagnetic wave perturbations propagating in
the z direction is given by

c k, co~ d3p (p~/2)
O=DT-(cg, k, ) = 1 — + ~

yco-
yco —k p /teal +co

k,p, a kpi a+
B

F(pi p. »
Bp& m Bp,

(2)

where k, is the axial wave number and co is the complex
oscillation frequency with Imago & 0, which corresponds to
instability (temporal growth). In Eq. (2) co~ =4mne /m is.

the nonrelativistic plasma frequency squared;
m, =eB0/mc is the nonrelativistic cyclotron frequency;
—e and m are the electron charge and rest mass, respec-
tively; c is the speed of light i n Uacuo;
y=(1+pq/m c +p, /m c )' is the relativistic mass
factor; the range of integration is f d 3p

=2m dpi' pz dp, .
; and the normalization of

0 00

F is f d p F(p ~,p, ) = 1. Moreover, the two signs in Eq.
(2) refer to electromagnetic waves with right-circular po-
larization ( — sign) and left-circular polarization ( +
sign), respectively. The dispersion relation (2) is readily
extended to the case of a multicomponent plasma by mak-
ing the replacements co~

. . ~g. co~~ ', F(pq, p, )

~F/(p~, p, ), co, ~co,~, etc. , where j labels the plasma
species.

The dispersion relation (2) can be used to investigate de-
tailed electromagnetic stability properties for a wide range
of anisotropic distribution functions F(pq, p, ). For rela-

F(pl p )= &(pl Pl)FI(p )—
27Tp y

(3)

where F&(p, ) is the parallel momentum distribution (yet
unspecified) with normalization f dp, F&(p, )=1. The
strongly peaked distribution in p~ in Eq. (3) can occur in
laboratory plasmas when there is intense microwave heat-
ing (e.g. , electron cyclotron resonance heating) of the elec-
trons perpendicular to B0e,.

The integration over p~ in Eq. (2) can be carried out in
closed analytical form for the choice of distribution func-
tion in Eq. (3). Making use of By/Bp, =p, /ym c and
By/Ops ——pz /ym c, some straightforward algebra shows
that Eq. (2) can be expressed as

I

tivistic anisotropic plasma, we note that the perpendicular
and parallel particle motions in Eq. (2) are inexorably cou-
pled through the relativistic mass factor
y=(1+p~/m c +p, /m c )'~ . For present purposes,
we assume that the electrons move on a surface with con-
stant perpendicular momentum pz ——pz ——const. That is,
F(pz,p, ) is assumed to have the form

2 2

0=Dr+-(cu, k, ) = 1—
CO

dpz y kzp, /m co
F)(p, )

y
'

y —k,p, /men+co, /co

pz (1—c k, /co )

2m c (y —k,p, /mes+co, /co)
(4)

In Eq. (4) y is defined by

1/2
pi pzy= &+ +mc mc

where pz has been replaced by pz ——const.

B. %'aterbag distribution in parallel
momentum

The dispersion relation (4) can be used to investigate de-
tailed electromagnetic stability properties for a wide range
of distribution functions F&(p, ). For purposes of eluci-
dating the essential features of the instability in relativis-
tic anisotropic plasma, we make a particular choice of
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Fi(p, ) for which the integrations over p, in Eq. (4) can be
carried out in closed analytical form. In particular, it is
assumed that the electrons are uniformly distributed in
para11e1 momentum between p, = —p, =const and

p, = +p, =const. That is, F, (p, ) is specified by2~

Substituting Eq. (7) into Eq. (9) and carrying out the re-
quired integrations over p j and p, give

Ti ———,
' ymc PiG(P, ),

(10)
T, = —,ymc [1—G(P, )+P,G(P, )],

Fl(p. )= „H(p ~ p*—)
2pz

(6) where G (P, ) is defined by

F( i p. )= @pi Pi) „—H(p.' p.'). —
277)9 g 2p

(7)

For future reference, we first calculate the energy aniso-
tropy associated with the distribution function in Eq. (7).

Equilibrium properties: For the choice of distribution
function in Eq. (7), it is useful to introduce the maximum
energy ymc, parallel speed cP„and perpendicular speed

cd defined by

where H(x) is the Heaviside step function defined by
H(x) =+ 1 for x & 0, and H(x) =0 for x &0. Note from
Eq. (6) that f dp, F, (p, )=1. Because the electrons are
uniformly distributed in parallel momentum for

~ p, ~
&p„we refer to the p, dependence of the distribu-

tion function in Eq. (6) as a waterbag distribution in p, .
Combining Eqs. (3) and (6), the total distribution function
F(pi,p, ) can be expressed as

G(P, ) = ln
2P,

From Eq. (11) and Fig. 1 we note that G(P, ) is a slowly
increasing function of P, with G(P, )=1+P,/3+
for P, «1. Moreover, in the limit of a nonrelativistic
plasma with P, « 1 and P f « 1, Eq. (10) reduces to the
expected results, T1 ~—,mc pi and T,~ —,mc p, . De-
pending on the relative values of Pi and P„ it is clear that
the choice of distribution function in Eq. (7) can cover a
wide range of energy anisotropy.

Dispersion relation: We now simplify the dispersion re-
lation (4) for the choice of waterbag distribution Fi(p, ) in
Eq. (6). In this regard, it is convenient to define

1/2
Px

&+ (12)

pz

mc
A 2

&+, , +px
m c

px

rmc
1/2

pz
m c

(8)

and rewrite the expression
+p, /m c )'~ in Eq. (5) as

2 1/2
pz&+„,

rpm c

for y=(1+pi/m c

(13)

(1 P2 P2) —1/2
In the dispersion relation (4) we change variables from p,
to a where

p, =(yimc)sinha . (14)
We further introduce the effective "temperatures" (aver-
age momentum fluxes) in the perpendicular and parallel
directions defined by

Tl= d p F pl~pz2rm
(9)

—, T.= f d'p F(p' p, ) .
2rm

From Eqs. (13) and (14) it follows that

r =rgcoshcx,

dpz =mcda .
r

(15)

Substituting Eqs. (6), (14), and (15) into the dispersion re-
lation (4) then gives

2 2c kz
O=DT—(co,k, ) = 1—

Q)

2
~p mc de
co 2p

[cosha —(k,c /co)sinha]

[cosha —(k,c /co )sinha+ co, /yico]

(1—c k, /co )

2y im c [cosha —(k,c/co)sinha+co, /y1co]
(16)

where yi =(1+$1/m c )'~ is defined in Eq. (12). The limits of integration (+a) in Eq. (16) are determined from
P, = (yimc)sinha. Because y =yicosha, where y is defined in Eq. (8), the equation determining a can also be expressed
as

pz

mc
=tanhu . (17)

Solving Eq. (17) for a in terms of P, gives
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1+P,
1 —P,

(18)

The integration over a in Eq. (16) can be carried out in closed analytical form (see the Appendix). Substituting Eqs.
(A4), (A6), and (A7) into Eq. (16) gives the desired dispersion relation

2 2
+ c k,

O=DT-(co, k, ) = 1—
CO

G (P,)+, G (g+-)
co(1 —P, )+co, /y

pt (c k, —co ) co(co+co, /y ) —c k,

(co, /y) +(1—p, )(c k, —co ) (co+co, /y) c—k, p,

co, /y
G (g-+)

co(1 —P, )+co, /y

where g
+—is defined by

P, [(co,ly) +(1 P, )(c k—, co )]'i-
co(1 —P, )+co, /y

and G (g) is defined by

G(g)= ln
1 1+(

(20)

(21)

with average axial velocity Vd =const&0, the correspond-
ing dispersion relation for a displaced waterbag distribu-
tion is readily derived from Eq. (19) by making the ap-
propriate Lorentz transformation of m and k, . In particu-
lar, we view Eq. (19) as the dispersion equation relating co

and k, in a frame of reference moving with axial velocity
Vd relative to the laboratory. Then the corresponding
dispersion equation relating co' and k,' in the laboratory
frame is obtained by making the transformation

In Eq. (19) the various quantities are defined by
Pt ——Pt /ymc [Eq. (8)], P, =p, /y mc [Eq. (8)],
y=(1+Pi/m c +P, /m c )' [Eq. (8)], and G(/3, ) is
defined in Eq. (11). The fully relativistic dispersion rela-
tion (19) can be used to investigate detailed properties of
the electron whistler and cyclotron maser instabilities for
a wide range of effective energy anisotropy pt/2p„nor-
malized density co& /co„electron energy @me, etc.

Because Fi(p, ) is an even function of p, in Eqs. (6) and

(7), it follows that the average flow velocity in the z direc-
tion is Vd= d p p, ym F pz, p, =0. For electrons

5.0

4.0—

co =yd(co' —k' Vd ),
k, =yd(k, ' —co'Vd/c ),

(22)

in Eqs. (19) and (20). Here, yd is defined by

yd ——(1—Vd/c ) ', and co —c k, ~(co') —c (k,');
co+co, /y~yd(co' —k,'Vd+co, /yyd); etc.

For completeness, it is useful to simplify Eq. (19) in
various limiting regimes.

O=DT (co,k, )

C. Limiting forms of dispersion relation

We consider the full dispersion relation (19) in two lim-
iting cases: (a) zero parallel temperature (P, =0), and (b)
zero magnetic field ( Bo ——0).

Zero parallel temperature: For p, =0, the case of max-
imum energy anisotropy, we obtain G(p, )~1 [Eq. (11)],
y~yt [Eq. (8)], and G(g +—)~1 [Eq. (21)]. For P, ~O,
the dispersion relation (19) reduces to'

3.0—
G(P )

2.0—

I. O

cop /yi
co(co+co~ /yt )

Pi (c k, —co )
1+

co(co+co, /yi )
(23)

0
0 O. 2 0.4 0.6

l

0.8 I.O

FICs 1. Plot of G.(p, } vs p, [Eq. (11)].

Zero magnetic field: In the case where Bo——0 and the
perpendicular and parallel motions are allowed to be rela-
tivistic, we set co, =0 in Eq. (19), which gives the disper-
sion relation
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0=Dr (co—,k, )

k=1-
Ql

cotr/y ~ Pi co —c kz
G(P, )—

2(1 —P, ) co —c k, P,
(24)

Equation (24) gives the familiar Weibel instability ' in
the field-free case. Of course, for co, =0 and P, =0, Eqs.
(23) and (24) are identical.

III. ELECTROMAGNETIC STABILITY
PROPF RTIES

In this section we investigate the detailed stability prop-
erties predicted by the electromagnetic dispersion relation
(19) for a wide range of effective energy anisotropy
P j /2P„normalized density co&/co„and electron energy
ymc . As a reference case, we first consider the case of
extreme energy anisotropy where P, =O. That is, the
thermal speed in the z direction is effectively zero.

A. Extreme energy anisotropy (P, =0)

For P, =O, the full dispersion relation (19) reduces to
Eq. (23), which can be expressed in the equivalent form'

2 2/Q
(co —ck ) 1+

(co —co, /y~)'

2
CO COp

(25)

In Eq. (25), without loss of generality, we have restricted
attention to the branch with right-circular polarization
[lower si~n in Eq. (23)].

For P~=O (cold-plasma limit) Eq. (25) supports only
stable oscillations (Imco=O) corresponding to a fast-wave
branch, and a slow-wave branch which we refer to as the
"whistler" mode or the "cyclotron" mode in the present
analysis.

For P i ~0, however, and moderate electron density,

both the fast-wave branch and the whistler mode exhibit
instability in Eq. (25). In particular, it is found (Fig. 2)
that the fast-wave branch becomes unstable at long axial
wavelengths (sufficiently small values of c k, /co& ),
whereas the whistler mode becomes unstable at short axial
wavelengths (sufficiently large values of c2k, /co&). The
unstable fast-wave mode is referred to as the cyclotron
maser instability, whereas the unstable whistler mode is
referred to as the whistler instability Ty. pical numerical
results obtained from Eq. (25) are illustrated in Fig. 2
where Reco/co~ and Imco/co& are plotted versus ck, /co~
for co~/co, =0.25 and Pi ——0.5. For specified values of
co~/co, and f3&, a striking feature of Fig. 2 is that the real
frequency Reco remains approximately constant over the
range of unstable wave numbers ( k, ) for both the whistler
and cyclotron maser instabilities. Moreover, for P, =0, it
is evident from Fig. 2 that maximum growth rate of the
whistler instability occurs for c k, /co~ && 1. Taking
c k, ~ ap in the dispersion relation readily gives

' 1/2

p 2

2Xl
(26)

(Reco),„=co,/y~,
for the whistler instability at maximum growth. In units
of co~, it follows from Eq. (26) and yz ——(1—P j )

' that
the maximum whistler growth rate assumes its absolute
maximum value of 0.439co~ for Pz ———,

' (Fig. 3). In con-
trast, for P, =0 and k~ =0, maximum growth of the cy-
clotron maser instability occurs for k, =0 (Fig. 2). More-
over, the bandwidth of the cyclotron maser instability is
restricted to the wave-number range c k, /co~ (O(1) for
the choice of parameters in Fig. 2.

For P f&0, and sufficiently large values of co~/co„ it is
found from Eq. (25) that the cyclotron maser instability is
completely stabilized, whereas the whistler mode remains
unstable. The density threshold for stabilization of the
cyclotron maser instability can be calculated exactly in
terms of /3z from Eq. (25). We take k, =O in Eq. (25),

0.5

5.0 l. o
0.4

4.0—

3.0—
Re~ CYC

QJp Mp

2. 0—

0.8

0.6
I fTlCU

4)p
0.4

( Imm} M/X
0.3

0.2

l. O

0
0

%~Electron
Whist ler

( 1 I 0
l .0 2.0 5.0 4.0 5.0

c k, /~,

0
0 O. 2 0.4 0.6 0.8 I.O

FIG. 2. Plots vs ek, /m~ of Redo/co~ and Imago/co~ for the cy-
clotron maser and whistler instabilities obtained from Eq. (25)
for P, =0, co~/co, =0.25, and Pi2 ——0.5.

FIG. 3. Plot of normalized maximum growth rate
(Imco), „/co~ vs P& for the electron whistler branch obtained
from Eq. (26) for P, =O and k, = ao. The absolute maximum
growth rate is 0.439co~, which occurs for P z

———, .
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which corresponds to maximum growth rate of' the cyclo-
1tron maser instability when P, =0 and k~ =0. This gives

0= (~—~, /yi ) + (~—co, /y~ )

Vl

2 A 2
~p /3 i. ~c ~p Pi—1 (co —co, /yi)+
Xl - - 3 l Xl

(27)

+(64/3~+48P~+12)Oi+1)'~ ] .

(28)

That is, whenever cop/ct)p exceeds the critical value in Eq.
(28), the cyclotron maser instability is completely stabi-
lized. This is illustrated in Fig. 4, which shows the re-
gions of (P~, co&/co, ) parameter space corresponding to2 2 2

stability and instability.

B. Arbitrary energy anisotropy

Electromagnetic stability properties were examined in
Sec. HIA for the case of extreme energy anisotropy
(/3, =0). In this section we make use of the electromag-
netic dispersion relation (19) to investigate detailed stabili-
ty properties for finite values of the anisotropy factor
/3i /2P, . In particular, Eq. (19) is solved numerically for
the real oscillation frequency Rem and growth rate Imm
for both the cyclotron maser and whistler branches over a

5 0 '
I

f
I

]
i

f

4.0

2 3.0
P

40 2
c 20

I.O

0
0 0.2 0.4 0.6 0.8 l. p

FICx. 4. Regions of (p&, co~/co, ) parameter space correspond-
ing to stability (Imago=0) and instability (Imago&0) for the cy-
clotron maser mode [Eqs. (27) and (28)). For p, =0 and speci-
fied pi&0, the cyclotron maser instability is absent for suffi-
ciently large values of su~/cu, .

Equation (27) determines the real frequency Reco and
growth rate Im~ of the cyclotron maser instability at
maximum growth. Some straightforward algebra shows
that the necessary and sufficient condition for stability
(Imp=0) is given by

2 2
COp Q)p

2 ~
CO~ CO~

(1 P2)1/2
[2Pi+10/3i —1

(2 —/3i)'

wide range of system parameters co~/co, and P i /2P, .2 2 2 2

Typical results are illustrated in Fig. 5 for the choice of
system parameters co&/co, =0.25 and /3i =0.5. In Fig.
5(a) the normalized real oscillation frequency Redo/co& is

plotted versus ck, /co~ for the case /3z/2P, =11. The
dashed portions of the dispersion curves in Fig. 5(a) corre-
spond to the unstable range of wave numbers for the cy-
clotron maser and whistler instabilities. Further detail is
presented in Figs. 5(b)—5(e). In particular, shown in Figs.
5(b) and 5(c) for the electron whistler branch are plots of
Reco/co& [Fig. 5(b)] and Imago/co& [Fig. 5(c)] versus ck, /co&

obtained from Eq. (19) for anisotropy factors ranging
from /3 i /2/3, = oo to /3 i /2/3, = 1. We note from Fig. 5(c)
that the maximum growth rate and the range of unstable
k, values decrease with decreasing values of /3i/2/3, .
Moreover, there is a corresponding decrease in Reco/co~ as

/3 i /2P, is reduced [Fig. 5(b)]. For P i =0.5 and

~i, /co, =0.25, it is found from Eq. (19) that the whistler
instability is completely stabilized when the anisotropy
factor is reduced to Pi/2/3, =0.506. Finally, shown in
Figs. 5(d) and 5(e) for the cyclotron maser branch are
plots of Reco/cop [Fig. 5(d)] and Im~/co~ [Fig. 5(e)] versus
ck, /co& obtained from Eq. (19) for anisotropy factors
ranging from /3i/2/3, = oo to Pi/2/3, =0.51. We note
from Fig. 5(d) that Reco/co~ decreases as the anisotropy
factor /3 z/2p, is reduced. Moreover, the normalized
growth rate Im~/co~ decreases as /3 i /2/3, is reduced [Fig.
5(e)]. Indeed, for P~=0.5 and cia~/co, =0.25, it is found
from Eq. (19) that complete stabilization of the cyclotron
maser instability requires reduction of the anisotropy fac-
tor to /3~/2/3, =0.50, corresponding to y~ao. For gen-
eral values of /3i /2/3„we also note from Fig. 5(e) that
maximum growth of the cyclotron maser instability
occurs for k, =O when ki =0. (Compare with Fig. 2 for
the special case where P, =0.)

Similar stability plots obtained from Eq. (19) are
presented in Fig. 6 for the case where pi =0.5 and the
value of cop/co, is increased to cop/co, =5. For this choice
of system parameters, cop/cop is sufficiently large that the
cyclotron maser instability is absent (Imps=0) for all

2 2values of the anisotropy factor /3i /2/3, . For the electron
whistler branch, Redo/cop and Imago/cop are plotted versus
ck, /cuz in Figs. 6(a) and 6(b), respectively, for values of

A 2the anisotropy factor ranging from /3 i /2p, = oo to
/3i/2/3, =0.69. The qualitative features of the stability
behavior in Fig. 6 are similar to Figs. 5(b) and 5(c), i.e.,
the real oscillation frequency, the growth rate, and the in-
stability bandwidth (in k, space) all decrease as the aniso-
tropy factor /3i/2/3, is reduced. Moreover, we note that
the normalized growth rates Imco/co& in Fig. 6(b) (ob-
tained for cuz/co, =5) are comparable in magnitude to
those in Fig. 5(c) (obtained for co~/co, =0.25). On the
other hand, comparing Figs. 5(b) and 6(a), the real oscilla-
tion frequency (measured in units of co&) is reduced sub-
stantially as cop/co, is increased. For the choice of system
parameters in Fig. 6, it is found from Eq. (19) that the
whistler instability is completely stabilized when the an-
isotropy factor is reduced to P i /2P, =0.51.

For the cyclotron maser branch, Fig. 7 illustrates the
scaling of stability properties with cop/ct)p In particular,
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FICx. 5. Electromagnetic stability properties calculated from Eq. (19) for p~=0. 5 and co~/co, =0.25. Plots of (a) Reco/co~ vs

ck, /co~ for p~/2p, = 11. Plots of (b) Redo/co~, and (c) Imago/co~ vs ck, /co~ for the whistler branch for several values of p, /2p, . Plots
of (d) Reco/co~, and (e) Imco/co~ vs ck, /co~ for the cyclotron maser branch for several values of p~/2p, .

shown in Fig. 7 are plots of Reco/co& [Fig. 7(a)] and
Imco/co~ [Fig. 7(b)] versus ck, /co~ obtained from Eq. (19)
for P ~ =0.5, P t/2P, = l. 56 (which corresponds to

P, =0.160 when Pt =0.5), and values of normalized den-
sity ranging from co~/co, =0.25 to co~/co, =1. It is evi-
dent from Fig. 7 that the real oscillation frequency,
growth rate, and bandwidth (in k, space) all decrease as
co~/co, is increased. Indeedfor ,the choice of system pa-
rameters in Fig. 7, the cyclotron maser instability is com-
pletely stabilized when the normalized density is increased
to co&/co, =2.3.

Similarly, Fig. 8 shows the scaling of stability proper-
ties with co~/co, calculated from Eq. (19) for the whistler
branch. In particular, Redo/co& and Imago/co& are plotted
versus ck, /co~ in Figs. 8(a) and 8(b), respectively, for the
choice of system parameters p z

——0.5, p z /2p, = 11
(which corresponds to p, =0.0227 when pt ——0.5), and
values of normalized density ranging from ~p/co, =0.25
to m /~, =25. We note that R~/~ decreases as m /co,
is increased [Fig. 8(a)], and there is a concomitant down-
shift in k, of the growth rate curves [Fig. 8(b)]. Indeed,
in the limit of zero magnetic field (co&/co, ~oo), the
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whistler instability in Fig. 8 evolves continuously into the
classical Weibel instability with R =0, dego= , and nonzero
growth rate (Imco&0) over a finite bandwidth

'
k

The d
i in, space.

e tspersion relation (19) can also be used to deter-
mine the stability boundaries separating the regions of pa-
rameter space corresponding to stability (Imps =0) and in-

pq, z/ro, ) parameter space corresponding to stability
an instability for the cyclotron maser mode. The stab l

ty boundaries in Fig. 9 are calculated from Eq. (19) for
several values of p, . For specified p„ the region above
the curve in Fig. 9 corresponds to stability. As in the case
p, =0 (Fig. 4), for specified value of pt, it is evident from

ig. 9 that there exists a critical value of co / bo co& m, aove
w ic t e cyclotron maser instability is completely stabi-
ized. Note also from Fig. 9 that the unstable region

o pt, re~/ro, ) parameter space continues to decrease in

area as p, ts mcreased and the anisotropy factor pj/2p
is reduced.

z
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enough in this region to give instability. As co&/co, is de-
creased from co&/co, = ao (corresponding to Bp ——0), it is
evident from Fig. 10 that smaller values of the anisotropy
factor Pi/2P, are required to stabilize the whistler insta-
bility.

IV. DISPERSION RELATION FOR THERMAL
EQUILIBRIUM DISTRIBUTION IN PARALLEL

MOMENTUM

For completeness, in this section we simplify the disper-
sion relation (4) for the case where the parallel-momentum

distribution Fi(p, ) corresponds to the thermal equilibri-
um distribution

exp( ym—c /T, )
Fi(p, ) =

2yimcKi(yimc /T, )
(29)

Here, T, =const is the parallel temperature, y=(1+p i/
m c +p, /m c )'~ is defined in Eq. (5), yi=(1
+pi/m c )'~ is defined in Eq. (12), and K„(x) is the
modified Bessel function of the second kind of order n.
Substituting Eq. (29} into Eq. (4) gives the dispersion rela-
tion

2 2
+ ckz

O=Dz .(k„co)-= 1—
CO

(co~ /co')

2yimcKi(yimc /T, )

dpz @co—k,p, /m
X exp( ymc /T,—)

00 ym —k,p, /m +co,
Px (co —c k, )

2m c (yco —k,p, /m+co, )
(30)

where Imco & 0 is assumed. We express Eq. (30) in an alternate form by making use of the identities (valid for Imco & 0)

f 00 1d7exp[.i (yco —k,p, /m +co, )r]=
0 /co —k p /pl +co

00 1dr exp[i (yco k,p, /m+—co, )r]=—
0 (yco k,p, /m—+co, )

(31)

0=Dr—(k„co)= 1—

We further introduce the transformation p, =(yimc)sinha and y =yicosha defined in Eqs. (14) and (15). Equation (30)
can then be expressed in the equivalent form

c2 i (co&/co )
+

2ylmcKi(yimc /T, )

X dr exp[+i(co, /yi)r] da exp[ (yimc /—T, —icor)cosha —ick, rsinha]
0 00

cosha—
ck, c2

sinha+ icos 1—
CO CO 2P gm C

(32)

where use has been made of Eqs. (14), (15), and (31). The integration over a in Eq. (32) can be carried out exactly by
making use of the integral transform

2 2 1/2Kp((a +b ) ) = da exp( ib sinha ——a cosha)
7T 2' (33)

We introduce the variable g defined by

2
yzmc —l cor +C k~ T (34)

Then, from Eqs. (33) and (34), the dispersion relation (32) can be expressed as

k
0=Dr—(k„co)= 1—

CO

co~/yi Kp(yimc /T, )

2 +
Ki(yimc /T, )

f d&K (g}epp[+xi (co, /yi)r]
Ki(yzmc /T, )

—l7(co —c kz )
2 2

2p gpss c
(35)
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FIG. 9. Regions of (P „co~/co,') parameter space correspond-
ing to stability (Imago=0) and instability (Imago &0) for the cy-
clotron maser mode. The stability boundaries are calculated
from Eq. {19)for several values of P, (see also Fig. 4).

FICr. 10. Regions of (2P„P&) parameter space corresponding
to stability (Imps=0) and instability (Imu& 0) for the whistler
mode. The stability boundaries are calculated from Eq. (19) for
several values of cup /cc)c.

for Imago&0. Although the r integration in Eq. (35) can-
not be carried out in closed form, this form of the disper-
sion relation is particularly useful for numerical solutions
and for analytical approximations in various limiting re-
gimes. A detailed analysis of Eq. (35) will be the subject
of a future investigation.

As a simple limiting case, we consider Eq. (35) for
Bo ——0, which corresponds to the Weibel instability in an
unmagnetized plasma. Some straightforward algebra that
makes use of Eqs. (3) and (29) shows that T, can be

identified with the parallel temperature f d p(p, /
ym)F(pt, p, ), and that the effective perpendicular tem-
perature T~ = f d p(p~/2ym)F(pt, p, ) is given by

2

Kp(yxmc /T, )

K)(ytmc /T, )
(38)

where Tt is defined in Eq. (36). Moreover, when Eq. (38)
is satisfied, it is found that Redo=0 (for the slow-wave
branch) over the range of unstable wave numbers specified
by

sion relation (37) generally incorporates the effects of col-
lisionless dissipation (Landau damping) by the p, distribu-
tion in Eq. (29). For the slow-wave branch, it can be
shown from Eq. (37} that the necessary and sufficient con-
dition for instability is given by

P~ Kp(y~mc /T, )
TJ =

~ PJmc
y~mc K&(y~mc /T, )

(36) to Tt K, (@~me /T, )0(k (kp=
y~c Tz Kp(ygmc /T, )

Setting ~, =0 in Eq. (35) and making use of Eq. (36) gives
the dispersion relation for an unmagnetized plasma, i.e.,

O=DT(k„co)

c k=1—
67

(co~/yt) Kp(ytmc /T, )

K, (yjmc /T, )

Kp(ytmc /T, )

K&(yimc /T, )
(39}

lim c k, f dr7Kp(g)
Imco~p+ . Redo =0

Note from Eq. (39) that the marginal stability point kp
(where 1m' =0=Redo) can be calculated in closed analyti-
cal form. This follows from the identity

Ti (co —c k, )
d~ wKO

ytmc Kp(y~mc /T, )

yJ mc

T. K, (ytmc /T, ) . (40)

(37)

The r integral in Eq. (37) must generally be evaluated nu-
merically, or in the context of asymptotic expansions for
large or small values of

~ g ~

. Unlike Eq. (19), the disper-

Finally, shown in Fig. 11 is a plot of the stability boun-
dary in the parameter space (T, /y~mc, T~/@~me ) cal-
culated numerically from Eq. (38). The region above the
curve in Fig. 11 corresponds to instability, which requires
sufficiently large thermal anisotropy T& /T, .
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tion in Eq. (7) readily permit the calculation of detailed
stability properties over a wide range of system parame-
ters, the corresponding dispersion relation (19) can be used
to determine universal stability boundaries for the cyclo-
tron maser and whistler instabilities. For example, Figs. 4
and 9 show the stability boundaries for the cyclotron
maser instability in (P t, co~ /co, ) parameter space for2 2 2

several values of /3, Si.milarly, the stability boundaries
A. 2for the whistler instability in (2P„/3t) parameter space

are illustrated in Fig. 10 for several values of co&/co, . Fi-
nally, the electromagnetic dispersion relation (35) was de-
rived for the case where the parallel momentum distribu-
tion Fi(p, ) corresponds to the thermal equilibrium distri-
bution in Eq. (29) (Sec. IV).

Tz

Itl C

FICs. 11. Regions of (T, /y&mc', T, /ymc') parameter space
corresponding to stability (Imp=0) and instability (Imago&O)
for the slow-wave (Weibel) mode. The stability boundary is cal-
culated from Eqs. (37) and (38) (Bo——0).
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APPENDIX: EVALUATION
OF AXIAL MOMENTUM INTEGRALS

V. CONCLUSIONS

For the case of parallel propagation, detailed properties
of the cyclotron maser and whistler instabilities in a rela-
tivistic magnetized plasma have been investigated for the
particular choice of F(pt,p, ) in Eq. (7), which permits an
exact analytical reduction of the dispersion relation (2) for
arbitrary energy anisotropy (Sec. II). The resulting disper-
sion relation in Eq. (19) was solved numerically, and de-
tailed properties of the cyclotron maser and whistler insta-
bilities were determined over a wide range of effective en-

ergy anisotropy Pi/2P, and normalized density co~/co,
(Sec. III). Not only does the choice of waterbag distribu-

We evaluate here the integrals over a required to sim-
plify the dispersion relation (16). In this regard, it is use-
ful to introduce the definite integrals defined by

de

—~ (a +b cosha+d sinha)

(b cosha+d sinha)
(a +b cosha+d sinha)

CE dQ'I3=
~ 2—~ (a +b cosha+d sinha)

(Al)

(A2)

(A3)

where sinhe =p, /yzmc, a =+su, /yzcu, b = 1, and
d = —ck, /co. Some straightforward algebra shows that

a
1

1
(a —b)tanh(a/2) —d +(a +d b)'/—

(a +d b)' —(a —b)tanh(a/2) —d (a +d b)—'/—
p 2) i/2 co(1 —P, )+co, /y+/3, [(co, /y) +(1—/3, )(c k, —co )]'

ln
[(co,/y) +(1—P, )(c k, —co )]' co(1 —/3, )+co, /y —P, [(cu, /y) +(1—/3, )(c k, —co )]'

(A4)

Moreover, from Eqs. (Al) and (A2), I2 can be expressed
in terms of I

& by
(1—/3,')

I3 ———
2P,

CO

[co, /y +(1—P, )(c k, —co )]
I2 ——2a —aIi . (A5)

Making use of sinha=p, /f tmc =(y/yt)P, =(cosha)P,
gives 2a=ln[(1+P, )/(1 —P, )]. For a =+co, /ytco, Eq.
(A5) then becomes

co(co+co, /y) —c k,

(co+co, /y) —c k, /3,

I2 ——ln
1+P, co, /y I),
1 —P, co(1 —P, )'

(A6) co(co, /y )(1—/3, )
'/

co, /y +(1—P, )(c k, —co2)
(A7)

where Ii is defined in Eq. (A4). Finally, making use of
Eq. (A3), it can be shown that I3 can be expressed as where I, is defined in Eq. (A4), and y is defined by



2630 PETER H. YOON AND RONALD C. DAVIDSON

j=(1+p t/m c +p, /m c )'
Substituting the expressions for Ij, I2, and I3 in Eqs.

(A4), (A6), and (A7) into Eq. (16) gives the desired disper-

sion relation in Eq. (19). From the expression for G (g) in
Eq. (21), we note that the following expansions for G (g )

pertain:

f 2 2ll1+' + +. + +
3 5 (2n +1)

g2 3g4 5g6 (2 + 1 g2n+ 2

(A8)

in the regions
~

g'
~

& 1 and
~

g'
~
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