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We describe a simple order-parameter theory for the interfacial tension of body-centered-cubic
solids. The principal order parameter is the amplitude of the density wave at the smallest nonzero
reciprocal-lattice vector of the solid, but the density difference between solid and liquid is included
to second order. The parameters entering the theory are fitted to the measured heat of fusion, melt-
ing temperature, and solid-liquid density difference, and to the liquid structure factor and its tem-
perature derivative at freezing as calculated by a variational technique. Agreement with experiment
is good for Na and Fe, and the calculated anisotropy of the surface tension among different crystal
faces is of order 2%, in agreement with earlier calculations of Oxtoby and Haymet. With certain
additional assumptions about universal behavior of bcc crystals at melting, the formalism predicts
that the surface tension is proportional to the heat of fusion per surface atom, in agreement with the
empirically derived relation of Turnbull [J. Appl. Phys. 24, 1022 (1950)].

I. INTRODUCTION

The interfacial free energy 7 between a solid and its
coexisting liquid is a very important parameter in metal-
lurgy.! For example, it plays a central role in the nu-
cleation theory, determining the minimum size of a crys-
tallite forming from the melt. It also enters into many
models of crystal growth.? The dependence of = upon
crystal face—that is, its anisotropy—is of equal relevance
in models of crystal growth.

Until recently, relatively few attempts had been made to
calculate 7 from a microscopic starting point—probably
because of the obvious difference in symmetry between
solid and liquid of the same element. This symmetry
difference causes the solid-liquid transition to be first or-
der. As a result, most theories of solid and liquid free en-
ergies have started from very different points of view and
calculations of the melting curves have typically been car-
ried out by comparing these differently calculated free en-
ergies curves and noting their crossing point in the
pressure-temperature plane.>

A major advance in the theory of freezing of simple
solids occurred with the work of Ramakrishnan and
Youssouff (RY).* These authors developed a theory of
freezing based on a unified treatment of both solid and
liquid, the density-functional (DF) formalism.> Accord-
ing to this approach, a solid is treated as an inhomogene-
ous liquid with spatially varying singlet number density
n(x). The Helmholtz free energy is then a functional of
n(x). At any given pressure and temperature, the system
goes into the state (solid, liquid, or vapor) which mini-
mizes this functional. RY proposed a simple approxima-
tion for their density functional, and showed that their
form does indeed give a reasonable value for the melting
temperature of simple elements such as Na.

Recent workers have proposed more elaborate forms for
the density functional, and have shown that the DF
theory can indeed give quite reasonable predictions for the
equilibrium phase diagrams, and in particular, the liquid-
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solid phase boundaries, several elements. Haymet and Ox-
toby® have obtained good results with the inclusion a fair-
ly small number of Fourier components in the density ex-
pansion. Baus and co-workers’ have shown that excellent
results can be obtained for the hard-sphere fluid, and for
mixtures of hard spheres of different diameters, by using
a theory in which the higher Fourier components are in-
cluded by a Debye-Waller-like approximation. More re-
cently, Curtin and Ashcroft® have obtained the entire
equilibrium phase diagram of a Lennard-Jones fluid using
a version of the theory proposed by Tarazona.® Sachdev
and Nelson!® have used the DF theory, in its Debye-
Waller form, to treat the relative stability of quasicrystal-
line phases and of models for the structure of metallic
glasses.

Thus the DF theory seems indeed to be suitable for
studying transitions from the liquid to the solid state in
simple, and perhaps even rather complex, systems. To
date, however, it appears that only Oxtoby and Haymet!'
and Klubsch!? used a DF formalism to study the liquid-
solid interface. Oxtoby and Haymet have included a rela-
tively small number of Fourier components in this for-
malism to calculate 7 as a function of orientation for
several bcc metals. Klubsch!? has developed a DF theory
based on the Percus-Yevick equation for an inhomogene-
ous fluid, and formally solved it in the case of a crystal-
liquid interface of a Lennard-Jones fluid.

The present work is an investigation of a particularly
simple DF theory for the interfacial tension between sim-
ple solids and their coexisting liquids. Our approach is, in
fact, only a slight generalization of the simplest of all
such theories, the Ginzburg-Landau formalism. Al-
though oversimplified, the present approach has the ad-
vantage that the parameters entering the theory can all be
deduced in a simple fashion from bulk properties, which
may then be used to predict surface properties. The
theory can also be used to compare states of different
symmetry, and behavior along different crystalline inter-
faces. While quantitative reliability is not to be expected,
the qualitative predictions may be useful guides in condi-
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tions where experiments are difficult to carry out, as well
as in developing more elaborate theories. Our results are
similar, where comparable, to those of Oxtoby and Hay-
met (except for our surface widths, which are narrower
than theirs).

We turn now to the body of the paper. Section II de-
scribes our density functional for the liquid-solid inter-
face. Section III describes its application to several inter-
faces between liquid and bcc solid, and Sec. IV presents a
brief discussion.

II. FORMALISM

According to the density-functional formalism,*~'° the
Helmbholtz free energy F of an inhomogeneous system can
be expressed as a functional of the singlet atomic number
density n (x) by the relation

F=F[n(x)]. 2.1)

Here F may also depend on other thermodynamic vari-
ables, such as the absolute temperature T, which for com-
pactness we have not explicitly indicated.

We consider first how Eq. (2.1) may be applied to a
bulk crystalline solid. In this case, n (x) can always be ex-
pressed in the form

n(x)=ng [14+ > ugexpliK-x) | , (2.2)
K

where n, is some constant density, and K is a reciprocal-
lattice vector of the solid. The sum may be assumed to
run over all K, including K=0. The free energy F is
then a function of the variables ug. It is sometimes use-
ful to express this function as a power series in the coeffi-
cients ug.

F({u](})
V

F
:—0+—;—n0kBT EGKUKH_K
14 K

+ > ag Kk, KURUK UK+ |
K

(2.3)

where V is the volume of the system. In the third-order
term, only those reciprocal-lattice vectors enter which
satisfy the condition K+K’'+K'" =0, and, in general,
for the nth-order term, the condition is that
K+K' +K"+ -+ +K™=0." (This well-known condi-
tion is a result of the symmetry requirement that the total
free energy of the system be invariant under a uniform
translation. We have automatically used this condition in
omitting terms linear in the coefficients ug.'*) Fyis the
free energy of a uniform liquid of density ny. Hence-
forth, we take n, to be the density at which the liquid is
at zero pressure.

We treat the uniform solid by a simple, truncated ver-
sion of the expansion (2.3). Namely, we assume that one
set of nonzero reciprocal-lattice vectors of equal length,
denoted {K}, is dominant in the solid phase, and that the
coefficients of other reciprocal-lattice vectors can be ade-

quately included to lower order in their amplitudes ug
than the dominant coefficients. In general, the dominant
set of reciprocal-lattice vectors is the smallest nonzero set,
for example, the 12 [110] reciprocal-lattice vectors in a
bece crystal.

We now focus specifically on bee crystals. In this case,
the coefficients uk of all the [110] reciprocal-lattice vec-
tors must be of equal magnitude in the bulk solid, in order
for the resulting solid to have the proper cubic point-
group symmetry. We denote this coefficient u;y, and as-
sume initially that this is the only nonvanishing coeffi-
cient. The free energy expansion (2.3) can then be con-
cisely written

F 0 nok B T

F
‘%)‘— % + 2 (ayulo—azuio+asutio+ ),

(2.4)

where we assume the amplitudes u,;o to be real. The
coefficient a3 is nonzero because there exist triangles of
[110] reciprocal-lattice vectors which add up to zero.!?
This is not the case in fcc crystals, and the cubic term
would be absent in this simple approximation, seemingly
leading to a second-order freezing transition in the fcc
crystal. This unphysical feature means only that the
single-set approximation is too crude to treat freezing of
fee crystals.

We can readily include other coefficients in (2.4) as fol-
lows. Suppose there is a reciprocal-lattice vector, say K;,
such that K;+K;+K,=0, where K, and K, are both
members of the dominant [110] set, while K; is not.
Then for any such vector, we add to (2.4) a term of the
form

AF,~/V:[c,-ui(ullo)2+d,-ui2]—T— ) (2.5)

The second term in (2.5) (quadratic in the u;’s) will always
be present, since for any K; there always exists another
reciprocal-lattice vector —K; with the same amplitude
ug,. One of the K;’s that may be included as in (2.5) is

K, =0, corresponding to a nonzero density difference be-
tween solid and liquid. Since the coefficients u; are as-
su}med smaller than u;;9, we do not include terms of order
U;.
The total free energy of the uniform solid phase, in this
approximation, is

F=F o+ 3 AF; . (2.6)

F may be minimized with respect to the u;’s at fixed u ;9
with the result

uy=—(c;/2d; )y . 2.7

Substitution of this form back into F yields a one-
parameter expansion of F in terms of u;y, including
second-, third-, and fourth-order coefficients; the quartic
coefficient is, however, renormalized relative to that in
(2.3):

F Fo  nokpT

% % ) (2.4a)

2 3 _—
(ayuio—aszuip+asuipn)
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a,=a,— 2 Ci . (2.4b) correlation functions of the uniform liquid, and cannot be
i 4d; determined easily from fundamental theory. We choose

Thus the fourth-order Ginzburg-Landau expansion in one
order parameter automatically includes several additional
order parameters to a lower power. One of these addition-
al order parameters is the density difference between solid
and liquid. A similar treatment has been recently used by
Mermin and Troian in their discussion of the stability of
quasicrystalline phases. '*

The treatment so far is confined to a uniform solid
phase. In order to extend this approach to nonuniform
solids, one must include terms in the free energy which in-
volve gradients of the ug’s. If the coefficients ug are
slowly varying in space, it will usually be sufficient to in-
clude only terms involving first spatial derivatives of the
ug’s. These additional terms take the form

nokgT Jug (x) dug(x)

3 =
2 ¥ Ixbxa ax, dxg
K,aB

where the sum is over all reciprocal-lattice vectors, and
over all Cartesian components x, and xg of the position
variable x. The coefficients bg ,p satisfy various condi-
tions imposed by the point group symmetry of the system
under consideration.

In principle, a density-functional expansion of this kind
can be used to calculate the free energy of any inhomo-
geneous system, provided the Fourier amplitudes ug(x)
are sufficiently slowly varying in space. For the liquid-
solid interface, one minimizes the free energy of an inho-
mogeneous system, subject to the boundary conditions
that the system should approach a pure liquid at suffi-
ciently large distances on one side of the interface, and a
pure solid on the other. The surface tension is extracted
as the difference between the free energies of the inhomo-
geneous system and the suitably volume-averaged free en-
ergies of the corresponding uniform system.

To carry out this program, one needs the various coeffi-
cients entering the free energy expansion. The coefficients
ag [Eq. (2.3)] and bg ., [Eq. (2.8)] are related to the
two-body correlation functions of the uniform liquid.

AF, = (2.8)

The relations are*—¢
ag=1/S(|K|) (2.9)
and
K _K
bx ap=—+C"(|K| )41"(—25 , (2.10)

N

where S (K) is the liquid structure factor, and C(K) is the
direct correlation function of the liquid, related to S(K)
by

S(K)=1/[1-C(K)] . (2.11)

C"(K) denotes the second derivative d’C(K)/dK?. As
has been noted by other workers,*% 13 relation (2.9) shows
that agx is smallest for solid reciprocal-lattice vectors
which lie closest to the maximum in the liquid structure
factor. Thus the energy barrier to formation of a solid
with many such reciprocal-lattice vectors near this max-
imum tends to be relatively small.

The remaining coefficients are related to higher-order

to obtain them by fitting to appropriate empirical quanti-
ties, as described below.

To be explicit, we now specialize to a bcc crystal in the
single-set approximation mentioned earlier. The free en-
ergy of the uniform solid can be written

(F,—F))/V =(nokgT /2 au*—asu’+au*) , (2.12)

where we have for convenience abbreviated the amplitudes
(equal in the bulk solid) of all the [110] reciprocal-lattice
vectors by u. The coefficient a, is given by

a,=12/S(K) (2.13)
where S(K) is the value of the liquid structure factor at
the value of K corresponding to the 12 [110] reciprocal-
lattice vectors of the solid. Assuming this coefficient is
known, we require two conditions to determine a3 and a}
empirically. (aj is the renormalized quartic coefficient
incorporating the effects of several other sets of reciprocal
lattice vectors.) We choose the following two conditions.

(i) The Helmholtz free energy difference per atom be-
tween solid and liquid shall vanish at the melting tem-
perature, and

(ii) the density-functional expansion shall correctly
yield the empirical heat of fusion.

We also have the requirement that, in the solid phase,
the amplitude u is determined by minimizing (F; —F;)/V
with respect to it. From the two conditions

F,—F=0, (2.14)
)
—(F,—F)) =0, (2.15)
ou NV,T
we obtain
ay=(2a,a})""? (2.16)
and
u=(ay/ay)"?*. (2.17)

The condition (ii) on the heat of fusion is equivalent to

o(F; —Fy)

A=(1/Nk
(1/Nkg) | —5—

T=T,

=Tpnu?/2da,y/dT)r_1,, - (2.18)

Equations (2.17) and (2.18) together determine a; in terms
of a, and its constant-volume temperature derivative
da, /dT at melting. (A is the increase in entropy on melt-
ing; N is the number of molecules in the system.)

III. SOLID-LIQUID INTERFACIAL TENSION

A. Isotropic approximation

To apply this formalism to the calculation of interfacial
tension, we must include in the free energy functional all
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the terms involving gradients of the coefficients . In
principle, there are 12 independent coefficients u, corre-
sponding to the amplitudes of the 12 [110] reciprocal-
lattice vectors of the bcc lattice. Although these ampli-
tudes are equal in the bulk, they need not be equal in the
vicinity of the interface. If we assume that they remain
equal in the interface we will obtain an isotropic surface
tension, i.e., one that is independent of crystal face. This
isotropic tension can be calculated analytically, and we
therefore consider the isotropic approximation first.

In the isotropic approximation, the free energy func-
tional takes the form

nokBT

AF=
2

fd3x[a2u(x)2—a3u(x)3

+au(x)*+b|Vu |?], G

where AF represents the free energy difference between
the inhomogeneous system containing the liquid-solid in-
terface and the same volume of uniform solid or liquid.
The coefficient b can be worked out from Eq. (2.10) if we
assume that u(x) is real, and that it represents the ampli-
tude of any one of the 12 [110] amplitudes, all of which
are locally equal. The result is

b == '—71( 2 C"(Kllo)(ﬁ“o'/i)z—: —-C”(KIIO) >
Kiio

(3.2)

where the sum runs over the 12 [110] reciprocal-lattice
vectors. and f(“o denotes a unit vector in the direction of
Ko

To obtain the liquid-solid interfacial tension for a pla-
nar interface, in this isotropic approximation, we assume
that u varies only in the z direction. At melting, the rela-
tions (2.14) through (2.18) determine the coefficients a,,
a3, and aj, and the amplitude u in the solid phase. The
interfacial tension is determined by minimizing AF with
respect to u(z), subject to the boundary conditions that
u (z)—0 deep in the liquid (z— + « ) and that u(z) ap-
proach its solid value (2.18) deep in the solid (z— — ).
The appropriate Euler-Lagrange equation can be solved
analytically, and the corresponding surface free energy
7=AF /A (where A is the surface area) and surface profile
are given by

T=(nokgT/6)u*a,b)!'’?, (3.3)

u(z)=(uy/2)[1+tanh(az)], (3.4)

W. H. SHIH, Z. Q. WANG, X. C. ZENG, AND D. STROUD 35

a=[a,/(4b)]'?. (3.5)

We have applied this simple approximation to two bcc
metals, the simple metal Na, and the transition metal Fe.
The calculation requires knowledge of the structure factor
of the liquid, S(k) and the direct correlation function
C(k), as well as their temperature derivatives at the melt-
ing point. Rather than obtain these from experiment, we
have carried out the following procedure. For Na, we use
a hard-sphere structure factor, which is available analyti-
cally in the Percus-Yevick approximation, and which pro-
vides an adequate fit to the experimental structure factor
of Na near its melting point, especially in the vicinity of
the principal peak. The effective hard-sphere diameter is
determined as a function of temperature by means of a
variational principle based on a hard-sphere reference sys-
tem; this procedure is described in detail elsewhere.!® The
resulting values for the hard-sphere packing fraction, as
well as the coefficients a,, da,/dT, and b, are listed in
Table I.

For Fe, which is not a simple metal like Na, and which
therefore does not have easily calculated pairwise interac-
tions in the liquid state which can be treated by the hard-
sphere variational principle; we obtain a, and b by assum-
ing a hard-sphere packing fraction equal to that obtained
variationally for Na at melting. We determine da, /dT by
making the assumption that the derivatives T (da, /dT) at
melting are equal for Na and for Fe; this assumption
seems reasonable if we imagine that the structure factors
S (k) of both metals change by the same amount at fixed
k for the same fractional change in temperature. The oth-
er parameters for the Fe calculation are also listed in
Table 1.

The calculated interfacial tensions and surface width
parameters for Na and Fe, in the isotropic approximation,
are also listed in Table I, along with the measured values
quoted by Taylor'” and Turnbull.'® The agreement is
quite reasonable, especially considering the simplicity of
our assumptions.

B. Corrections due to anisotropy

The approximation just described can be generalized to
allow for the variation of interfacial tension (and interfa-
cial density profile) with crystalline direction. In the iso-
tropic approximation, the parameters u,g, representing
the amplitudes of the 12 [110] Fourier density coeffi-
cients, are assumed all equal, not only in the bulk, but also

TABLE 1. Input parameters and calculated results for Na and Fe. Columns are the coefficients a,,
(da, /dT)T=Tm, and b, all as defined in the text (in cgs units); the increase A in entropy per atom on

melting; the theoretical and experimental liquid-solid interfacial tensions (in erg/cm?); and the width w
(in A), defined as twice the length appearing in the hyperbolic tangent density profile of the surface.

Element a, da,/dT 10'% A/kg Tth Texp w
Na 4.87 0.0067 13.8 0.85 11.7 202 6.65
Fe 4.88 0.00137 7.27 0.99 151 204° 4.88

2J. W. Taylor, Philos. Mag. 46, 857 (1955).
*D. Turnbull, J. Appl. Phys. 21, 1022 (1950).
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in the surface region. Actually, these coefficients need
not all be equal near the surface, but divide into several
classes, each with a different amplitude in the surface re-
gion, depending on the direction cosine between the par-
ticular [110] vector and the surface normal. This differ-
ence gives rise to a surface tension which depends on sur-
face orientation.

To be specific, we consider a [111] surface of a bcc
crystal. The 12 [110] reciprocal-lattice vectors divide into
two classes, each containing six vectors. Within each
class, all vectors must have equal amplitude in the surface
region, because they have the same direction cosine with
respect to the surface normal. Calling these amplitudes u
and v, and assuming that these vary only in the z direc-
tion (defined to be perpendicular to the interface), we ob-
tain the following form for the free energy functional:

nokgT
AF= 02B f a)(vul4+ v —az(Fulv+ +v?)
+a4( u+ v—+— Su?)
d 2
+b |2 a3 . (3.6)
dz

This functional form is constructed according to the
following principles. At any power (say the nth power) of
the order parameters u and v, there exist several symme-
try classes of polygons with n sides, each side consisting
of a [110] reciprocal-lattice vector. All the polygons in a
given symmetry class can be transformed into one another
by an operation of the cubic point group. We make the
ansatz that all polygons with the same number of sides
have the same coefficient. This is not necessarily
guaranteed by symmetry [at fourth order, for example, as
can be seen from Eq. (3.6), there are three sets of quadrila-
terals, each of which may have a different coefficient], but
if different coefficients are assumed for each set, there is
no convenient way to fix these coefficients empirically.

The free energy functional is fully determined by (3.6),
given the coefficients from Sec. III, and the ansatz just
mentioned, and one may calculate the surface tension in

the [111] direction by minimizing the functional with
|

nokgT
AF— orB

+ay(FHut + 50+ Hw? +ubv 2ptutw 24w 24 tutw) + 4 b[

The coupled Euler-Lagrange equations corresponding to
(3.7) and (3.8) can be solved numerically; the resulting sur-
face tensions are given in Table II along with those of Ox-
toby and Haymet; the surface profile for the [100] and
[111] cases are shown in Fig. 2. The anisotropy is evi-
dently quite small. Also, the difference in amplitudes be-
tween u and v as they cross the interface is not very large,
either between different amplitudes on the same face, or
among different faces. (The same is true for the [110]
profile, which we have not shown.)

2 1 1 1 1
f a)(Ful+ vl sw)—az(3u + Fuw)

2615

TABLE II. Orientation dependence of surface tension of Na
(in erg/cm?)

[111] [110] [100]
Present results 11.0 11.6 11.5
Oxtoby and Haymet® 11.0 11.4

2Reference 11.

respect to the two variables ¥ and v. This minimization
leads to two Euler-Lagrange equations

d?

d—'z‘—= 36b[18a2—27va3+(16u 24200%)a4], (3.72)
al

a0 — F(ut+vda, +(8v3+10u2v)—91=0 , (3.7b)

which may be solved numerically, subject to the boundary
conditions u =v =(a,/a})'"? at (z— —w,), ie., deep
within the solid. The resulting surface tension and sur-
face profile are given in Table II and in Fig. 1.

A similar procedure may be used to calculate the sur-
face tensions and surface profiles in other symmetry
directions. In the [100] direction, for example, the set of
12 [110] reciprocal lattice vectors breaks up into two sets,
containing eight and four vectors respectively, with ampli-
tudes u and v, the members of each set having the same
direction cosine to the surface normal. The free energy
functional is found to take the form

"oka

AF= fd3x a)(Ful++vH)—aju

2
du

+ay(Ful+ 30+ b iz

(3.7¢)

where the various quartic coefficients have been assumed
equal as in Eq. (3.6). For a [110] face, the set of 12 [110]
reciprocal lattice vectors can be divided into three sets
with different amplitudes, containing eight, two, and two
vectors, respectively, having amplitudes u, v, and w. The
free energy functional in this case is

d 2 d 2
- ] +1b l—ﬂ d’x

dz dz
(3.8)

C. Effect of density difference between solid and liquid

The density difference between solid and liquid does not
appear explicitly in the theory just described. Nonethe-
less, it is not assumed to vanish, but is present implicitly,
via terms of the form (2.5). Consider, for example, the
[111] interface. In the absence of a density difference, but
including only the 12 [110] reciprocal-lattice vectors, we
obtain a free energy functional of the form (3.6). We may
include the solid-liquid density difference to lowest order
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FIG. 1. (a) Excess Helmholtz free energy density per unit area for the [111] surface of Na. Plotted is the dimensionless integrand
of Eq. (3.6) as a function of distance z into the liquid (in 4). (b) Order parameter amplitudes u, v, and 7 as a function of z for the
[111] interface of Na, plotted as in (a). Because of the fitting procedure described in the text, 7 is guaranteed to reduce to the experi-
mental fractional liquid-solid density difference deep within the solid.

by adding to (3.6) a term of the form

kgT
AF':fo—zB— fd3x [cn2+%d(uzn+v2n)
2
yel4L| |, (3.9)
dz

where 7=ug_¢ is the fractional density change on freez-
ing.

We now argue that the term involving e (d7n/dz)? can
be neglected. First, the amplitude 7 is typically much
smaller than the amplitude u of the [110] Fourier com-
ponents of density in the solid. Secondly, the coefficient e
of (dn/dz)* is —+C"(K =0), which is typically much
smaller than the value of C’'(K) for K in the vicinity of a
[110] reciprocal-lattice vector.

If the term in (d7n/dz)* can be neglected in the free en-
ergy functional, the Euler-Lagrange equation correspond-
ing to 7(z) reduces to a purely algebraic equation, namely,

d 2,2

=——(u?+v? (3.10)
m 4c

08 ; T
3 [100]
S

3

5 04— —
w
&

2
< 02| —
§
5 (@)
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which is plotted in Fig. 1. The parameter d /c can be fit-
ted to the experimental density difference between solid
and liquid densities. The coefficient ¢ can be obtained
from the experimental compressibility, via the relation
¢ =1/5(0)=(nokgTKs)~' where K is the isothermal
compressibility. Thus d can be deduced from experiment
also. This fitting procedure has been followed in Fig. 1,
where the calculated 7(z) is therefore guaranteed to
reduce to the experimental liquid-solid density difference
deep within the solid.

The corresponding procedure for the [100] interface
leads to the Euler-Lagrange equation

2 5,, 1,
Ju +3v] (3.11)

the solution to which is shown in Fig. 2; and for the [1 10]
interface

d
N=——4u+vi+w?).
12¢
10 ‘ 1
0.8+
o
o6~ 3
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o o]
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FIG. 2. (a) and (b) excess Helmholtz free energy density and order parameters u, v, and 7 for the [100] interface, plotted as in Fig.

1.
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As noted earlier, when the density difference between
the solid and liquid is included in the manner just
described, the quartic coefficient a4 is renormalized rela-
tive to its value when the density change is taken as zero.
If we call the renormalized coefficient a}, then a} is relat-
ed to a4 by the equation

ay,=a,—d*/(4c) . (3.12)

Note that it is a4 rather than a4 which is fitted empirical-
ly to the heat of fusion. Thus the calculated free energy
functional automatically includes the effects of the solid-
liquid density difference.

D. Empirical law for liquid-solid surface tension

If one is willing to make the isotropic approximation,
the formalism just described permits one to construct a
simple empirical formula for the liquid-solid interfacial
tension of any bee element. From Egs. (2.14)—(2.18) and
the relationship (3.3), we may deduce for the interfacial
tension

noA

—_ 172
™= 3(da,zan) @0

(3.13)

where A is the increase in entropy per atom on melting,
and the other quantities are evaluated at their melting
point. Substituting (2.13) and (3.2) for a, and b gives

12
noA [—C"(K)]'?
= SK) (3.14)
d |_12
dT | S(K)

which may in principle be used to compute the surface
tension of any bcc metal at melting, given measurements
of the relevant bulk quantities and their temperature
derivatives. We can, however, make further assumptions
to simplify this formula. As in Sec. III A, we assume that
S(K) has a universal value at the melting temperature
(computer simulation typically gives around 2.85).!° We
also assume that the temperature derivative in the denom-
inator varies as A4 /7,, where A is a universal constant
and T, is the melting temperature. Finally, we write

d*C
d(oK)?’
where o is the effective, variationally determined hard-

sphere diameter at melting. Since the effective hard-
sphere packing fraction at melting is typically®®

C"(K)=o0? (3.15)

n="L03ny~0.45 ,
6

we see that o~ng 173 at melting. Furthermore, the

derivative d*C/d(0K)* has a universal value at melting

for K equal to a [110] reciprocal-lattice vector, then, com-

bining all these empirical assumptions, we obtain
r=Kn3’T,A, (3.16)

where K is a universal constant. Equation (3.16) states
that the liquid-solid interfacial tension is proportional to

TABLE III. Surface tension 7 of some bcc elements, from
the empirical law (3.16). The constant X is fitted so as to give a
surface tension of 11.7 erg/cm? for Na. Experimental values,
where available, are in brackets.

Element ne (10%2/cm®) H; (cal/g-mol) 7 (erg/cm?)
Na 2.44 630 11.7 [20)*
K 1.27 574 6.89
Rb 1.04 525 5.52
Cs 0.837 500 4.55
Li 4.48 1100 30.6 [30]°
Ba 1.48 1830 244
v 6.58 4200 151.0
Nb 5.07 6500 195.0
Ta 5.07 7500 225.0
Cr 7.48 3600 141.0
Mo 5.87 6600 220.0
w 5.76 8420 277.0
Fe 7.65 3560 142 [204]°
Eu 1.99 2500 41.0

2J. W. Taylor, Philos. Mag. 46, 857 (1955).
*Turnbull, J. Appl. Phys. 21, 1022 (1950).

the heat of fusion per surface atom, a very reasonable
empirical hypothesis which we have now “derived,” in a
simple but plausible way. Equation (3.16) is identical to
the formula proposed by Turnbull!® many years ago to ac-
count for some of his measurements on the solid-liquid in-
terfacial tensions of simple metals.

Table III shows the predictions of Eq. (3.16) for the
liquid-solid interfacial tension of a number of bcc metals
at melting. The unknown constant K is fitted to give
7=11.7 erg/cm? for Na at melting. Agreements with ex-
perimental data is quite reasonable where comparison is
possible.

E. Discussion

The model presented here, although very simple, cer-
tainly suggests that the density-functional approach is a
reasonable way to calculate the surface energies and sur-
face profiles of the solid-liquid interface. More elaborate
calculations, involving more Fourier components of the
density and an expansion of the free energy to higher
powers of these Fourier components, are undoubtedly
necessary if quantitative accuracy is to be achieved. It
may also be necessary to go beyond the gradient approxi-
mation, since, the widths we obtain are quite narrow of
(of the order of two or three atomic layers). However, the
present scheme has two advantages: It allows surface
properties to be obtained quickly and easily from bulk
ones; and it permits a rapid survey of many surface prop-
erties for a wide variety of materials (possibly even alloys)
which can then be studied by more accurate approaches.
The density-functional approach certainly seems to be one
of the most promising available at present; the principal
other contender is probably numerical simulation, which
requires a major effort for each calculation, especially for
surfaces.
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It is of interest to contemplate the possible application
of this method to other structures. For the fcc structure,
the use of a single set of reciprocal lattice vectors leads to
an unphysical second-order liquid-solid transition, as not-
ed earlier. One must include at least the [111] and the
[200] vectors to obtain a first-order transition. This
makes the fitting of the relevant coefficients to experi-
mental bulk properties more complicated than in the bcc
case, though not impossible.

The diamond structure presents other possibilities. The
principal peak in the structure factor corresponds roughly
to the [220] reciprocal-lattice vector in the solid (there is a
considerable decrease in density on freezing). The ampli-
tude of this [220] vector is presumably the most appropri-
ate order parameter for a density-functional theory of the
freezing of diamond structures. Even though the [220]
vectors form only the third shortest set of reciprocal-
lattice vectors in the diamond structure, they are more
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numerous, and their atomic structure factor in the solid
phase is much larger, than the [111] and [200] sets. Thus
this order parameter is not unreasonable. We may specu-
late that the reason for the big decrease in density of Si
and Ge on freezing is to allow the structure to take advan-
tage of the lowering of energy made possible by lining up
the [220] reciprocal-lattice vectors with the peak of the
liquid structure factor.
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