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Analysis of the oscillating-cup viscometer for the measurement of viscoelastic properties
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We present calculations for the analysis of torsional oscillator measurements of the mechanical

properties of viscoelastic fluids and solids. The usefulness of this measurement technique is

analyzed and discussed in detail. A right circular cylinder is chosen as a we11-defined geometry for
accurate calculations. Exact expressions for calculating the fluid viscosity and elasticity from the
oscillator' response in this geometry are presented and discussed. We believe this to be the first exact
treatment of the problem. Simplified expressions valid for certain special cases are presented for
ease of calculation and compared to those previously obtained. The range of operation and optimal
oscillator designs for general applications are suggested. Finally, use of this technique for measur-

ing the frequency dependence of viscoelastic properties is also examined.

I. INTRODUCTION

There are several physical systems currently of interest
which have long-range order with very large unit cells, for
example, the liquid-crystal blue phases, ' colloidal crys-
tals, and certain microemulsion phases. These weakly
bound solids are viscoelastic materials, having the proper-
ties of both solids and fluids. Their viscoelastic behavior
typically has an interesting dependence upon frequency.
The liquid-crystal blue phase I for example, has a low
shear modulus' (-1000 dyn/cm ) and a moderate viscosi-
ty (-1 poise). The viscosity rI of such materials cannot
be measured using standard capillary flow techniques due
to the effect of the elasticity on the flow properties. The
elasticity G. cannot be measured using standard techniques
since the material flows on laboratory time scales. Oscil-
lating cup viscometry, however, is well suited for the
simultaneous measurement of both g and 6 of viscoelas-
tic materials. A careful measurement of the viscoelastic
properties can give detailed information regarding the
phase diagram such as transition temperatures and types
of transitions as well as supportive evidence regarding the
structure. ' In this paper we wil1 develop the mathemati-
cal techniques required to calculate g and 6 from a mea-
surement of the viscoelastic properties using an oscillating
cup viscometer. This is the first exact treatment of the
problem. These techniques have been used successfully to
calculate the viscoelastic properties of the blue phases
from a measurement' of their mechanical properties.

There are two distinct experimental approaches towards
the measurement of g and 6 using oscillating cup
viscometry. The first consists of placing the viscoelastic
fluid in contact with a stable high- Q oscillator and
measuring small changes in the oscillator frequency and
amplitude due to the presence of the fluid. The second
approach consists of placing the fluid in contact with a
nonresonant oscillator and measuring the frequency and
amplitude of the fluid resonance in a particular geometry.
High-Q techniques are better suited for most measure-
ments due to the higher sensitivity and lower shear rates.
We will discuss calculations for the high-Q method in

Sec. II, and the resonant fluid method, only briefly, in
Sec. III.

The case of a simple Newtonian liquid (which by defi-
nition has 6 =0) in contact with a right circular cylinder
cup oscillator was first solved by Shvidkovskii, and more
extensivel'y by Kestin and Newell and Beckwith and
Newell. Using the mathematical techniques outlined in
the above papers we have solved the somewhat more com-
plicated problem of a viscoelastic fluid (which depends on
both g and 6) in contact with a right circular cylinder
cup oscillator. In this case the parameter space becomes
much larger and its application to experiment becomes
much different than for a simple liquid. A right circular
cylinder is a convenient well-defined geometry for a tor-
sional cup. viscometer, but the techniques developed here
are also applicable to other similar geometries (spheres,
discs, etc.) such as those studied by Kestin et a/. for sim-
ple liquids.

In addition to the mathematical solution, it is impor-
tant to examine the usefulness of this technique for the
measurement of g and G. We will look at the sensitivity
of such a cup viscometer for the measurement of g and 6,
as well as the ease and speed with which calculations can
be made. It is also very useful to know the optimal cup
design for a given application, where the range of ri and 6
is known approximately. This paper is intended as a
guide for those interested in using the powerful technique
of oscillating cup viscometry for the measurement of
viscoeIastic parameters.

II. THE HICrH- Q METHOD

A. Experimental technique

In Fig. 1 we show a picture of a high-Q torsional oscil-
lator configured as an oscillating cup viscometer. . This os-
cillator is composed of' a silver right cylindrical cup, a
thin torsion member and electrode plate fabricated from
single crystal silicon, and a brass base. This oscillator has
an empty cell Q0= 10000, and a frequency coo-128 Hz.
The frequency and amplitude of the oscillator on reso-
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small changes in the frequency and the Q with respect to
the empty cell values. The solutions for Q and co as func-
tions of g and G are very similar for the above two cases
but differ by terms proportional to (I'/I) and smaller
(where I' and I are the moments of inertia of the fluid
and of the oscillator). In the limit where I'/I «1, i.e.,
when the Quid motion is a small perturbation on the oscil-
lator motion (to be discussed in Sec. II F) the solutions be-
come identical. Since we find the forced oscillation case
to be experimentally and theoretically preferable, and the
differences between the two to be slight, we will confine a
discussion of the free-oscillation case to an Appendix.

The frequency of oscillation (coo) is fixed and is typical-
ly in the range of 1 Hz to 10 kHz. The empty cell Q ( Qo)
is typically in the range of 10 to 10 . Et is important to
have Qo high in order to reduce the corrections to the Q,
in order to minimize phase errors and for the possibility
of studying systems with small damping. It is also help-
ful to have dao/dT and dQo/dT as small as possible to
minimize errors associated with background corrections.

B. Theoretical analysis

(1) For a viscous liquid in contact with an oscillating
cup, a boundary layer 5=—[g/(top)]'~ which we call the
viscous penetration depth, is coupled to the oscillator
motion. It is easy to show that when 5 «R and 5 «H,

S =Sg —— 1+
I' 6 4H

2H R

FIG. 1. High-Q torsional oscillator configured as an oscillat-

ing cup viscometer. Viscoelastic parameters of a sample can be
deduced by measuring the resonant frequency and amplitude of
the oscillator when empty and in the presence of the sample.
For this oscillator Qo = 10000 and coo ——128 Hz.

where

1
Q=

2Q

COp

o) —Ace

1 =—6—5p
2Qo

nance are measured using standard techniques. They can
be measured to a high degree of accuracy. The tempera-
ture dependence of these quantities is measured both with
and without a sample in the cup. From the changes in
frequency and amplitude due to the presence of the sam-

ple its viscoelastic parameters can be deduced as a func-
tion of temperature. The details of constructing and
operating high-Q torsional oscillators is discussed in de-
tail in Ref. 7.

There are two common ways of implementing high-Q
techniques. In the first, the amplitude and frequency of
forced oscillations on resonance are measured. In the
second, the frequency and decay time of free oscillations
are measured. The first method is preferable because the
operating electronics can be configured so that the oscilla-
tor is the frequency determining element of a phase-
locked loop. The resulting resonant frequencies and arn-

plitudes are very stable and can be easily monitored as a
function of some external parameter (the temperature T
for example) in an automated fashion. In the free-
oscillation case, there can be errors due to the transients
associated with starting the free oscillations that are not
present in the forced case. In either case, when the fluid
is placed in contact with the torsional oscillator there are

g; =—=k(Sg —S~),
CO

g, =2kSgS

where

2I R
I' (4+R/H)

2

(2)

It is clear that Eq. (2) is the lowest-order solution, but due

to the method of derivation it is unclear over what range
of parameters it gives meaningful results.

(2) In order to solve the problem of the oscillator

and where we have defined H as the fluid height; R, the
fluid radius; p, the fluid density; I'= 2pmHR, the fl—uid

moment of inertia; I, the oscillator moment of inertia;
ho—= 1/2Qo, the empty cell decrement; b, = 1/2Q, the full—
cell decrement; cup, the empty cell oscillator frequency;
and co as the full cell oscillator frequency. The quantities
S and S& are the dimensionless inertial and dissipative
oscillator response, and correspond to the measured fre-
quency and amplitude of oscillation. Mason first showed
by substituting a complex viscosity g =g„—ig; (where

g; =6/co) in place of g that
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motion for all values of g and 6 regardless of cup size we
'

must solve the full differential equation. Kestin and
Newell and Beckwith and Newell derive the solution to
the oscillator motion for the case of free oscillations of a
cup oscillator in contact with a simple fluid. They use
Laplace transform techniques to solve the differential
equation of motion. To describe the technique briefly, we
begin with the differential equation of motion of the oscil-
lator including the torque of the fluid on the oscillator.
The torque is found using the Navier-Stokes equations,
neglecting nonlinear terms as well as surface tension. (All
results are correct for the zero amplitude limit, so it is im-
portant to work at low shear rates to take advantage of
the accuracy of the solution. ) Using Laplace transforms,
the equation of motion is reduced to a dimensionless par-
tial differential equation which is solved subject to the
boundary conditions of a right circular cyhnder. The in-
verse Laplace transform gives the oscillator motion.

We follow the general procedure outlined above with

two significant modifications. The first is to add a forc-
ing function, Fpsincot, to the original differential equation
in order to also find the steady-state solution. The second
is to change the differential equation describing the fluid
motion to include its elasticity, G. This becomes

Q p2 Q+ +2@ (3)
P P

where 0 is the angular velocity and V' is the Laplacian
for polar-cylindrical coordinates. (See, for example, Ref.
2.) Here G and g are the frequency independent parame-
ters to which a viscoelastic model can then be applied.
The application of viscoelastic models will be discussed in
more detail in Sec. IV.

The solution is composed of three parts: a steady-state
solution, a free-oscillation solution (see Appendix), and a
sum of infinitely many transients. For the steady-state
solution, the latter two can be ignored and we find the os-
cillator amplitude a(t) is given by

a( t)
ap

r

CO

COp

sin(cot +P)
2

+D, i
COO

2 ho+ D; i
COp COp

2 1/2 (4a)

tang =

2CO
4p+D; i

COp COp

(4b)

COp
+D, i--

COp

where

+o

ICOp

In these expressions, D, and D; are the real and imaginary
parts of D(s), and s is the complex Laplace transform
variable, whose value is s =ice/cop for the steady-state
solution. The function D (s) depends upon the experimen-
tal variables q and 6, and the constants 0, R, I, coo, and
P.

The function D(s) is related to the Laplace transform
of the fluid torque M(s) by the relation D (s)
= sM(s)Icop[sa(s) ap]. The math—ematical problem con-
sists of solving the dimensionless partial differential equa-
tion, which describes the fluid motion, subject to the
boundary conditions of the given geometry giving D(s)
directly. Kestin and Newell present five different expres-
sions for D(s), using different expansion functions. All
are mathematically equivalent, but vary in their ease of
use, ease of understanding, and convergence for various
values of the parameters. We will discuss two of these in
Secs. III and IV. The function D(s) for a viscoelastic
liquid can be expressed in terms of the function D(s)
found in Ref. 5 for a simple liquid by making the substi-
tution

I
g.+

5

where g, and g; are the real and imaginary viscosities,
and defining

co, =cop(1 —2hp) .

Its value at maximum is

=Ap(1 —6p)'~
2(x (7b)

The constants cop and 6p arise naturally in the equations
which follow, but co, and (ap/2a), are the quantities
which would be measured in an empty cell background
run. For the remainder of this section coo and Ao will be

Yj g

COp

In an experiment, the physically measured quantities
are typically the resonant amplitude a and frequency co.
In order to find the constants b,p and cop an empty cell run
must be taken. The solutions are then expressed 'as differ-
ences between the measured quantities with the oscillator
full and empty: (ap/2a) f—Ap and (tpf —cop)/cop as in Eq.
(1). We have sometimes used (co,a) to abbreviate the set
of measured quantities.

In the absence of any fluid D„=D;=0,and a/ap
reduces to the familiar forced damped simple harmonic
oscillator solution. The resonant amplitude a/ap is a
maximum when
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Np- Nf
2~p+

COf COp

COf
p+ 2Di l

COp

where

'D„'.fCO CO

2Nf COp

(Sa)

fCO

r
COp

d . COD„
d (co/coo) coo

and

used, but the substitutions of Eq. (7) must be made for a
precise data analysis.

In the presence of the fluid we can calculate the fre-
quency COf, at which the maximum in a/ap OCCurs, by
differentiating Eq. (4a) with respect to co. This gives

2 r

1
f +D„l f

COp Np

but since a is the measured quantity and not the Q, we
will only calculate ap/20. '.

The resonant frequency and amplitude COf and O.p/2a
can be found exactly for all values of D; and D, using
Eqs. (Sa) and (8b). Unfortunately, Eq. (8a) is a transcen-
dental equation for Nf. It can be solved asymptotically to
high accuracy in a few iterations by the following pro-
cedure. The functions D„,D;, D„',and D are all insensi-
tive to small changes in Nf, so an initial guess of Nf —COp

is a very good one. Using this value for co/ we can calcu-
late a new coI using Eq. (Sa) for 1 —(co//coo) . This itera-
tion procedure converges rapidly since the original guess
is so close to the final converged value.

(3) The simplest equation for D(s) is one which con-
tains no complicated functional forms:

I' 64 1D(s)= s 1 — s g
0 pi (2m + 1 ) (s +si~ )

with

DI . fCO

COp

d . CO

D;
d (co/coo) coo

Sjm =
~jmPNp

'2 2
—1/2

At the maximum we can show that Pj
R

(2m + 1)m.+

and

gap

Nf
6p+ —,D i

COp

COf -
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COp Np

tang =— COp
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COf

COp

r

COf
Ap+ —,D i

COp

Nf COf
—,D; i + hp

Np COp

1/2

(8b)

(Sc)

where the pi's are the zeros of the first-order Bessel func-
tion of the first kind J&. (See Ref. 9 for a power series ex-
pression to calculate the pj' s.) In a sense this is the "true"
solution, since it was derived using a normal mode expan-
sion where Aj is the normal mode wavelength. This ex-
pression for D(s) is the simplest for analytical work but
converges slowly in certain limits due to the double sum-
mation. In addition, the errors due to truncating the dou-
ble summation are hard to assess. This is particularly
problematic in the low to medium viscous penetration
depth limit where the technique will prove to be most use-
ful.

To find the solution for a viscoelastic fluid using Eq.
(11) we make the substitution of Eq. (5), let s =iso/coo,
and separate real and imaginary parts and find

COp

Nf —Np =—D i2
COp Np

CXp
~ Nf—hp ———,D; i

20,' COp

and

tang = —b,o
—1

When D; and D„aresmall these reduce to

(9a)

(9c)

D 0 CO

COp

r—I CO

2
Np

64 co

'7T Np

a

i,.pj(2m +1)2(si2.„+a2~2/~02)

(12a)

The phase P between the forcing function and the oscilla-
tor is very close to 90 as long as Ap is small. We can also
relate the resonant amplitude a to the Q of the resonance
in the usual way:

0'p j.

2a - 2Q

. CO

COp

roo i ~ pi(2m +1)2(s „+a~co2/coo)

(12b)
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where
2

COp

jmi
CO

separating real and imaginary parts we find that

CO

COp

and

sjmr =
~jm p~p

CO SCAN21+ 2I ~p a)p

e [1—Q„(a,b)] —fQ;(a, b)

p2(e 2+f2)

(16a)

sjmi =
PCOp A, P~p

Another disadvantage of this solution is that a leading
term expansion does not readily reduce to the low viscous
penetration depth solution.

The fluid resonances are apparent due to the nature of
the expansion. It is easy to show that for low viscosities,
there are fluid resonances when

Cdp

where

I' 8' eQ (a»)+f [1—Q, (a,b)]
(e'+f

2

QPp

(16b)

1/2
G

p
(13) f=k

Q)p

where A, is the wavelength of the transverse waves travel-
ing through the fluid. These correspond to the normal
modes of a solid in a cup geometry. Thus the fluid
motion can be thought of as a superposition of infinitely
many underdamped or overdamped modes of different
wavelengths. It must be kept clear that the oscillator
motion is always strongly underdamped, as required by
the measurement technique, but the fluid may be under-
damped or overdamped. When the fluid is on resonance
the system is analogous to a coupled harmonic oscillator,
but it is the oscillator's frequency and amplitude that are
monitored, not those of the fluid. In Sec. II C we will dis-
cuss the region of (5/R, A. /R) space in which these reso-
nances occur, and in Sec. III we will discuss the fluid res-
onances themselves.

(4) It is straightforward to show that E'q. (11) can be
simplified by recognizing the identity

' and

Pj
pco0R

It can be shown that

a sinh(2a)+b sin(2b)

(a +b )[cosh(2a)+cos(2b)]
a sin(2b) —b sinh(2a)

(a +b )[cosh(2a)+cos(2b)]
where

( 1/1/2)[c + (c2+d 2)1/2]1/2

b = (1/W2)[ —'C + (C2+d2)1/2]1/2

Q(a+ib): — =Q„(a,b)+iQ;(a, b) .tanh(a +ib)
a +ib

tanh(x) I

(2m +1)2~'+4x2 (14) and we have defined

Use of Eq. (14) significantly reduces the calculation time
required, due to the need to sum over only one variable.
This comes at the expense of a moderate increase in calcu-
lational complexity, but still only requires the evaluation
of the sine, cosine, and exponential functions. We find
that

and

c—=H PJ
2R

H PCO 'g»

~O[n'+ (n.~/~0)']

~0[3 +(9 C0/~0) ]

( )
I'

2 ~ 1 tanh(x)
2 2I j Pjsp x

where

and

7/p J.

pco0R

CO(PX—:SpH

1 /2

After substituting g —+g, +g;/s, letting s =iso/mp, and

Equations (16a) and (16b) are the best means of calculat-
ing b,co/020 and a0/2a when speed and accuracy are re-
quired. They still converge slowly for very low values of
5/R and A, /R but are ideal for the working region to be
described in Sec. IIE. Equations (16a) and (16b) provide
an exact solution for the steady-state response of a tor-
sional oscillator in contact with a viscoelastic fluid, for all
values of g and 6, and for any cup size. They are exact
to all orders of I'/I as long as the iteration procedure (8)
of Sec. II 8 is followed. It must be emphasized that Eq.
(16) is an exact solution: no calibration constants are re-
quired and all edge corrections are contained within the
solutions.
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In Sec. IIC we will discuss the behavior of these func-
tions throughout parameter space. In Secs. II D and II E
we will discuss errors inherent in the technique which im-
pose limitations on the range of g and G over which the
technique can be successfully used. In Secs. IIF, IIG,
and IIH we will discuss errors associated with simplified
calculation of the functions; such errors can be circum-
vented completely by a more time-consuming exact calcu-
lation.

reasons: high stability, low bandwidth for coupling in
mechanical noise, and low I'/I corrections (as will be dis-
cussed in Sec. IIF). We have chosen I'/I= —„,so that
Q;„=100,a reasonable lower limit. The constant Qo is
assumed to be high, so we have set bc= 1/2Qo ——0.

C. Map of oscillator response to a viscoelastic fluid

To give the reader a feeling for the nature of the func-
tions (4co/coo)(G, rl) and (ao/2a)(G, r)) we show in Figs.
2(a) and 2(b) contour plots of these functions over a wide
range of G and g. Each line represents the locus of points
that have the same value of the function. If we choose the
dimensionless plotting coordinates 6/R and A, /R instead
of q and G, then the contour plots give both a good quan-
titative as well as qualitative picture of the functions.
Thus with the proper rescaling of parameters the contour
plots in all figures can be used as master curves to avoid
tedious recalculations. The cup size, oscillator frequency,
and fluid density are scaling parameters for 5 and A, . The
magnitude of the functions are proportional to I'/I as
long as I'/I is reasonably small. The functional form of
the equations is only weakly dependent on the cup shape
R /H, outside of the resonant region.

Since there is a unique mapping of (G,g) —+(A, ,6) all
values of G and g can be rescaled according to the follow-
ing equations:

' 1/2

O

O

1-
C9
jz
LLI

UJ

-2 0
VISCOUS PENETRATION DEPTH, lOg )o (8/R)

5 1

R cooR

Yj COp

P
' 1/2

(17a)

1

R cooR

G

p
(17b)

to find the location of a given experimental arrangement
in phase space. The parameter 6/R is the dimensionless
viscous penetration depth and is the characteristic length
associated with the liquidlike properties of the viscoelastic
material. Similarly, A, /R is the dimensionless wavelength
and is the characteristic length associated with solidlike
properties of the material.

For simplicity, the aspect ratio of the cup R/H is
chosen to be R /H = (2@t/m) =2.44. In a sense this is the
midway point between R/H »1 and R/H «1. For
values of R/H around unity the functions are only weak-
ly dependent upon this ratio. Since the smaller length
dominates, one should calculate and plot 5/R, A, /R if
R /H & 2.44, and if R /H & 2.44 one should use 5/2. 44H
and A, /2. 44H as plotting parameters to minimize any
dependence on R /H.

It is apparent from Eqs. (16a) and (16b) that the height
of these curves is proportional to I'/I, and thus can easily
be rescaled given a new value of I'/I. For the value of
R/H chosen above, it is possible to show that the point of
maximum damping in the G —+0 limit occurs when
5/R=0. 15. At this point Q;„=3I/I'; thus we must
make I'/I reasonably small to prevent the Q from drop-
ping to too low a value. The Q is kept high for many

O

O
~ 1xI-

C9

Ld

LLI

-2 0
VISCOUS PENETRATION DEPTH, lOg ~p {8/ R)

FIG. 2. Contour plots of the real and imaginary parts of the
dimensionless response of an oscillator to a viscoelastic fluid
throughout (5/R, X/R) space. The parameters 5/R and k/R
are the dimensionless viscous penetration depth and wavelength
corresponding to the liquidlike and solidlike length scales com-
pared to the cup size. (a) Dimensionless inertial response
log&p(

~

i-Lco/cop
~

) corresponding to a small change in the oscilla-
tor resonant frequency. (b) Dimensionless dissipative response

log&o(ciao/2a) corresponding to the oscillator resonant amplitude.
Dark areas correspond to regions with densely spaced fluid reso-
nances. Absolute height of the curves is proportional to I'/I.
We have set R/H =2.44, I'/I =0.0312, 1/2Qp ——0. These
same constants are used for the remainder of the figures.
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D. Oscillator sensitivity for different
viscoelastic parameters

It is natural to ask with what accuracy we can measure
G and rt in various regions of (A, /R, 5/R) space. This
would tell us something about the useful regions of
(A, /R, 5/R) space for measurement purposes and the accu-
racy with which we need to measure the frequency and
amplitude. It is easy to show that

2 . 2i1/2
AG
G

+EG v(A, /R, 5/R) =

It is fairly easy to understand the nature of the func-
tions b,co/coo and ao/2a. When A./R is small (the G~O
limit), the functions behave as we expect for a viscous
liquid. When 5/R «1 both b,co/coo and ~0/2tx vary
smoothly in the same way with 5/R. When 5/R = 1 there
is a maximum in the dissipation, and the slope of b,co/coo
versus 5/R is largest. When 5/R »1 then both b,co/coo
and ao/2a saturate.

On the other hand, when A, /5 & 1 all resonant modes in
the fluid are overdamped because the acoustic wavelength
A, is shorter than 5 the decay length associated with the
damping of acoustic waves. Whereas if A, &5 the modes
are underdamped. The line A, =5 is shown for compar-
ison. The principal resonant mode (TA10) occurs when
A, =R (A. =0.185R), with the higher frequency modes at
shorter wavelengths. When A, /R »1 then both hco/coo
and ao/2a are saturated. This leaves one octant of phase
space strongly resonant.

ed, but in doing so we clearly know the accuracy with
which we know both parameters. Figure 3 shows a con-
tour plot of log~o[F(A, /R, 5/R)]. (Only lines for which
F &4 are shown. ) As an example, if we can measure the
frequency and amplitude to one part in 10, then along the
outer contour line whose height is 4, we can measure both
6 and g to one part in 10 . Thus F is essentially the error
transfer function. It tells us the amount of error
transferred to the quantities of interest, g and G, due to
random or systematic errors in the measured co and cx.
Random noise in co and o. will limit our ability to resolve
features in G and g. Systematic errors in co and a, due to
offset errors for example, will cause shifts in the deter-
mined values of g and G, but may not obscure features in
them.

The height of the level curves is proportional to
(I'/I) '. Different values of I'/I must be rescaled ac-
cordingly. The lower Q;„is, the higher the resolution, at
a fixed noise level' for reasonable values of Q;„.There
clearly is a tradeoff in choosing Q~;„;it must be kept
high for the reasons previously outlined in Sec. IIC, but
low enough to have sufficient resolution as well as insensi-
tivity to systematic errors. Since we have chosen a
reasonable lower limit for Q;„(Q;„=100),Fig. 3 ap-
pears to represent a best case. For higher values of Q
the region in which F ~4 will shrink. However, when
5«R and A, «R the Q may never fall as low as Q~;„,
and it is possible to reduce Q;„accordingly. By reducing
Q;„the region of high resolution can be extended some-
what, but the range of viscoelastic parameters that can be

=F(A, /R, 5/R)E (18)

where

F(A./R, 5/R) = 1 1
2+G (gcoo)

' 1/2

(o 2+ b 2) —1/2

I

' Aco

coo

8'@coo

. O

O

x:
C9

hl

hJ0

cxo

2(x

BG

Here, E is the amount of noise associated with the
measurement of frequency (Aco/coo) or amplitude
[(1/2Q)(ba/a) j expressed in fractional units, and EG

„

is
the error associated with G and g. Equation (18) treats-
the noise from frequency and amplitude sources identical-
ly, but this is justified because for experimental reasons
they are usually similar. Since we are concerned with
knowing both G and g, Eq. (18) emphasizes the parameter
known most poorly. In the oscillating cup technique G is
often known more poorly. The apparent error in g at a
particular point in (A./R, 5/R) space may be overestimat-

—2 0
VISCOUS PENETRATION DEPTH, Ipglo ~S/R

FIG. 3. Contour plot of the total fractional error EG
„

in both
6 and g associated with fractional errors E due to noise in co

and u. EG „=(Aco/coo)E =(1/2Q)(ba/a)E =FE where
logyp(F) is the value labeled on the curves. Height of the curves
is proportional to (I'/I) ' and is plotted on a log~p scale. In the
center region of the plot, the determination of ( G, q) is least sen-
sitive to uncertainties in the measurement of the oscillator
response.
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measured will be reduced. With care an oscillator can be
designed with quite high overall resolution, but this sensi-
tive region is in a rather small region of (A, /R, 5/R) space.

E. Unique conversion

We see from Fig. 3 that the oscillator is very sensitive
in the resonant part of (A, /R, 5/R) space. But in order for
the oscillating cup technique to be useful for extracting
(G,g) from (co,a) it must be possible to carry out this
conversion uniquely. If there are two solutions to (G,g)
as a function of (co,a) near to each other in (A, /R, 5/R)
space then there will be an ambiguity as to the correct
solution. . So clearly it is impossible to operate in regions
where multiple solutions exist nearby, such as when the
fluid is resonant. Shown in Fig. 4 is the region within
which nearest identical solutions are separated by a factor
of 4 in g and G, i.e., [(G~/Go) +(71~/go) ]'~ &4. This
is an arbitrary but useful criterion. If the solutions differ
by more than 4, the correct one could probably be chosen
on physical grounds, or by continuity. This multiple
valued region, as expected, corresponds exclusively to the
region where the fluid is resonant.

In much of this region the iteration procedure (8) of
Sec. IIB also fails. Small changes in co lead to large
changes in D„and D;, and so the iteration procedure is
unstable. This region must be avoided for the unique con-
version of (co,a)—+(G,g).

In order to be able to measure g and 6 using this tech-
nique, we must work in the part of Fig. 3 where we have
sufficient resolution, and in the part of Fig. 4 where the
conversion (co,a)~(G, q) can be carried out uniquely.
We refer to this region as the "working region" of the
high-Q oscillating cup viscometer. This region is shown
with a dotted line in Figs. 5—7.
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D

I—
C3

LIJ

bJ

-2 0
VISCOUS PENETRATION DEPTH, lOgqo(8/R)

FIG. 4. Region in which identical solutions exist near each
other. Within this region the nearest identical solution to
(co,a)~(G,q) differs by less then a factor of 4 in one or both of
the parameters G and q. For example, if ( G ~, qo) and ( G2, qo)
are nearby solutions to (m, a), then 0.25 & G~/G2 ~4 within the
region shown.

F. I'/I errors

As alluded to in procedure (8) of Sec. II 8 Eq. (16) can
be simplified considerably under the assumption
I'/I &&1. This is. especially warranted since the tech-
nique being used is a high-Q technique, and it is desirable
to keep I'/I small. In this limit, the solutions for free
and forced oscillations become identical (see Appendix).
Calculations can be simplified and done more quickly, but
first we must assess the errors incurred by making this ap-
proximation.

When I'/I «1, mf =coo, so we can rewrite Eqs. (16a)
and (16b) as

Ck

O

O
- -1

I—

W

IJJ
O

COp

= —,D, (i) -2 0
VISCOUS PENETRATION DEPTH, IOg qo (8/R)

(19a)

—hp ———,D;(i)
2(x

I'
2I

eg;(a, b)+f [1—Q„(a,b)]
p2(e2+f 2)

(19b)

e [1 Q„(a,b)] fg; (a,—b)—
1+82I p (e2+f2)

FIG. 5. Contour plot of the total fractional error in both G
and g associated with neglecting terms of order (I'/I) and
smaller. Height of the curves is approximately proportional to
I'/I, and is plotted on a log&0 scale. Only the region in which
the error is less than 100% is shown. Working region of the os-
cillating cup viscometer is outlined by the dotted line in this and

subsequent figures. This region is essentially the intersection of
Figs. 3 and 4. Within the working region the oscillating cup
viscometer has good resolution and unique solutions for reason-

able values of measurement noise and I'/I.
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where e and f simplify to

e=kq; —1

f=kg„,
and c and d simplify to

pg peso

R +g.

H PCOOgr

2gr+ 9E

b Q (a b) Q (a, b), and k as defined in Sec. II 8,Wlt11 a, ~ r a
im lified.procedure (4). [Equation (12) can be stnularly simp

' '

In doing so Eqs. (19a) and (19b) are no longer transcen-
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FIG. 6. Contour plots of total fractional error in both G and
g associated with using leading terms of a large cup expansion.
(a) Four-term expansion and (b) one-term expansion ( ason ap-
proximation). Height of the curves is independent of I'/I and
is plotted on a ogio sca e.1 1 Only the region in which the error is
less than 100%%u~ is shown.

FIG. 7. Lines of constant cup radius R and varying frequen-
within the working region-of the oscillating cup viscometer

for two simple viscoelastic models. (a) Frequency pc inde endent
Voigt model (m, ==6 / ). (b) Frequency dependent Maxwell
~odel (~,= „~. o—6 / ). Corresponding lines of constant co are

thealso shown. a ues oV 1 f L/R are read from the curves by e
intersect theof A, /R or 5/R when lines of constant R intersect t evalue o or

A. /R =5/R dividing line. Spacing between lines o
is 0.5 on a log~o scale.
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dental, but become simple one parameter sums with no
iteration required. Since we know hen/~p and exp/2u ex-
actly from Eqs. (16a) and (16b) and the iteration pro-
cedure (8) of Sec. IIB, it is possible to calculate the frac-
tional error [(b.G/G) +(b,rj/g) ]'~, incurred in G and g
in all of (A, /R, 5/R) space due to the omission of higher
order terms in I'/I. Thus we can assess the range where
this simplication can be used to reduce calculation time.
In Fig. 5 is shown a contour plot of
log, [(AG/G) +(b,g/g) ]'~ .

From Fig. 5 we can see that for this value of I'/I, the
errors incurred due to neglecting higher order terms in
I'/I exceed 100%%uo in parts of the working region. In the
region where the errors exceed l%%uo, it is necessary to use
the expressions which are exact for all orders of I'/I.
The height of these curves is approximately proportional
to I'/I, so different values of I'/I can be rescaled accord-
ingly. Since a low value of Q;„is shown, the plots essen-

tially describe a worst case. As I'/I is decreased, the er-
rors will also decrease. However, the sensitive region of
Fig. 3 will also shrink. It must be kept in mind that these
errors need not be incurred since the iteration scheme (8)
of Sec. II B is fast and simple.

Cx. Large cup expansions

Part of the sensitive range of Fig. 3 includes regions in
which 5/R &1 and I,/R &1. We might expect that a
large cup (5/R «1 and A, /R «1) expansion would be
adequate in that range, and certainly much faster for cal-
culations. An expansion of this type is likely to be valid
when 6 «R, k «R, but also only when A, & 6 since we ex-
pect it to be poor at describing resonance phenomena. We
start with the large cup expansion for D (s) carried out to
four terms:

D(s)=—s
I'
I

6 .4+g 1 —2 exp
—2s' H

6

26 8g 363+ + „,, (1+6g)+, , 3 — +
64 16g

sR' ~ 2s'"R' 2s2R4 (20)

where

g
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S
COp

~ Ia (4+g) 2ge —"[acos(cb) bsin(cb—)] Iv2f

After substituting q~g„+g;/s, letting s =iso/coo, and separating real and imaginary parts we find that
'2—I co

I . Cc)p
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b =—S„+Sg,

S;= g, +~
— 1 2

2
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and

g=—R/H,
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g [ri„+(rI;cop/co) ]'~

If I'/I is large and the higher-order terms cannot be
neglected then Eq. (21) must be used together with the
iteration procedure (8) of Sec. IIB. When I'/I «1 we
can let m=coo and no iteration procedure is required, as
was true in the previous section. In this case the series
can be inverted; the result is given in the following sec-
tion. The last term in the first line of each series is the
lowest-order term describing interference between the top
and bottom of the fluid, and thus the lowest-order reso-
nance term. If we look at the largest term in each series
we find approximately that

I' a(—4+g)
2I v2f

and

I' b(4+g)
2I v2f

After some rewriting, we recognize these as being identi-
cal to Eq. (2), derived by Mason.

It is natural to inquire about the size of the errors in-
curred in G and g by using Eq. (21) or just Eq. (2) in vari-
ous parts of (A, /R, 5/R) space. As in Sec. II F we can cal-
culate the fractional error [(b,G/G) +(hg/g) ]' exact-
ly since we know bc@/cop and ap/2a everywhere from
Eqs. (16a) and (16b). Shown in Fig. 6(a) is a contour plot
of the fractional errors for the four term expansion of Eq.
(21). Shown in Fig. 6(b) is a similar plot for the lowest-
order term of the expansion, Eq. (2). The height of these
level curves is independent of I'/I as the degree of error is

only due to the size of 5/R and A, /R.
Figure 6(a) shows the region in which the four term ap-

proximation gives errors less than 100%. This region is
within the expected bounds of 5 & R, A, &R, and A, & 5, but
we also find that A, /R must be reasonably large. As with
the contour plot of Fig. 3, the fractional errors in G grow
very large as G~O. When 5&0.08R the four term ap-
proximation gives results to better than 1%, and is very
useful for fast reasonably accurate calculations. Figure
6(b) shows us that the Mason solution nowhere gives re-
sults better than = 1%. As expected, its useful range is at
lower 5/R, A, /R and with the additional constraints
described above. This leaves the Mason solution as only
an approximate one, useful for order of magnitude calcu-
lations, and fast simple first guesses for iteration pro-
cedures (as described in the following section). Equation
(21) can be used as a reasonable calculation in the range
shown, but outside of this region and for more accurate
calculations it is necessary to use the full solution of Eqs.
(16a) and (16b).

H. Reversion procedures

(1) Of all the solutions discussed thus far, only the
Mason approximation could easily be written as G(co,a)
and g(co, a) [see Eq. (2)]. However, Eqs. (8), (19), and (21)
all give 4co/cop and ap/2a as functions of ( G, tj ). In prac-
tice these can easily be inverted by the following reversion
scheme, provided that b,co/cop and ap/2a are monotonic
and we have a reasonable guess for G and g. Let ( G', q')
be the guessed solution. The parameters (hco/cop)(G, g)
and (ap/2a)(G, g) are the known values of the functions
at the unknown ( G,g). Then we can write

(G,g) — (G', g') =(G —G') (G', q')+(g —g') (G', g') (22a)

and

(G,q) — (G', q') =(G —G') (G', q')+(q q') (G—', q') . (22b)

The differences (G —G') and (ri —g') can be solved 'for,

giving new and better guesses for G' and q'. The whole
process can be iterated quickly to arbitrary accuracy. For
this procedure the derivatives can be calculated numeri-
cally or calculated analytically and evaluated. The Mason
approximation is very convenient to use in the range of
Fig. 6(b) as a suitable guess to start the reversion pro-
cedure. This reversion procedure will oscillate for 6=0
unless some care is taken to ensure that hco/cop and ap/2a
are continuous through G =0.

(2) In some cases it would be convenient to have the in-
verse polynomial expansion of Eq. (21), expressing G and
g as a power series in Aco/cop and Ap/2(x. This can be
done for all terms in the series with the exception of the
exponential term, using reversion of series. We have car-

(23a)

2

[(F; F„)C(+2F„F~Cp—],pR coo

2a,]

(23b)

where

ried this out for the four terms in Eq. (20), with the result
2

[2F„F;C,+(F„F;)Cp], —pR coo 2 2

2a~
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the measured quantities are defined as

2I Aco

I coo

, (b, —ho),
2I

where

5 3
p2 —50/03 '+ a ja& ——,a z /a q

2
p&

——5a2 —4a &a3 p2

4+g
0& =

a2=2 3+ 8g

3 1+6g03=

1 16ga4= 3—
2

and

This expansion neglects terms of order ( I'/I) and
higher-order terms in I /I, since it is difficult to include
them in the reversion of series. It is required then that
I'/I & (5/R) for all terms in Eq. (23) to be significant.
Since I'/I must be reasonably small for stable operation,
this condition fails only when A./R and 5/R are small, so
the higher order terms in both 5/R and I'/I are very
small and can be neglected in most cases. The higher-
order terms can be included by using Eq. (21), the itera-
tion scheme (8) of Sec. IIB, and the reversion procedure
of Eq. {22).

We recognize the first term in each of Eqs. (23a) and
(23b) as being the Mason approximation of Eq. (2). A
contour plot of the errors associated with using Eq. (23)
looks almost identical to Fig. 6(a) in the working region.
The exponential term included in Eq. (21) but neglected in

Eq. (23) only improves the approximation near the
resonant region, as we would expect, so omitting it has lit-
tle effect. As seen in Fig. 6(a) the errors associated with
using Eq. {23) in the working region are less than 1%
when 5 & 0.08R. Equation (23) is a very fast direct way to
calculate g and G from co and a when 5 & 0.08R and the
I'/I corrections are small.

I. Summary

We have developed an exact method for calculating the
fluid elasticity and viscosity (G,q) from the oscillator
resonant frequency and amplitude (co,a) for all values of
the parameters. The solution requires the use of Eq. (16),
the iteration procedure (8) of Sec. II 8, and the reversion
procedure of Eq. (22). When I'/I « 1, Eq. (16) is some-
what simplified and the iteration procedure is not re-
quired. When 5«R and A, «R Eq. (16) is considerably
simplified. When I'/I « 1, 5 &&R, A, «R, and X & 5 Eq.
(23) gives the solution directly.

The oscillator must be operated in a region of
(A, /R, 5/R) space where there is adequate resolution. It
must be operated where G and g can be uniquely deter-
mined. The intersection of these two regions is shown by
the dotted line in Figs. 5 and 6. For a specific application
it is possible to operate outside the working region, but at
the cost of a smaller range of operation.

Since we have an exact solution for (co,a)—+(g,G) the
ultimate limit to the size of the systematic errors is not
due to calculation errors, but to the accurate determina-
tion of the various constants H, R, p, and I. The density

p may be a function of the external. experimental parame-
ters and may have to be measured in a separate experi-
ment, though the determination of ( G, g) is largely insens-
itive to moderate changes in p. The surface tension can
give rise to an uncertainty in the value of H, and other-
wise perturb the surface shape. The significance of this
effect has not been assessed.

We can use Figs. 2—6 and the accompanying discussion
to aid us in designing an oscillator for a particular appli-
cation. Given a prior knowledge of G and g Fig. 3 tells
us the sensitivity we would have for any value of R and
I'/I. Figures 2(a) and 2(b) tell us the magnitude of the
quantities we would measure. Figures 5 and 6 suggest re-
gions to operate in, to reduce the time and complexity of
data reduction. In order to maintain adequate resolution,
5/R and A, /R cannot be too small nor too large. Further-
more, we must have A, &6 in order to keep the fluid over-
damped. A, =0.1R and 6=0.2R is a reasonable design to
aim for. The ratio of moments of inertia I'/I should be
kept small enough to keep the Q in an operative range,
but large enough for adequate resolution. The value
I'/I =0.01 is a reasonable tradeoff of these factors.
Clearly it may be difficult to maintain all these conditions
simultaneously for a viscoelastic fluid whose properties
are changing, as a function of temperature, for example.
But a knowledge of these guidelines can help optimize cell
design.

t 7 (+2++2)1/2 '
( t+p) (24a)

tang =

where az ——Fo/Iso is the cup amplitude and is equal to
the fluid amplitude as co~0;

III. THE RESONANT FLUID METHOD

There are various ways of implementing the resonant
fluid method to measure the viscoelastic parameters of a
fluid. A standard technique is to place the fluid into a
right circular cylinder which oscillates at fixed amplitude.
The fluid motion can be monitored at some point in the
Auid by a variety of techniques. The frequency of oscilla-
tion can be varied, and the consequent amplitude of the
fluid motion, as well as its phase with respect to the cup
can be monitored.

In order to derive the oscillator response to a viscoelas-
tic fluid in Sec. II 8 it was necessary to derive the fluid
motion throughout the cup. We can show that the fluid
angular position a throughout the cup is given by
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and

(2m +1)nh R Ji(@jr/R)(sj;—1)sin
2H r Jo pj

p J.(2m + 1)[(sJ;—1)2+sj „]

8

j,m

(2m+1)~h R Ji(l, r/R)
S mpS1n

2H r Jp(pj )

pJ (2m + 1)[(sj;—1) +s „J
The constants SJm) sJmp H R and pj are all as previ-

ously defined (except that cop is no longer the resonant
frequency it—is now the oscillator frequency). The vari-
ables h and r are the axial and radial coordinates describ-
ing the position in the cup. The functions J0 and J~ are

. the zeroth- and first-order Bessel functions of the first
kind. A power series expansion exists for Jp(pj). To
derive Eq. (24) we have assumed a constant periodic forc-
ing function, Fpsincot. We have also assumed that
I'/I « 1 which is always easy to arrange using this tech-
nique.

Equation (24) tells us the fluid motion at all positions in
the cup for all frequencies, all viscoelastic parameters, and
all sizes and shapes of cup. We can think of it as a super-
position of all the normal modes of the fluid motion, thus
includes the effects of all modes at every frequency.
These equations are valid for all degrees of damping; no
small damping approximation was made. Equation (24)
has all of the features we expect; the fluid amplitude is the
same as that of the cup on the cup boundary, and when
to~0. The fluid amplitude away from the boundary van-
ishes as co~ co. There are fluid resonances at the normal
mode frequencies of Eq. (13) in the limit of small damp-
ing. The amplitude and Q of these resonances can be
found using Eq. (24).

Whereas in the case of the high-Q technique it was
necessary to work outside of the double-valued region of
Fig. 4, the resonant fluid technique is only useful within
that region. Short of a full analysis, it is clear that infor-
mation can be extracted from resonance curves so long as
the Q is somewhat above l. If both components of the
motion A„and A; or A and P are measured, then in prin-
ciple G(co) and g(co) can be calculated over regions of a
resonance curve where reasonable data exists. Thus, more
information than just 6 and g on resonance can be calcu-
lated. While the data analysis would be somewhat com-
plex, Eq. (24) offers the possibility of. extracting much
more information regarding the frequency dependence of
viscoelastic fluids than previously appreciated.

Using a resonant fluid technique the quality of the data
is proportional to the Q. To get data with the same quali-
ty as possible with the high-Q technique it is necessary to
go to much larger cup sizes, for fixed values of g and 6,
in order to achieve higher Q's. Since the cup size cannot
be practically increased beyond a certain amount the two
techniques are essentially nonoverlapping. One technique
is always better suited for high-Q data than the other, and
should be used for gathering high quality data. Using a
high-Q technique, however, a different geometry than the
one discussed could always be arranged to get. high quality

data on the viscoelastic parameters.

IV. VISCOELASTIC MODELS

A. Voigt model (viscoelastic solid)

In this model G and g are both independent of frequen-
cy and fixed at Gp, qp. If we fix the cup radius R and
vary only the resonant frequency then the measurement
will traverse a path where

5
logio =2 logio + logio

R (Gpp)'

90

2 logio —logio
5 I.

(25)

Lines with varying m, but constant R are shown in Fig.
7(a). Paths of constant R can be characterized in a di-
mensionless way by forming the ratio L /R, where
L =go(Gpp) '~. We refer to L as the characteristic
"viscoelastic length;" its value only depends on the visco-
elastic constants. The value of L/R can be found by not-
ing that L/R =5/R =A, /R when the line intersects the
5/R =A./R dividing line, and can be easily read from Fig.
7(a). It is possible to choose a line which traverses the
working region shown outlined, but without intersecting
the double-valued regions. The longest of these covers a
frequency range of about 3 orders of magnitude. It is easy
to show that

Go 5/R
gp A/R

2
5/R
A, /R

2

so that lines of constant co and varying R are just parallel
lines with a slope of 1 as shown in Fig. 7(a). So if we
change both co and R it is possible to traverse paths in the

The fluid whose properties we wish to measure may
have an interesting frequency dependence which would be
impossible to ascertain by a measurement at only one fre-
quency. To study its frequency dependence using a high-
Q technique one would typically construct a sequence of
high-Q oscillators over a wide range of frequencies, or use
a multiple element oscillator, with more than one useful
high-Q resonance. As discussed in Sec. III there exists
some potential for extracting G (co) and g(ar) over a limit-
ed range of frequencies using the resonant fluid technique.
In order to expand that range, the cup radius would have
to be enlarged, giving more and sharper resonances. In ei-
ther case, it would be helpful to know the path of
(A, /R, 5/R) space traversed by varying the frequency.
The answer to this depends, of course, on the frequency
dependence of the fluid. There are two simple two-
parameter viscoelastic models to consider. " Both are ex-
treme simplifications, but their features illustrate some
general properties of viscoelastic models, and can be com-
bined to form more complicated models. The following
discussion is primarily intended for the high-Q technique,
but the considerations of changing resonant frequency in
the high-Q technique are analogous to scanning frequency
in the resonant fluid technique.
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working region spanning three to four orders of magni-
tude in frequency. Many of the lines, however, give
redundant information regarding the frequency depen-
dence and should be chosen according to the resolution
available in that region.

Even though the theoretical possibility exists for
measuring G and g, while varying co and R over a wide
range, there are often experimental difficulties associated
with doing so. For a fixed R, co can be decreased by de-
creasing the torsion constant or by increasing I. When R
is varied, so is I'. It is hard to change I' and I by very
large amounts but as they are changed it is important to
maintain a reasonable ratio of I'/I, for reasons previously
outlined. It is clearly best to vary co by varying the tor-
sion constant within the limits possible.

B. Maxwell model (viscoelastic fluid)

The Maxwell model is a single relaxation frequency
model with co„=G /qo, where 6 is G as co~ca and go
is g as co~0. It is easily shown that for this model G and

g have the form

and

G

1+(co„/~)' (27)

7/p

1+(~/~, )

If we fix the cup radius R and vary the resonant frequen-
cy, the measurement traverses paths as shown in Fig. 7(b).
As in the previous case, lines of constant R can most easi-
ly be characterized by forming the dimensionless ratio
L/R, where L =rio(26„p) '~ . The value of L/R can
be read directly from Fig. 7(b) by noting that
L/R =5/R =A, /R at the point where lines of constant R
intersect the dividing line A, /R =5/R. Such lines can be
described by the equation

straints involved in designing a cell for the measurement
of the frequency dependence of a viscoelastic fluid.

V. CONCLUSION

We have shown that the high-Q oscillating cup viscom-
eter is a very sensitive technique for measuring the visco-
elastic parameters G and g of a fluid. This requires the
use of an exact expression which we have developed that
relates the frequency co and amplitude a of oscillations to
6 and g in the well-defined geometry of a right circular
cylinder. A method exists for calculating G and g from co

and a which is fast and reasonably convenient. We have
derived an exact expression for the fluid motion for all
levels of damping, which can be useful for the resonant
fluid technique. More information can be extr'acted con-
cerning the frequency dependence of viscoelastic parame-
ters than has been previously appreciated.

We have shown the region of (A, /R, 5/R) space in
which the viscometer is both sensitive and gives unique
solutions. This region is surprisingly small, so care must
be taken in designing an appropriate osciHator for a par-
ticular application. This work suggests the optimal oscil-
lator design to measure a fluid of known viscoelastic pa-
rameters. We have also examined the use of the oscillat-
ing cup technique for measuring the frequency depen-
dence of the viscoelastic fluid parameters. In principle
these can be measured over about four decades of frequen-
cy. We have described the tradeoffs involved in designing
oscillators to do so in practice. It is hoped that this work
will encourage the use of this technique for precise
mechanical measurements of viscoelastic fluids.
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APPENDIX

2

logio ———,logio ——
4 loglo 2

5 3 k ) L A,

J

2

(28)
2 2

For the case of free oscillations Eq. (8) is replaced by
the two equations:

When co «co„the lines have zero slope, when co »co„the
lines have a slope of —,, and co=co„when A, /R =5/R.
The longest such path traverses 2 orders of magnitude in
frequency through the working region. For this case

CO =CO„
A, /R

(29)
D; ( —b, +i)

COO

2CO COD
0

COp COO

D„(b, +i) = —1+—
COO COp

0
COp

(A la)

(A lb)

and so lines of constant co and varying R again are paral-
lel lines of slope equal to 1, as shown in Fig. 7(b). We can
see that by choosing R and co accordingly, data can in
principle be taken covering 3 to 4 orders of magnitude in
frequency.

It must be emphasized that it is impossible to know
what viscoelastic model to apply prior to a measurement
without a detailed understanding of the physical system.
Real physical systems usually have a complex spectrum of
relaxation times. It is hoped that the above treatment
gives the reader some feeling for the tradeoffs and con-

Di.COo ~oCOo
2

2CO
(A2b)

which are a pair of simultaneous transcendental equations
for b, and co. As for the forced oscillation case these can
be solved asymptotically in a few iterations by substitut-
ing successive values of 5 and co back into the expressions
for D„and D;. This is assisted by solving Eqs. (Ala) and
(Alb) for 5 and co;

(~/~o) =( I/~2) I (1+D„)+[(1+D„)+D ]'

(A2a)
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The iteration procedure is started by noting that D„and
D; are small, so the equivalent of Eq. (9) can be used,

= 1+—,
' D„,

from either Eq. (11) or (15) for D(s).
In the absence of fluid, D„=D;=0 and we see from Eq.

(A2) that

COe =COO

Evaluation of D(s) becomes more complicated, since the
argument s =(to/coo)( —b, +i) now contains both real and
imaginary parts. %'e will not give the full expression for
D„and D; for this case, but they can be easily derived

6, =60

by design. The coo and 6o given here are not exactly the
same as those given in the text for the forced oscillation
case. They differ by terms of order b,o.
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where c =m(4j +1).
While it seems that the resolution should also improve with in-
creasing Q, the assumption of a fixed noise level independent
of the Q is a good one as long as the Q is reasonably high be-
cause the noise level becomes limited by other factors. Thus
an enhancement of the Q will not give rise to a further im-
provement in the noise level.
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