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Active and passive interferometers (as used, for example, for rotation-rate sensing or gravita-
tional-wave detection) are known to have essentially the same ultimate sensitivity, although they ap-
pear to work differently, have signals of different sizes, and be limited by different kinds of noise
(shot noise for the passive case, spontaneous emission for the active case). This paper explains this
remarkable coincidence. The underlying physics common to both systems is brought forth and the
role of the losses in limiting the sensitivity is clarified. The possibility of squeezing the field is expli-
citly considered; it is shown when it can or cannot help, and why.

I. INTRODUCTION

In the use of interferometry for certain high-precision
measurements (e.g., rotation sensors’ or gravitational-
wave detectors?) it is common to distinguish between pas-
sive devices (when light from an external source is injected
into an empty cavity) and active devices (where the light
is internally generated by a gain medium inside the cavi-
ty). In both cases what is being measured is the detuning
of the cavity from resonance, which is proportional to the
signal (rotation rate, for example) that one is really in-
terested in. In a passive cavity the detuning causes a
phase shift; in an active cavity it causes a frequency shift,
that is, a phase shift which grows linearly with time. For
this reason active cavities appear to be potentially more
sensitive than passive cavities over a sufficiently long
measurement time.

On the other hand, when the noise limiting the perfor-
mance of both kinds of systems is taken into account, it is
found that the sensitivity (signal-to-noise ratio) is essen-
tially the same in both. The signal-to-noise ratios for op-
timized passive and active systems differ only by numeri-
cal factors depending on the experimental arrangement,
but the order of magnitude and the dependence on the
cavity losses and the power is the same. The limit for the
passive device is usually derived by considering shot noise
at the photodetector; for the active device, instead, it is
given by fluctuations in the laser phase—the fluctuations
which give rise to the laser linewidth and which arise
from spontaneous emission in the gain medium.’

From a fundamental point of view, this is a profoundly
unsatisfactory result. It is as if two different systems and
two different noise sources somehow conspired to produce
the same result. Even more amazing is the fact that
essentially the same limit recurs in every conceivable
detection scheme, in very different experimental arrange-
ments, from laser gyroscopes* to gravitational-wave detec-
tors.> Yet no explanation for this remarkable coincidence
appears to have been presented in the literature.

One wonders, of course, whether there is a sort of fun-
damental limit lurking in the background. Yet neither
shot noise nor spontaneous emission noise are ultimate
limits to signal processing. Shot noise can be reduced by
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squeezing the vacuum,®’ and phase-sensitive amplifiers

may be conceived which need not degrade appreciably the
signal-to-noise ratio of one quadrature (the phase, for in-
stance) of the signal they amplify (in the language of
Caves’s classic paper,® they may have negligible added
noise for that quadrature, although they still have to am-
plify the signal’s inherent noise along with the signal it-
self). Such an amplifier, operating with a squeezed-state
input, would have negligible spontaneous-emission-
induced phase fluctuations.

Where, then, does the ultimate limit come from? A
careful study of the problem reveals that the cavity losses
play a crucial role, and this note explains why. The coin-
cidence of the limits for active and passive devices is not,
as it could not be, a coincidence at all: the differences be-
tween the two kinds of devices are not, in a way, as deep
as one might have expected; and, from a certain point of
view, it is the fluctuation-dissipation theorem which lies
at the heart of the matter. In the process of reaching this
conclusion, just about every fundamental problem in
quantum optics, from squeezing to vacuum fluctuations
and the laser linewidth, makes at least a cameo appear-
ance.

II. PASSIVE CAVITIES

The first point that needs to be established is what is
common to the response of both active and passive cavi-
ties to a cavity detuning, and we begin by showing that
one can look at the passive cavity in a way that makes it
look very similar to an active one, and which shows exact-
ly what it is that the active one does that makes it dif-
ferent. All the discussions that follow will concentrate on
the field inside the cavity only, in a single mode, and in-
quire as to how well its phase is defined; the problems as-
sociated with extracting the light and actually performing
the measurement will be ignored, since the fundamental
limit may be found in the intracavity field already.

Consider, then, first the response of a passive cavity to
an elementary excitation of the field; specifically, consider
the free decay of a mode of the electromagnetic field, of
nominal frequency o, inside a cavity which is slightly de-
tuned (let the cavity resonant frequency be €2 and the de-
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tuning 8Q=w — ). Semiclassically, the boundary condi-
tions result in a difference equation which, for small
losses, may be approximated by a differential equation for
the (slowly varying) complex amplitude &(z),

& =(i580—y)F , 2

where y is the decay rate due to losses. Writing
&()=E(t)e ~'*? one sees from Eq. (1) that the phase
does grow linearly with time

d(1)=8Q, @)
but the amplitude is damped,
E()=—yE() . 3)

Equation (2) expresses the essential similarity between the
active and passive cavities, Eq. (3) their only essential
difference; namely, that in the passive case the field dies
away in a time of the order of ¥~!. It is important to
realize, in particular, that the linear growth of the phase
(2), which is usually said to be characteristic of the active
systems, is actually already present in the passive cavity.
The decay of the field, however, prevents one from ob-
serving it for times much longer than ¥ ~! [compare the
discussion below, in terms of X,; in particular Eq. (6)].
The contribution of the active medium in an active sys-
tem, therefore, is only to keep the field from decaying by
amplifying it (in a phase-preserving way, that is, coherent-
ly), thus making the phase growth (2) observable.

Accordingly, Eq. (2) might be derived by simply taking
the phase and amplitude evolution equations for an active
system (for example, the ring gyro equations from Ref. 1)
and formally removing the active medium by setting all
the gain coefficients equal to zero; the result is nothing
but Eq. (1), which shows that (2) may indeed be regarded
as a property of the passive cavity alone. [Equation (1)
may, of course, also be established directly for a passive
cavity, as mentioned above; for instance, one may take the
evolution equations for an ordinary Fabry-Perot (see, for
example, Ref. 9) and just set the injected field equal to
zero: then (1) gives the free decay of the field in the cavi-
ty.]

The main point of this discussion is that it is legitimate
to consider an active system as just a passive cavity with
an amplifying medium inside. The consequences of this
will be discussed in Sec. III.

Some passive schemes do actually exhibit a “growing
phase” in a sense; for instance, the ‘“delay line” or
Michelson-type interferometers in gravity-wave detection
(the phase difference between the two arms grows with
every round trip of the light between the mirrors), and
single-pass, many-turn optical fibers for rotation-rate
sensing (the phase difference between the counterpro-
pagating beams grows with every turn). Passive cavities
of the Fabry-Perot—type, instead, are used most often
with an injected field to keep the intensity inside constant.
Then the phase of the intracavity field does not grow
beyond a maximum value ¢, =8 /7, because the field
that has been in the cavity for a long time (accumulating a
large phase shift) dies away, and ““fresh” light, with a con-
stant phase, is continually coming in to replace it. We
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shall regard this system as being roughly equivalent to a
continuous repetition of an “elementary measurement,” in
which some intracavity field is allowed to evolve freely,
sample the cavity, and eventually die away; then another
fresh field is allowed to do the same, then another, etc.
This point of view gives the correct result for the sensi-
tivity of a Fabry-Perot—type passive device [Eq. (12)
below] aside from numerical factors which depend on the
experimental setup, and measurement strategy.

To proceed with the study of one of these “elementary
measurements,” it is convenient to replace the phase ¢,
which is not a good observable, by something more suit-
able. We introduce the quadratures X; and X, of the
electric field by the equation

E(=e "X, +iX,) . @

Here X, and X, are real (or, as quantum operators, Her-
mitian) and ¢ is the initial value of the phase, so that ini-
tially X, =0; then, as the phase grows, we may take X, to
be our signal (X, is the phaselike quadrature, X; the am-
plitudelike quadrature). Equations for X, and X, follow
immediately from (1):

X1=—YX1——80X2 , (5a)

X2=~—’)’X2+50X1 . (5b)

These equations are easily integrated. We shall consid-
er only the case when the signal is very small, so that 5Q¢,
and therefore X,, is always much smaller than 1; then the
term in X, may be neglected in (5a). The solution for X,
grows at first linearly, and then it is damped,

X,(1)=e~780X,(0) ; (6)

it is maximum precisely when =y ~!, so that the max-
imum signal equals X,n.,=e ~!8QX,(0)/y. Note that
X1(0) is just the electric field amplitude at t=0. We shall
use units such that, quantum mechanically,
X2+ X3=n+ 5, where n is the photon number operator.
Then (X;(0))~(n )2, if (n) is large.

We need to enquire now about the precision with which
the signal (6) can be known—that is, about the “noise.”
The quantum-mechanical operators for X; and X, have
an intrinsic uncertainty expressed by the relation

AX,AX, >+, 7

but this by itself does not tell us how large or small AX,
has to be. In particular, we might consider a squeezed
state with negligible AX,.

The crucial point, however, is that Eq. (6) has been ob-
tained as the solution of a system of equations (5) for a
damped field. Now, if this field is a quantum-mechanical
one, the preservation of the commutation relations (ulti-
mately, the uncertainty principle) requires that the damp-
ing mechanism (whatever it is) introduce noise, which will
be represented by noise operators in the equations of
motion. It is this noise that is going to determine the ulti-
mate sensitivity.

The exact form of the noise operators is model depen-
dent. Their correlations, which are all we need here, are
determined by the fluctuation-dissipation theorem;!° for
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definiteness, the reader may want to think of the classic
model of damping by a bath of harmonic oscillators'’
(with the standard Markov approximation). At any rate,
what we have to do is to rewrite Eqgs. (5) as Langevin
equations,

X, =—yX,+F 1), (8a)
X,=—yX,+80X,+F,(1) (8b)

(as explained before, we have neglected the term propor-
tional to X, in the equation for X,). The noise operators
F, are F, and Hermitian. They are uncorrelated in the
sense that their Hermitian correlation function
(F(t)F,(t')+F,(¢t')F,(t)) vanishes [the non-Hermitian
correlation function (F(2)F,(t’)) is purely imaginary].
Most importantly, they satisfy

(F(DF () =(F,(t)F,(t")) = 3y8(t —1t') . 9)

The crucial point, apparent from Eq. (9), is really that the
losses are phase insensitive: the damping bath puts the
same amount of noise in each quadrature. It is for this
reason that squeezing is destroyed by losses (as already
pointed out by Caves'?); it is from this fact that a funda-
mental limit arises.

When the system (8) is integrated, one finds for the
noise in X,

AXL(t)~e " (AX2)g+ +(1—e ), (10)

aside from terms which are smaller than those kept by a
factor of 8Q/y (which was assumed earlier to be very
small). Equation (10) shows that, regardless of what the
initial noise in the quadrature X, is, the noise associated
with damping will (because of its phase-insensitive nature)
tend to put in X, the noise associated with vacuum
fluctuations—that is, AX; =AX, = 7.

It is now a simple exercise to use Egs. (6) and (10) to
calculate the maximum signal-to-noise ratio. The result
depends somewhat, of course, on the initial amount of
squeezing that is present [that is, the value of (AX,),], but
not in order of magnitude: the maximum signal-to-noise
ratio is always reached after a time of the order of ¥ ~'; by
that time, the noise in X, is already of the order of mag-
nitude of that for the unsqueezed vacuum (.e., %), and
the minimum detectable signal 8Q (defined as the value of
8Q giving a signal-to-noise ratio of unity) is, therefore, of
the order of

8Qumin~7y /X1(0) . (11)

We must take into account now the possibility men-
tioned earlier of repeating the measurement a large num-
ber of times. Since each elementary measurement lasts for
a time of the order of ¥ ~! over a total measurement time
t,,, we may perform N =y1,, elementary measurements,
and the signal-to-noise ratio will improve by a factor of
N2, Then the minimum detectable §Q becomes
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where we have replaced the X;(0) of Eq. (11) by \/E, n
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being the average number of photons in the cavity. This
is indeed the result obtained for passive interferometers in
which one is constantly injecting fresh light, as was said
above.

We have seen now the two ways in which losses affect
adversely the performance of a (passive) interferometer.
First, because the field is damped, the “phaselike quadra-
ture” which carries the information about the signal does
not grow past a certain maximum value (reached after a
time of the order of ¥~!). Second, the losses introduce
some noise whose effect is to ensure that, after a time of
the order of ¥ ~! again, the noise in that quadrature is the
same as for unsqueezed vacuum fluctuations, regardless of
whether one started with a squeezed state or not. It is
precisely this latter effect which ensures that the “shot-
noise limit” calculation gives the same order of magnitude
as Eq. (12), since shot-noise may be related in various
ways (depending on the experimental arrangement) to vac-
uum fluctuations at the photodetector.” !

III. ACTIVE SYSTEMS

Since we have identified what limits the sensitivity of a
passive interferometer, we might think of doing some-
thing about it in the following way (which, as discussed
earlier, leads essentially to an “active” scheme): to coun-
teract the damping of the field due to the losses, introduce
a gain medium in the cavity which coherently regenerates
the signal. Then, with the losses effectively gone from
Eq. (8b) (and X, the “amplitudelike” quadrature, locked
to some saturation value), X, would be free to grow
linearly with time instead of eventually decaying as in Eq.
(6).

When the operation of an active device is understood in
this way, the reason why it does not work (better than the
passive system, that is) is actually almost obvious: the
gain medium cannot but amplify the signal and the noise
together. The active system could not, therefore, have a
larger signal-to-noise ratio than the underlying passive
system.

This may be formally shown without much difficulty.
Assume that the evolution of X, is given by Eq. (8b),
without the losses, and with a constant X;=X,(0). We
are neglecting any “added” noise (in the terminology of
Ref. 8) introduced by the amplifier which might, there-
fore, be a totally classical device, or a phase-sensitive am-
plifier® with negligible added noise for the quadrature X,.
It might seem at first sight that we are restricting our-
selves to linear amplifiers only, but this is not so. We are
only requiring that the amplifier’s treatment of the quad-
rature X, be, to a good approximation, linear. This had
better be the case, at any rate, since otherwise the relating
of the output of the device to the signal of interest is not a
trivial task; in any event, the validity of this assumption is
practically guaranteed in all the cases of interest here
(namely the detection of very weak signals, where
80t,, <<1, so that X, <<1). The amplifier may (and, in
the case of an ordinary laser medium, will) treat the quad-
rature X; nonlinearly, but the linear approximation will
describe its processing of X, quite well.

The solution for X,(#) is then
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X,(0)=80X,00 + [ Fy(t'dt' . (13)

We see that the noise in X, does indeed add up, un-
damped (unlike in the passive case), just like the variable
X, itself. Using again Eq. (9), we find for the magnitude
of this noise

AXZ=(AX2)o+ 1yt . (14)

Again Eqgs. (13) and (14) may be used to investigate the
signal-to-noise ratio, and again, when the measurement
time is long enough (t,, >¥~!), the initial amount of
squeezing in X, is found to make very little difference.
Over a total measurement time ¢,,, the minimum detect-
able 6 (with the signal-to-noise ratio equal to 1, as be-

fore) is
1/2
8&)min ~

2r (1s)

Im

which is essentially the same as Eq. (12). The only advan-
tage over Eq. (11) is the one arising from a large number
of independent measurements, which we might say the ac-
tive cavity performs automatically for us, not surprising-
ly, since we are sustaining the field inside: the passive
cavity with a constant injected field did the same. One
might say that the only difference between the two sys-
tems is that the active cavity is an “integrator,” in that we
might think of it as adding up the results of all the ele-
mentary measurements [which accounts for the linear
growth of X,(z)]; each one, of course, with its correspond-
ing noise. The result is, of course, neither more nor less
precise (save, perhaps, for a numerical factor of the order
of unity) than the “average” X,.., calculated by the pas-
sive device.

This continuous adding up of noise results in the dif-
fusion process of Eq. (14), familiar indeed from discus-
sions of the laser linewidth.!* Note that, semiclassically,
X3(t)=~n[¢(t)—¢o]%, so that Eq. (14) does describe a
phase-diffusion process.

What is the origin of this noise, when we have ignored
the “added noise” introduced by the amplifier? Formally
it comes from the noise operator F, associated with the
damping of the field. But all that these operators did, in
the passive case, was to restore the normal vacuum fluc-
tuations. Thus the noise in (14) is, roughly speaking, am-
plified vacuum fluctuations. Unsqueezed vacuum—the
phase-insensitive nature of the losses sees to that. Physi-
cally, one might think of the losses as letting unsqueezed
vacuum “leak into” the cavity (just as they let the inside
field “leak out”), with quotation marks to indicate that we
are not in general thinking of transmission losses (which
are essentially reversible, and can be counteracted in vari-
ous ways) but of irreversible absorption (maybe also dif-
fraction, etc.) losses.

The process (14) accounts for one-half of the phase dif-
fusion in a laser, which is usually attributed entirely to
spontaneous emission. It is somewhat odd to see the
losses take half of the credit for it here, although this is
the way it comes naturally from a Langevin approach
(compare the discussion in Ref. 14, and the work of Lax
in Ref. 15). In this context, it is well known that different
orderings of the operators lead to different interpretations.
In fact, with the choice we have made here of working

consistently with Hermitian operators, it is not surprising
to find one-half of the spontaneous emission to come
from amplified vacuum fluctuations (the missing half
would come from the amplifier’s own added noise, which
we have neglected); compare this with the results in Ref.
16.

One final comment may be made. It seems reasonable
to assume, as we have done, that by neglecting the
amplifier’s added noise we are indeed looking at the most
favorable scenario, from the point of view of keeping the
signal-to-noise ratio as large as possible. We might, how-
ever, wonder about the possibility of the amplifier intro-
ducing some noise which might be anticorrelated with F,
in the equation of motion for X,. But, since F, is un-
correlated with any other noise in the problem (including,
in the sense mentioned earlier, F), this could only happen
through some kind of feedback of X, upon itself, that is,
some nonlinearity in the amplifier’s treatment of X,,
which we have already discarded as being negligible. The
amplifier’s added noise could therefore only make matters
worse, as it does indeed in the case of ordinary laser media
(by the factor of 2 mentioned above).

IV. CONCLUSIONS

All the foregoing, either as contained in the mathemat-
ics or in the simpler statement: “The active device sus-
tains (against the cavity losses, i.e., by amplifying it) and
adds up both the signal and the noise of the passive de-
vice,” explains how “shot noise” and ‘“spontaneous emis-
sion,” apparently conspired to make active and passive
systems equivalent. In reality, “passive” and “active” sys-
tems are only different ways to process a single elementa-
ry measurement—one whose maximum duration and as-
sociated noise is determined solely by the cavity losses.

The limit encountered here is “fundamental” only in as
much as the losses are unavoidable. It would seem from
what we have presented here that one always has to gain
from increasing the measurement time ¢,, even as to
make t,, >>7 ~; if that were the case then all the systems
would be “loss limited”, as the ones discussed here. There
are, however, cases where t,, cannot be increased beyond
certain limits (in a gravity-wave detector, for instance, it
should not be chosen larger than half the expected period
of the wave; in ring laser gyros, there are other sources of
error which degrade the performance for very large in-
tegration times). If the losses can be reduced to the point
when y ! is greater than the allowed measurement time,
the system is no longer loss limited. In this case
(t,, <y~1), the active and passive devices are still
equivalent [expand the exponentials in (6) and (7), and
compare with (13) and (14)] but now the initial amount of
squeezing becomes relevant, and can indeed increase the
sensitivity substantially, as explained, e.g., in Ref. 12, for
gravity-wave detectors.

Aside from this, of course, in a practical apparatus the
passive and active devices will not in general be equivalent
from an experimentalist’s point of view, each one having
other merits and problems of its own (in different con-
texts, these have been discussed in Refs. 1, 2, and 5,
among many other places). It is in this context that all
those ‘“numerical factors of the order of unity” that we
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might afford to ignore in this paper will, of course, be-
come relevant.
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