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The effects of the finite correlation time of the external modulation on the secondary-emission
spectra are clarified emphasizing the deviation from the motional narrowing limit or the impact ap-
proximation in the case of large off-resonance excitation. The dependences of the excitation spec-
trum of the secondary emission on the modulation parameters and on the inhomogeneous broaden-

ing are studied systematically. It is found that the excitation spectrum of the luminescence shows a
faster decrease than that of the Raman scattering as the off-resonance frequency increases. The
present theory is relevant for explaining the recent experiment by Watanabe, Kinoshita, and Kushi-
da [Chem. Phys. Lett. 126, 197 (1986)] on the P-carotene in solutions. A general theory of the
time-resolved spectra of the secondary emission is formulated to incorporate the effect of the finite
correlation time. The luminescence component shows a slow temporal decay with the longitudinal
relaxation rate. It is found for the first time that the difference is unexpectedly large between the
transient behavior of the luminescence intensity and that of the intermediate-state population for the
slow-modulation regime and that the difference indicates the effect of finite correlation time of the
frequency modulation. On the other hand, the transient behavior of the Raman scattering contains
a fast component that follows the envelope of the excitation-pulse intensity and the same slow com-
ponent as the luminescence. The ratio of the slow component to the tota1 intensity depends sensi-

tively on the modulation parameters and the off-resonance frequency. The modulation parameters
of the system in question can be estimated from these dependences in combination with the spectral
characteristics of the emission under stationary excitation.

I. INTRODUCTION

Recently the excitation spectra for Raman scattering
and luminescence have been measured systematically on
the P-carotene in solutions. ' It has been found that the
excitation spectra for the two components show quite dif-
ferent behaviors. This cannot be explained by the theory
of secondary emission in the motional narrowing limit
since the theory gives the same excitation spectra for both
components. However, the difference in the excitation
spectra for the Raman scattering and for the luminescence
was already predicted in the initiative work on the
second-order optical processes by Takagahara, Hanamura,
and Kubo. The main concerns there were how the quan-
tum coherence between the light absorption and emission
is affected by the relaxation processes in the intermediate
state and how the coexistence ratio of the Raman scatter-
ing and the luminescence is determined by the relaxation
constants and the off-resonance energy. Various kinds of
stochastic models were developed to simulate the
intermediate-state interaction. ' In the stochastic theory,
the total system is divided into a relevant system and an
environmental system or reservoir. The effect of the
latter on the relevant system is taken into account in
terms of random forces and the reservoir is considered to
be always in thermal equilibrium since it has a large num-
ber of degrees of freedom. The systetn of P-carotene in
solutions is a typical example to which our stochastic
theory can be applied suitably. The relevant system in
this case is the P-carotene molecule itself, and the reser-

voir comprises the solvent molecules surrounding the P-
carotene molecule. The solvent molecules modulate the
energy levels of the P-carotene molecule through molecu-
lar interaction. On the other hand, the P-carotene mole-
cule has a strong optically allowed transition from the 'Ag
ground state to the 'B„excited state. ' Thus, the second-
order optical process relevant to the experiments of Ref. 1

is the transition from 'Ag to 'Ag through the 'B„level
leaving some combinations of vibrational modes of the P-
carotene molecule. This process can be modeled by a
three-level system in which the energy of the intermediate
state is modulated randomly by the environment.

The stochastic theory of second-order optical processes
by Takagahara, Hanamura, and Kubo ' can describe the
overall features of coexistence of the Raman scattering
and the luminescence from the static (statistical) regime to
the motional narrowing regime in a unified manner. The
key parameters in the stochastic theory are the amplitude

and the rate y of the frequency modulation. The
static (statistical) regime is usually characterized by a
large value of 6 /y corresponding to the slow-
modulation case, i.e., small y, or the strong-coupling
case, i.e., large 5 . On the other hand, the motional nar-
rowing regime is characterized by a small value of

/y corresponding to the fast-modulation case or the
weak-coupling case. The excitation spectra for the Ra-
man scattering and for the luminescence show various
features depending on the ratio 6 /y . From the com-
parison of experimental data with our theory, Watanabe
et al. ' estimated the ratio 4 /y to be about 3 for the
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P-carotene in isopentane. This value indicates that this
system belongs to the slow-modulation regime and that
the effect of the finite correlation time of frequency
modulation cannot be neglected.

In this paper, a new method is proposed for calculating
the secondary-emission spectra in a unified manner from
the static regime to the motional narrowing regime. The
newly devised method is quite efficient and time saving
for numerical computation. At the same time, it is found
that the factorization approximation introduced by Mu-
kamel is not justified in the slow-modulation regime.
The excitation profiles of the Raman scattering and of the
luminescence are calculated by use of the newly devised
method and their dependence on the parameter ratio

/y is clarified.
On the other hand, the time response of the Raman

scattering and the luminescence reflects most directly the
dynamics of the relevant system and is important in eluci-
dating the relaxation processes. Here, a general for-
malism is developed to calculate the time-resolved emis-
sion spectra from the slow-modulation regime to the
motional narrowing regime. The typical dependences of
the time response of the Raman scattering and the
luminescence on the parameter ratio 6 /y are clarified
and some methods to estimate the modulation parameters
are proposed.

The effect of the finite correlation time of the frequen-
cy modulation becomes emphasized in the case of large
off-resonance excitation since the duration when the sys-
tem is staying in the excited state is roughly on the order
of (be) ' where bc@ is the off-resonance energy of the ex-
citation light. When this period is comparable to the
correlation time, the treatment in the motional narrowing
limit becomes invalid. It is to be noted that the effect of
the finite correlation time appears not only in the second-
order optical processes but also in other nonlinear optical
phenomena. One of the most significant examples is the
breakdown of the optical Bloch equation in the coherent
transient phenomena discovered recently by DeVoe and
Brewer. In this case, the characteristic time of the sys-
tem is the Rabi oscillation period and this becomes com-
parable to the correlation time of frequency modulation
when the incident light intensity is increased, resulting in

the breakdown of the optical Bloch equation. Thus the
effect of the finite correlation time of frequency modula-
tion manifests itself in a wide class of dynamical relaxa-
tion phenomena.

II. EMISSION SPECTRUM
UNDER GAUSSIAN-MARKOUIAN FREQUENCY

MODULATION

H =
I
a &E.&a 1+1»Ãb+x(t)1&b I+ I

c &&. &c
I

(2.1)

where a, b, and c denote the ground state, the excited
state, and the final state with corresponding energy
E& (j =a, b„c)., respectively. The random frequency
modulation x(t) is a Gaussian-Markovian process with
zero mean value, i.e.,

&x(t)) =0, (2.2)

and

&x(ti)x(t2)) =b, exp( —y (2.3)

where 6 and y denote the amplitude and rate of the
frequency modulation, respectively. The light scattering
process can be described by a second-order perturbation
with respect to the interaction with the radiation field.
The probability amplitude corresponding to the light
scattering process, in which an incident photon with fre-
quency co& is absorbed and a photon with frequency ~2 is
emitted, is given by the expression

As mentioned in the Introduction, the energy levels of
the P-carotene molecule in solutions are modulated by the
thermal motion of the surrounding solvent molecules.
The number of solvent molecules participating in the fre-
quency modulation is quite large and thus the stochastic
property of the frequency modulation can be regarded as a
Gaussian process as a consequence of the central-limit
theorem. Furthermore, the Markovian property can be
assumed for simplicity. The model system of interest is
described by a three-level system in which only the excited
or intermediate state suffers a random frequency modula-
tion. The relevant Hamiltonian is written as

y(2)( ) d d iu(t2+tu2t( I —iH(t ——t() —iH(t) —(2) —iHt2ti t2e &c (e Vbe ' ' V()e ' ~a), (2.4)

where V~. is the transition matrix element of the electromagnetic interaction Hamiltonian between the
~

i ) and
~j )

states and the Planck constant )II'will be put to be unity in the following. The time-development operator exp( —iHt)
should be interpreted as an ordered exponential since the Hamiltonian is time dependent. The emission spectrum
I (co),co2) is identified with the transition probability per unit time, i.e.,

1(~),~2)= lim &
~

q'"(t)
~

'&,
t~~ dt

(2.5)

where the angular brackets denote the average over the stochastic variable x(t). Accordingly, apart from unimportant

factors, it is found that

I ( (t) I it~ 2 ) Re[~ I +~ II +~ III 1

with the terms

(2.6)

(2.7)~I = f dr f dr' f dp expr —(yb+y', iba)2)r (yb+—i bee))r' ——[y, +i (ba)) —bc@2)]p f (rr', p) I, —
0 0 0
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An= f « f"dr' f dpexp[ —(yb+y, &—Am'z)r (—yb+iAco, )r' —2ybp f—(r, r',p)],0 0 0

dp exp[ —{yb+y, i~—~2)r {yb i~~1)r 2ybp f+—(r,r', p)]0 0 0

and with
I

f+(r, r',p)=6' [P(r)+P(r') e "(1—e ')(1—e ')]ly'
and

(2.8)

(2.9)

(2.10)

P(r) =e +y r —1, (2.11)

where hen& ——co, —(Eb E, ) an—d b, co& ——roz —(Eb E, ) —and the damping constants yb and y, denote half of the population
decay rates of the

~

b ) and
~

c) levels, respectively. The three terms At, An, and Atn correspond to the choice of the
chronological order among the time variables t]„tz, t &, and t'z, and ~, ~', and p are the time intervals as shown in Fig. 1.

Now, the way to evaluate the following integral is discussed. In the expression
00 00 00 ff dr dr' dpexp[ or —cr'r' —zp ——a(e 'r+y r 1)—a—(e r +yr' —1)+ae r"(1—e r')(I —e r')],

0 0 0

(2.12)

o., o', and z stand for the constants appearing in (2.7)—(2.9). y is abbreviated as y, and a =d /y~. In the previous
publication, the last exponent in (2.12) was expanded and the p integral was calculated first. This expansion is rapidly
convergent for the motional narrowing regime because a =b, /y is small, whereas it is not efficient for the slow
modulation regime since the expansion parameter a becomes quite large. Hence, a more general formalism is required to
cover the whole range of the parameter ratio 6 /y . For that purpose, the scaling of variables t and t is introduced as

1 =u/k~, 1 =u /k~

and the integral in (2.12) is rewritten as

(2.13)

00 OO OO

du du' dp exp[ —cru —o 'u' —zp —a (e ~"+pu —1)—a (e ~" +pu' —1)+e ug(u)u'g(u')],
0 0 0

(2.14)

where g(u)=(1 —e ")/pu, p =y /b, , a =p, P =o/b, and cr'=cT'/b~. The function g(u) decreases monotoni-
cally and is less than unity irrespective of the value of p. Thus the last exponent in (2.14) can be expanded without a
large factor and the result is given by the expression

(+1)" 1 f du[ug(u)]" exp[ —ou —a (e ~"+pu —1)]
o n. z+ny~

X f du'[u'g{u')]" exp[ —c7'u' —a (e ~" +pu' —1)] . {2.15)

The integrals in (2.15) have a simple expression in the continued-fraction representation, as given in Appendix A. This
formalism is effective over the entire range of the parameter ratio, p =y /6, and can describe the change in the secon-
dary emission spectrum in a unified manner from the slow-modulation regime to the motional narrowing regime.

Typical secondary-emission spectra calculated by the above formalism are shown in Fig. 2. Here the validity of the
factorization approximation introduced by Mukamel is also examined. It will be shown that the factorization approxi-
mation cannot be justified in the slow-modulation regime since the correlation time of the random frequency modulation
is long and the average of the product of three Green functions cannot be decoupled into the product of three indepen-
dently averaged Green functions. The factorization approximation corresponds to retaining only the first term (n =0)
out of the summation in (2.15), namely,

I« f dr' f dp exp[ or cr'r' —zp—a'(e— —+y r I)—a(e r +y—r' 1)

(1— )(1— ))
' f du exp[ —ou —a(e "+pu —1))f du'exp[ —o 'u' —a{e &" +pu' —1)] (2.16)

Here the integrals with respect to u and u' give rise to the
emission and absorption spectra in the linear response
theory, respectively. The factor z is y, +i (hen& —hcoz) for
the term AI and 2yb for both terms Aqq and A»&. When

y »yb and y„namely, in the motional narrowing re-
gime, the contribution from the terms for nonzero n's in
(2.15) can be safely neglected. On the other hand, in the
slow-modulation regime where yb and y, »y the con-
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FIG. 1. Three typical diagrams are drawn according to the
chronological order among four time variables t ~, t2, t j, and t2.
The time proceeds from left to right and the latest time is t~.
The wavy lines represent the photon absorption and emission
processes.

tribution from the successive terms in (2.15) cannot be
neglected and the factorization approximation becomes
invalid. Particularly for the term A& in (2.7), the contri-
bution from a nonzero n gives rise to a broad Lorentzian-
shaped Raman component with a half width at half max-
imum (HWHM) of ny . As will be seen later, this con-
tribution affects also the luminescence spectrum through
its negative tail since the term 3

&
vanishes when integrat-

ed over the emission frequency. In Fig. 2 the modulation
rate is varied to cover the typical range from the slow-
modulation regime to the fast-modulation regime while
the modulation amplitude and the longitudinal relaxation
rates of both the intermediate and final states are fixed.
The incident light energy is chosen in the higher-energy
side of the resonance. The emission spectrum calculated
by the partial sum of the series in (2.15) up to the Nth
term will be denoted by Sz. Thus S& corresponds to the
result of the factorization approximation. In the fast-
modulation regime (c) the convergence of the successive
terms in (2.15) is very rapid and S2 gives almost S„as
the final result. In this case the factorization approxima-

tion gives a reasonable result. In the intermediate modu-
lation regime (b), the convergence is not so fast and sum-
mation up to the fifth term is necessary to obtain a final
result of S . In the slow-modulation regime (a) the par-
tial sum up to at least the fifteenth term is required to get
the final emission spectrum S . It is to be noted that S2
gives a negative emission spectrum on the low-energy side.
S& has a luminescence peak at b, co2 ——0, whereas S
(=-S») does not have a luminescence peak but does have
one peak at the energy of Raman scattering. The negative
contribution from the broad Raman component erased the
luminescence peak. Thus, the factorization approxima-
tion gives an erroneous result in the slow-modulation re-
gime.

III. INTEGRATED INTENSITY OF RAMAN
SCATTERING AND LUMINESCENCE
AND THEIR EXCITATION SPECTRA

Experimentally the excitation spectra for the Raman
scattering and the luminescence were obtained by measur-
ing the integrated intensity of each component as a func-
tion of the off-resonance energy of the incident light.
Here the integrated intensities of the Raman scattering
and the luminescence are calculated theoretically and their
excitation profiles are studied from the slow-modulation
regime to the fast-modulation regime. The Raman com-
ponent is identified with a sharp peak around 6~2 ——Au&
after subtracting the broad background, namely, omitting
the broad Raman component. On the other hand, the in-
tegrated intensity of the luminescence component is ob-
tained by integrating the whole emission spectrum except
the sharp Raman peak. This classification does not have
a definite physical basis but corresponds to the actual pro-
cedure dealing with the experimental data. ' The integrat-
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FIG. 2. Secondary emission spectra I(hen&, Aco2) are given as a function of the emission frequency Aco2 for Ecol ——10 from the
slow-modulation regime to the fast-modulation regime. The rates of the frequency modulation y are (a) 0.4, (b) 4, and (c) 15, while

the modulation amplitude 5 is fixed at 4, and half of the longitudinal relaxation rates are chosen as y& ——0.5 and y, =0.25. The
emission spectrum calculated by the partial sum of (2.15) up to the Nth term is denoted by S~. In each figure the final emission spec-
trum S„is represented by S& for the maximum number of N.
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ed intensities of the Raman scattering and the lumines-
cence will be denoted by R (he@) and L (h~), respectively,
where hen is the off-resonance energy of the excitation
light. The excitation spectra are obtained by normalizing
R (bee) and L (hen) by the values R (0) and L (0), respec-
tively. The excitation spectra are given in Fig. 3, where
the parameter values are chosen as y b

——0.005,
y, =0.0025, 4 =1, and y is varied as 0.1, 1, and 10.
The excitation light energy is chosen in the lower-energy
side of the resonance. In the calculation the normalizing
denominators R (0) and L (0) are replaced by the values
of R (bee = —2) and L (bco = —2), respectively I.n the
intermediate- and the slow-modulation regimes, the exci-
tation spectrum of the luminescence decreases faster than
that of the Raman scattering and a substantial deviation
appears between the two excitation profiles. This fast de-
crease in the luminescence intensity can be understood
qualitatively as follows. The luminescence is the emission
after the photoabsorption followed by relaxation and its
intensity is proportional to the amount of dephasing that
the excited level suffers during the period on the order of

~
b,co

~

' where b,co is the off-resonance energy of the ex-
citation light. On the other hand, the total intensity of
the secondary emission is determined by the photoabsorp-
tion process and is proportional to (b,co) in the large
off-resonance region. Thus, roughly speaking, in the case
of large off resonance the intensity of luminescence de-
creases more rapidly than that of Raman scattering by at
least the factor y /

~

b.co
~

. In the fast-modulation regime
(y =10) the excitation profile of the luminescence ap-
proaches that of the Raman scattering and shows the
asymptotic behavior of (bco) in the large off-resonance

region. These characteristic features of the excitation
spectra can be useful in identifying which regime the sys-
tem in question belongs to.

Besides the excitation spectra, the relative intensity ra-
tio between the Raman scattering and the luminescence
gives important information about the relaxation process-
es. Consider a quantity defined by

L (b,co)

R (b~)+L (b~)
This quantity is plotted in Fig. 4 using the same parame-
ters as in Fig. 3. The quantity is quite sensitive to the pa-
rameter ratio b, /y . Thus, combining the excitation
spectra and the plot of S(b,co), the modulation parameters

and y can be determined rather precisely.
Next, the effect of inhomogeneous broadening on the

excitation spectra will be discussed. Inhomogeneous
broadening is caused by several mechanisms. In the case
of P-carotene in solutions, the effect of the thermal
motion of the nearby solvent molecules on the energy lev-
els of the P-carotene molecule can be decomposed into a
random part with a time average of zero and a time-
independent part that may be regarded as almost static
during the light scattering process. The former part can
be taken into account in terms of the random frequency
modulation described in Sec. II, while the latter part can
be attributed to inhomogeneous broadening. ' The gross
features of the excitation profiles are not changed by the
inclusion of the inhomogeneous distribution of the
intermediate-state energy. However, in order to determine
the modulation parameters from the comparison between
the experiment and the theory, the inhomogeneous distri-

1.Q-

C0
~~

CJ

4J

Q
1

10

05-

',(a)

10 I

-15
huit(a*. units)

FIG. 3. Excitation profiles of the Raman scattering (solid
line) and the luminescence (dashed line) are plotted without tak-
ing account of the inhomogeneous broadening. The rates of the
frequency modulation y are (a) 0.1, (b) 1, and (c) 10, while the
modulation amplitude 5 is taken to be unity and half of the
longitudinal relaxation rates are chosen as y b

——0.005 and
y, =0.0025.

I
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FIG. 4. The ratio S(her&) of the luminescence component to
the total intensity is plotted as a function of the off-resonance
energy h~& of the incident light. The same parameter values as
in Fig. 3 are chosen. The inhomogeneous broadening is not tak-
en into account.
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dhE exp
(&E)' o oI ( b, to1 AE, b—.co2 b,E),—
2A

(3.2)

bution of the transition energy has to be taken into ac-
count. The inhomogeneous distribution of the
intermediate-state energy can be assumed as Gaussian.
The emission spectrum is calculated by

the inhornogeneous distribution of the transition energy in
order to estimate the modulation parameters and the inho-
mogeneous width from the experimental data. In fact,
Watanabe et al. ' estimated these parameters in the system
of P-carotene in solutions by comparing the theoretical
and experimental excitation profiles of the Raman scatter-
ing and the luminescence.

with b,co1 co1 (——Eb —E, ), —b, to& to2 ——(Eb —E, ),—and
AE =Eb —Eb where I denotes the secondary emission
spectrum calculated by (2.6) and Eb and b,, are the peak
energy and the standard deviation of the inhomogeneous
distribution, respectively. Typical excitation spectra are
shown in Fig. 5 for the intermediate-modulation regime,
i.e., y =6 by assigning 6, the values 6, 3A, and
5b, . The absolute values of R (b,co)/R (0) and
L(b,to)/L(0) depend sensitively on the inhomogeneous
width. The excitation spectrum of the luminescence
shows a Gaussian-type decrease as a function of the off-
resonance energy, as seen clearly in the cases of 6, =36
and 56 . This behavior was actually observed in the ex-
periments. ' The effect of inhomogeneous broadening on
the quantity S(hco) in (3.1) is also examined for the case
of y =1 and 6 =1 by assigning the inhomogeneous
width b,, the values 6, 3h, and 56 . The results are
shown in Fig. 6. The dependence on 6, is remarkable and
this dependence can be useful in determining the modula-
tion parameters y and b and the inhomogeneous width
6, . As a consequence, it is important to take into account

IV. TRANSIENT RESPONSE OF RAMAN
SCATTERING AND LUMINESCENCE

I(to„to2,T)=(AT) 'g
~

b,P' '(T)
~

(4.1)

with

The study of transient response under pulsed excitation
is important in clarifying the dynamics and the relaxation
processes in a material system. The transient secondary
emission process was theoretically formulated first by
Takagahara, Hanamura, and Kubo' and the formulation
was later improved by Hanamura and Takagahara. " The
time-resolved emission spectra from a three-level sys-
tem ' and from a localized electron-phonon sys-
tem ' ' ' were studied extensively. The following clari-
fies the effect of the finite correlation time of frequency
modulation on the transient behaviors of Raman scatter-
ing and luminescence.

According to the formulation by Hanamura and Taka-
gahara, " the time-resolved emission spectrum at frequen-
cy co& is calculated by the formula

T+ZT
5P' '(T)=

T
t$ pE p e c e,be (4.2)

where c01 and e(t) are the carrier frequency and the envelope of the excitation pulse, respectively, ( T, T +6 T) is the time
interval during which the photodetector is open, and the summation with respect to coq is over the spectral width of the
photodetector. The frequency-time uncertainty due to the finite observation period b, T is incorporated automatically in

terms of the finite interval integration with respect to t&, where t& implies the photon-emission time. Consequently, ac-
cording to the diagrams in Fig. 1, the result is given by

I(co1,to2', T) =Re[B,+Brr+Bnr]

with

(4.3)

T+AT
Bq —— dt) dt's dt) dt's tq c tq C t( —t']

XexPI —( Yb+y, 1~~'2)(tl —t2) (yb+1 ~tel)(t 1 t2)

—[y, +i (bcO1 —ACO2)](t2 t'1 ) f (t—1 t2, t'1 t2, t2 —tl —) I— —
hT hT —~ AT —p —7 oo= f dr f dp f dt', f d~'s(T+p+t', )s(T+t', —r')C(p+r)

&(expI —(yb+y, ibto2)r (yb+ihto1)r'— —
—[y, +i (bco1 —bco2)]P f (r, ~',P) I, —

T+hT t~

Brr ——f dt, f dt', f dt2 f dt's(t2)e(tz)C(t, t',)— (4.4)

&&exp[ (yb+ Y 1~to2—)(tl t 1 ) (yb+~ito1)2(tt2)

—2yb(t'1 —t2) f (t1 —t1, t2 —t2, t1 t2)]—
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b, T hT —~ cg) 00= f d7- f dr', f dp, f dr'e(T+rI p—)e(T+t', —p —r')C(r)

X exp[ —(yb+y, i b—cu2)r (y—b+i he@~)r' —2ybp f —(r, r', p)], (4.5)

and

T+hT tl t'1 t2
Bttt= f «& f «& f dr& f dr, e(r, )E(r2)C(r, r'—, )

Xexp[ —(yb+y, —ibcoz)(t~ —r'& ) —(yb idaho~—)(rz —r2)

—2yb(r', r,')—f+(—r, r'„r—2 r„r',——t2)]
hT dT —W oo QO

d7 dt's dp, dv E, T+ti —p —w E, T+ti —p C T

Xexp[ (yb—+y. ~~~2—)r (yb —i~~—iH' 2yb—p f+(~—r' p)] (4.6)

C(t)= f dco2D(co&)e (4.7)

where co2 is the center frequency of D (co). In the follow-
ing D(ro) will be assumed as Lorentzian with a HWHM
of yo for simplicity. Hence C(t) takes an exponential
form as

where the variable t& is shifted by the amount T on the
second line of each expression. The function C(t) is the
Fourier transform of the spectral resolution function
D (co) of the photodetector, namely,

transform will be introduced as

E(t)= f des f(co)e'"'.

When the incident pulse envelope is Gaussian, i.e.,

1 2

e( t) = exp
2VTtp

the associated spectral function f (co) is given by

f(co)=(2~) 'exp( co tp/2), —

(4.9)

(4.10)

(4.11)

C(t) ~ exp( —yot) . (4.8)

The pulse envelope will be taken in a realistic form, e.g.,
Gaussian form, and thus a Laplace transform is not con-
venient for carrying out the multifold integrations involv-
ing the pulse envelope E( t). Instead, the Fourier

where tz is the standard deviation of the pulse width.
By introducing the scaling defined by (2.13) and mak-

ing use of the expansion in (2.15), each contribution of Br,
Bn, and Btn in (4.4)—(4.6) can be rewritten in a tractable
form as
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FICx. 5. Excitation profiles of the Raman scattering (solid
line) and the luminescence (dashed line) are plotted taking into
account the inhomogeneous broadening. The inhomogeneous
width 5, is varied at the values (a) 6, (b) 3A, and (c) 56
while the modulation amplitude and rate are fixed as 6 =1
and y =1, respectively, and half of the longitudinal relaxation
rates are chosen as yb ——0.005 and y, =0.0025.

hw {arb.units)

FIG. 6. The ratio S(hco~) of the luminescence component to
the total intensity is plotted as a function of the off-resonance
energy hen& of the incident light taking into account the inhomo-
geneous broadening. The same parameter values are chosen as
in Fig. 5.
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f d f d f (~~~(co ) c(~+M')T
E ( co +co )

oo 4T
X g (n!) ' f du f du'[ug(u)]"[u'g(u')]"

n=0

X exp[ cr—u (c—r '+ g') u
' a—(e ~"+pu —1)—a (e —&"'+pu ' 1)]

l l (co+cd )4T~X [e (e —e ' ' )/g,

~2 ~2 [~2 ~2~ rn )—(e —e )/gp], (4.12)

with

ki=[yo+i(~+~')l/~ k2 YO/~, ki=ny +yo+z+i~'
gz

——ny~+yo+z ico—, g'=ico'/b, , z =y, +i (5co& —5coz),

cr=(yb+y, incog)/b, —c7'=(yb+ihco])/b,
(4.13)

Bn= f dco f dco e
l (co+co )

X g (nt)
ny +z+i (co+co')
4T

X f du f du'[ug(u)]"[u'g(u')]"(e ' —e '
)

X exp[ —o.u —(cr '+g')u' —a (e ~"+pu —1)—a (e ~" +pu' —1)], (4.14)

with

and

g =(yb+y~ —i5co&)/b~, u'=(yb —ibco&)/b, , z =2yb, (4.15)

B„,= fd fd
l (co+co')

( —1)" 1

n! ny +z+i (co+co')

4T
X f du f du'[ug(u)]"[u'g(u')]"(e' + '"—e '")

X exp[ —ou —(o '+g')u' —a(e "+pu —1)—a (e ~" +pu' —1)], (4.16)

with

o=(y b +y i 'Acoq )/h-
er '=(yb+i b,co))/b,

z —2pb

(4.17)

where g~, gz, and g' are common to the three terms. The
integrations with respect to u and u' are decoupled and
can be easily carried out. The u' integral over a semi-
infinite interval can be calculated by the formalism given
in Appendix A and the u integral over a finite interval
can be performed directly or by the inhomogeneous con-
tinued fraction representation developed in Appendix B.

Typical transient responses of the Raman scattering

and the luminescence are shown in Figs. 7—12. In the
calculation, the center frequency coq in (4.7) is set either at
the Raman line or at the luminescence line. The relevant
parameters are chosen as

h~ = 1, yy
——0.005, y, =0.0025,

yp ——0.5, tp ——20, hT =5,
the modulation rate y is assigned the values 0.1, 1, and
10, and the off-resonance energies of the incident light
hen& are chosen as —15, —10, and —5. The unit of time
is taken to be the inverse of the unit of energy (frequency).
The calculated intensity is normalized so that the max-
imum value is unity. The maximum point of the Raman
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FIG. 7. Transient behavior of the emission intensity at the
Raman line. The envelope of the excitation pulse intensity is

given by the dashed curve. The off-resonance energy of the in-

cident light Ace& is varied at the values (a) —5, (b) —10, and (c)
—15, while the modulation amplitude and modulation rate are

taken as 5 =1 and y =0.1, respectively, and half of the long-

itudinal relaxation rates are chosen as yq ——0.005 and

y, =0.0025. The pulse width t~ (standard deviation) is 20 and

the spectral resolution yo and the time gate width hT of the

photodetector are 0.5 and 5, respectively.

FICx. 8. Transient behavior of the emission intensity at the
Raman line. The parameters are the same as in Fig. 7 except
that the modulation rate y is 1.

1.0

component is almost coincident with the incident pulse
peak, while that of the luminescence component is consid-
erably delayed from the pulse peak. In general the Raman
component responds quickly to the excitation pulse and
its transient behavior is very close to the envelope of the
excitation pulse intensity. In the long-time tail of the
transient response there appears a slow component remin-
iscent of luminescence. This mixing of the luminescence
component into the Raman component is due to the spec-
tral resolution function D(~) in (4.7) that covers the
luminescence line in the Lorentzian tail, and is also due to
the broad background of luminescence that is present even
at the Raman frequency. The intensity of the slow com-
ponent decreases quickly as the off-resonance energy

~

hen~
~

increases, as can be seen from Figs. 7—9. The
slow component decreases most rapidly in the slow-
modulation regime when the off-resonance energy

~

b,co&
~

is increasing. This corresponds to the fact that the excita-
tion spectrum of the luminescence decreases most rapidly
in the slow-modulation regime as a function of the off-
resonance energy.

On the other hand, the transient response of the
luminescence line is quite different from that of the Ra-

'g 10
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I
I
I
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50 100
Time(arb units).

FIG. 9. Transient behavior of the emission intensity at the
Raman line. The parameters are the same as in Fig. 7 except
that the modulation rate y is 10.
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FIG. 10. Transient behavior of the emission intensity at the
luminescence line (solid curve) and the population of the inter-

mediate state (dot-dashed curve). The off-resonance energy hen&

of the incident light is varied at the values {a) —5, (b) —10, and

(c) —15. The intensity envelope of the excitation pulse is given

by the dashed curve. The modulation amplitude and modula-

tion rate are chosen as b =1 and y =0.1, respectively. The
other parameters are the same as in Fig. 7.

man line. First, the temporal peak of the luminescence
component is delayed from that of the incident pulse en-
velope. Second, the decay characteristics are determined
by the longitudinal relaxation constant of the intermediate
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FICz. 11. Transient behavior of the emission intensity at the
luminescence line (solid curve) and the population of the inter-
mediate state (dot-dashed curve). The same parameter values
are chosen as in Fig. 10 except that the modulation rate y is 1.
The curves (a), (b), and (c) of the luminescence intensity almost
overlap.

FIG. 12. Transient behavior of the emission intensity at the
luminescence line (solid curve) and the population of the inter-
mediate state (dot-dashed curve). The same parameter values
are chosen as in Fig. 10 except that the modulation rate y is

10. The curves (a), (b), and (c) of the luminescence intensity al-
most overlap.

(excited) state and are almost independent of the off-
resonance energy and also of the modulation rate. It is in-
teresting to compare the transient behavior of the
luminescence intensity with that of the intermediate-state
population since the lumi. nescence intensity is usually con-
sidered to be proportional to the latter. The
intermediate-state population P&(t) under pulsed excita-
tion is given by, apart from unimportant factors,

s (co+co')t

Pb(t)=Re f dc@ f den'f(co)f(co')
27 b + l (CO+ CO )

yb+i (co'+b.cD/)
XIp

m

(4.18)

where the notations are the same as in (4.12)—(4.17) and
Ip is given in Appendix A. The calculated results are
shown in Figs. 10—12 by dot-dashed curves which are
normalized such that the maximum value is unity. Unex-
pectedly enough, a large difference is found between the
luminescence intensity and Pb(t) especially in the case of
the intermediate- and slow-modulation regimes. In these
regimes it can be considered that the coherent interaction
with the radiation field is dominant during the pulse exci-
tation and the intermediate state is excited adiabatically.
Thus P&(t) follows the intensity envelope of the excitation
pulse at the initial stage. After the coherence of excita-
tion faded out, Pb(t) decays with the radiative lifetime.
These features are more remarkable for larger off reso-
nances

~

Aco
~ ~

. Experimentally the intermediate-state
population Pt, (t) can be monitored by the spectrally in-
tegrated emission intensity over the whole emission band.
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I~(t) = AF exp(t/t~)']
I

+As f dt'e ' exp(t'/tz) ] .

The first and second terms in (4.20) can be interpreted as
the fast component and the slow component, respectively.
Accordingly, the time-integrated intensities of these com-
ponents are given by

(4.20)

In fact, it can be shown that
T+hTf dco2I(~i, coq', T) ~(bT) ' f dtI'b(t) . (4.19)

The experimental observation of the above difference is
quite interesting to reveal the effect of the finite correla-
tion time of frequency modulation.

The calculated transient response Iz(t) at the Raman
frequency can be fitted by a linear combination of the
Gaussian pulse shape and the convoluted pulse shape with
the longitudinal decay curve, namely,

1O i-

102-

10

IF——~mtqAt', Is ——Mutt, As/(2yb ), (4.21)

respectively, where the subscript F ( S) refers to the fast
(slow) component. The ratio of the intensity of the slow
component to the total intensity is defined by the expres-
sion

R =Is/(Is+IF) (4.22)

and will be examined as a function of the off-resonance
energy Ace&. The results are plotted in Fig. 13. Although
only a few points are calculated, the general trend can be
clearly seen. The ratio R shows the steepest decrease in
the slow-modulation regime as the off-resonance energy
increases. This type of figure can be useful in determin-
ing the modulation parameters from the experimental
data. It is important to note that the ratio R of (4.22) is
quite different from the ratio S(hen) in (3.1) which is as-
sociated with the spectrally integrated intensity. This is
because the time-integrated intensity in (4.21) is spectrally
limited by the spectral resolution function D (co) in (4.7).

In addition the effect of the finite observation period
hT on the time-resolved emission spectra should be men-
tioned. When AT is reduced, the emission spectrum be-
comes broader as a consequence of the frequency-time un-
certainty. Moreover, when the observation period hT be-
comes shorter, the intensity ratio of the Raman com-
ponent to the luminescence component decreases since the
integration range of tz is limited by AT for the term B&
which contributes to the Raman component. As a result,
the ratio R of (4.22) becomes larger for shorter b, T. This
is confirmed by the comparison of Fig. 13 with Fig. 14
which shows R for the same parameters as in Fig. 13 ex-
cept that ET=0.5. Thus the details of the observation
conditions, e.g., D(co) and the observation period bT
must be specified carefully in the analysis of experimental
data to determine the modulation parameters.

Mukamel et al. ' identified the slow component by
another criterion for a particular shape of the excitation
pulse and discussed the dependence of a quantity similar
to (4.22) on the off-resonance energy However, in. their
work only the total intensity of the secondary emission is
concerned and spectral resolution is not attempted. Thus

I

-5
I

-10
I

-15

hill(arb. units)

FIG. 13. The ratio R of the slow component to the total in-
tensity is calculated from the transient response curves at the
Raman line in Figs. 7—9, according to formulas (4.21) and
(4.22). The solid curves are drawn only to guide the eye. The
modulation rate y is varied at the values (a) 0.1, (b) 1, and (c)
10, while the modulation amplitude 6 is fixed to be 1.
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FIG. 14. The ratio R of the slow component to the total in-
tensity at the Raman line. The parameters are the same as in
Fig. 13 except that the observation period (time gate width) hT
is 0.5. The solid curves are drawn only to guide the eye.
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a comparison of our results with theirs is not relevant.
As seen above, the transient emission intensity at the

Raman frequency has both the fast and slow components,
whereas the slow component is predominant in the tran-
sient behavior of the emission intensity at the lumines-
cence frequency. It is interesting to study the transient
behavior of the emission intensity at the frequencies be-
tween the Raman line and the luminescence line. Typical
results are given in Figs. 15—17 for the parameters

b,mi ——10, 5 = 1, yb =0.005, y, =0.0025,

and by varying the modulation rate y, to be 0.1, 1, and
10. Four emission frequencies were selected between the
Raman line and the luminescence line for hu2 ———2, —4,
—6, and —g. The character of the transient behavior
changes continuously from a Raman-like one to a
luminescencelike one across the emission frequencies.
This change of character can be estimated by the change
in the quantity R defined by (4.22). The change in R as a
function of the emission frequency is plotted in Fig. lg
for the three representative modulation regimes by fixing
the off-resonance energy of the incident light b,co& and the
modulation amplitude Am. Although the number of cal-
culated points is rather limited, the characteristic trend
can be clearly seen. Around the luminescence frequency
(b,co2 ——0), the ratio of the slow component to the total in-
tensity is nearly unity. This type of plot can also be use-
ful in estimating the modulation parameters.
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FIG. 16. Transient behavior of the emission intensity at
several emission frequencies between the Raman line and the
luminescence line. The notations and parameter values are the
same as in Fig. 15 except that the modulation rate y is 1.
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FICx. 15. Transient behavior of the emission intensity at
several emission frequencies bco2 between the Raman line and
the luminescence line, namely, (a) —10, (b) —8, (c) —6, (d) —4,
(e) —2, and (f) 0, for the off-resonance energy of the incident
light Acu~ chosen as —10. The amplitude and rate of the fre-
quency modulation are chosen as 6 =1 and y =0.1, respec-
tively. The other parameters are the same as in Fig. 7.
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FIG. 17. Transient behavior of the emission intensity at
several emission frequencies between the Raman line and the
luminescence line. The notations and parameter values are the
same as in Fig. 15 except that the modulation rate y is 10.
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10 -5
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-10

FIG. 18. The ratio R of the slow component to the total in-

tensity is plotted as a function of the emission frequency hco2,
while the off-resonance energy of ihe incident light Ac@& is fixed
to be —10. The rate y of the frequency modulation is varied
at the values (a) 0.1, (b) 1, and (c) 10. The other parameters are
the same as in Fig. 15. The solid curves are drawn only to guide
the eye.

V. SUMMARY

The effects of the finite correlation time of the frequen-
cy modulation or, in other words, the nonmotional nar-
rowing effects on the secondary emission spectra have
been clarified on the basis of the general stochastic theory.
With respect to the emission spectra under stationary ex-
citation, the luminescence component tends to be reduced
relative to the Raman scattering component in the slow-
modulation regime. The excitation spectrum of the
luminescence decreases more rapidly than that of the Ra-
man scattering as the off-resonance energy of the excita-
tion light increases. This trend can be understood by not-
ing that the period of staying in the excited state is in-
versely proportional to the off-resonance energy and that
the luminescence component arises from the dephased

In final consideration, the study of the transient
response of the Raman scattering and the luminescence
under pulsed excitation is quite important to reveal the
dynamics of the system in question and to determine the
various relaxation parameters in combination with the
spectral characteristics of the emission under stationary
excitation. The longitudinal relaxation rate can be deter-
mined from the decay profile of the luminescence com-
ponent, and the modulation parameters can be estimated
from the dependence of the decay characteristics of the
Raman component on the off-resonance energy of the ex-
citation light and on the emission frequency.

part of the excitation. In the transient response, the
luminescence component decays exponentially with the
longitudinal relaxation rate of the excited state. It is
found for the first time that the difference is unexpectedly
large between the transient behavior of the luminescence
intensity and that of the intermediate-state population for
the slow-modulation regime and that the difference can be
an indicator of the nonmotional narrowing effect. The
Raman component shows two kinds of transient behavior:
one is a fast response following closely the excitation
pulse envelope and the other is the same exponential decay
as the luminescence component. The ratio of the slow
component to the total intensity at the Raman line is sen-
sitively dependent on the modulation parameters, i.e., the
correlation time and the amplitude of modulation. The
modulation parameters can be estimated from the experi-
mental data by making use of these dependences.

The present theory has been applied successfully to in-
terpret the experiments by Watanabe et al. ' on the secon-
dary emission spectra from f3-carotene in solutions. Re-
cently the nonmotional narrowing effect on the secondary
emission spectra has been found in various kinds of ma-
terials. Nakamura et al. ' observed this effect in the
LO-phonon Raman spectra from Cd„Zn& „Temixed
crystals and Kato et al. ' found the same effect in the
vibronic Raman spectra from NaNO2 crystals. These ex-
perimental data can be interpreted in terms of the present
stochastic theory. However, in order to understand the
microscopic mechanisms of the frequency modulation and
to estimate the modulation parameters quantitatively, ad-
ditional detailed studies are necessary on both the theoret-
ical and experimental aspects.
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APPENDIX A. HOMOGENEOUS
CONTINUED-FRACTION REPRESENTATION

In this appendix we describe the continued-fraction rep-
resentation of the integral given by

I„(o)= f "
du[ug(u)]" exp[ ou —aP—(u)], (Al)

with

g(u)=, P(u)=e ~"+pu —I, a =I/p
PQ

(A2)

where cr is a complex number and p is a real constant.
First, let us consider the following integrals:
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J„(o)= f du(1 —e i'")"exp[ —ou —aP(u)]

(n =0, 1,2, . . . ) . (A3)

Partially integrating (A3) and using the relations

P'(u) =p (1—e i'") and P"(u) =p [p —P'(u)], (A4)

and

Ip(cr) = 1

Kp(o)

n!I„(cr)= (n & 1) .K„(o)K„ i(o) . Kp(cr)

(A14)

(A15)

we find the recurrence relations

p 'Ji (o ) = 1 —oJp(o ),
and

(A5)

The above continued-fraction representation is rapidly
convergent over the entire range of the parameter p and is
convenient for calculating numerically the integral in
(Al).

p 'J„+i(o)=npJ„i(cr) —(cr+np)J„(cr) (n & 1) .

(A6}

and

Ii(o )=1 crIp(cr), — (A7)

Since I„(cr)=J„(o)/p", the recurrence relations for
[I„(o)]„pare given by the equations

APPENDIX B: INHOMOGENEOUS
CONTINUED-FRACTION REPRESENTATION

The continued-fraction representation is presented for a
finite-interval integral defined by

M
H, (o)=f du[ug(u)]" exp[ —cru —aP(u)]

I„+i(cr)=nI„ i(cr) —(cr+np)I„(o) (n & 1) .

These recurrence equations are solved as follows:

1 1
Ip(o }=

1/Ip(o) cr+Ii(o)/Ip(cr)

(A8)
(n =0, 1,2, . . .), (Bl)

where the notations are the same as in Appendix A and M
is the upper bound of the integral. In this case inhomo-
geneous terms appear in the recurrence relations due to fi-
nite interval integration; namely,

H, (o)=P, —crHQ(cr), (B2)

1o+ o+p +I,(o)/I, (o)
1

and

H„+i(o) =P„+i (o+np)H„(cr—) +nH„ i(o )

(n & 1), (B3)

and

I„(cr)=

o.+
o+p + o+2p+-

nI„ i(o )

(A9)

where

and

Pi ——1 —exp[ crM —a P—(M)],

P„+,= —[(1—e -i'M) /p]" exp[ —oM —ay(M) ]

(B4)

o.+np+
cr+ (n + 1)p + 7l +2

o'+ n+2 p+
(n &1) . (A10)

(n & 1) . (B5)

Since the recurrence equations are linear with respect to
[HJ(o )]1 p, the solution is given by the sum of solutions
as

The foregoing results can be written more compactly
through introducing the functions [K„(o)]„pdefined by

[Hi. (cr)]J p
——g [HJ'"'(cr)]1. Q,

n=1
(B6)

and

Kp(o ) =cr+
2o+p + o.+2p +

(A 1 1) where [HJ"'(o )]~ Q is the solution of the modified-
recurrence equations in which only one inhomogeneous
term P„is retained. The modified-recurrence equations
are given as

K„(cr) =o +np + n+1
cr+(n+1)p+ n+2

o'+ n+2p+
(n & 1) . (A12)

Hi(o ) = crHQ(cr), —

Hi(cr) =Hp(o } (o+p)Hi(o ), —
(B7)

(B8)

A recurrence relation exists such that

K„(o)=o+np+ (n &0) .n+1
K„+i(o )

Accordingly, Eqs. (A9) and (A10) can be rewritten as

(A13)

H„ i(o ) = (n —2)H„ i(o) [o + ( n ——2)p]H„z(cr),
(B9)

H„(o.) =P„+(n —1)H„2(o) —[o + (n —1)p]H„ i(o ),
(B10)
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H„+&(o ) =nH„~(o')—(cr+ np)H„(cr), (811) (n —2)H„3(cr)H„2(o)= K„2o.
P.

K„2(cr)K„ t(o )

For Eq. (811) and the following, the solution is obtained
in the same way as in Appendix A and is given by

and

H„(o) =nH„ t(o )/K„(o), (812)

H„+t(cr)=(n + 1 )H„(cr)/K„+~(o), (813)

and so on. Then, substitution of (812) into (810) leads to
the equation

H„~(o) = [P„+(n—1)H„2(o)]/K„&(o), (815)

and again substituting this relation into (89) we find

[o+(n —l)p+ n/K„(cr)]H„)(o)
=P„+(n—1)H„2(o.) . (814)

On account of the recurrence relation (A13) the factor
within the parentheses on the left side of (814) is equal to
K„&(o). Hence we get

(816)

An n —1 times repetition of this procedure leads to the
result

( —I)"+'P
Hp(cr) =

Kp(o)K, (o) . K„,(o)
(818)

Hi(cr), H2(o), . . . , and H„ i(o ) can be calculated suc-
cessively by using the recurrence relations (87)—(89).
Once H„ i(o) is obtained, H„(o)and the following can
be calculated by the recurrence relations (812) and (813).

Then, taking the sum of the solutions thus obtained for
each n, the solution of the inhomogeneous recurrence
equations (82) and (83}can finally be obtained. This for-
malism converges quite rapidly and is more efficient than
direct integration, especially for large values of M.

Hp(cr } ( —1)"P„
Ht(a) = (817)

Kt(o ) Kt(cr)Kq(cr) . K„ i(o )

Then, by combining (817) with (87), we obtain the expres-
sion
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