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In this paper we report cross sections for electron-impact excitation of the X 'S} —B '3} transi-
tion in Hj for collision energies of 15, 20, and 30 eV. For this dipole-allowed transition with its as-
sociated long-range potential, the contributions of the more strongly scattered low-angular-
momentum partial waves to the cross section were obtained from a two-state Schwinger multichan-
nel calculation, and a modified Born-closure scheme was used to include the contributions from the
remaining weakly scattered partial waves. Agreement between the calculated differential cross sec-
tions and available experimental data is encouraging.

I. INTRODUCTION

Cross sections for the electronic excitation of molecules
by low-energy electrons play an important role in several
fields.! For example, these cross sections arise in the
modeling of swarm and plasma-etching systems, of gas
lasers, and of planetary atmospheres, and, more recently,
in studies of adsorbate-substrate systems.? In spite of
these needs, the availability of experimental data and of
theoretical techniques for studying these cross sections is
very limited. To date, most studies of electronic excita-
tion of molecules by low-energy electrons have been car-
ried out using low-order theories such as the Born and
Ochkur-Rudge approximations,>* the impact-parameter
method,’ and distorted-wave theories.®~® Although such
theories can be computationally easy to apply, the avail-
able experimental data for electronic excitation of mole-
cules are simply too limited and fragmentary to allow for
a meaningful assessment of the limitations and applicabil-
ity of these approximate theories.”!® Multichannel
theories of these inelastic collisions have the firmest
theoretical basis but are considerably more difficult to ap-
ply. Recently, however, several techniques which had pre-
viously been widely applied to electron-molecule collisions
at the static-exchange level were extended to electronic ex-
citation of H,*,!'=13 H,,'*~16 and 0,.!7 Studies of the
X '3} —b32) excitation of H, (Refs. 14—16) were par-
ticularly significant since they were carried out by appli-
cations of three different methods, namely, the Schwinger
multichannel,'* linear algebraic,!> and R matrix,'¢ all of
which led to cross sections in substantial agreement with
one another. These cross sections, obtained with only two
open electronic channels, were also in reasonable agree-
ment with experimental data. Furthermore, these results
showed that correlation terms, which are included in the
expansion of the scattering wave function so as to relax
the orthogonality between bound and continuum orbitals,
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affected the cross sections substantially.'®

Prior to the present study, we have used the Schwinger
multichannel method to calculate excitation cross sections
for transitions from the ground electronic state to several
triplet excited states of H,.!*!° Since these are dipole-
forbidden transitions in which the coupling between the
two states occurs through short-range exchange terms, it
is usually not necessary to include a large number of par-
tial waves for impact energies below 30 eV. Also, in these
previous studies it has been possible to implement the
Schwinger multichannel method entirely within an L?
basis. For dipole-allowed transitions such as the
X 'S} —B'S} transition in Hy, the long-range character
of the dipolar coupling requires that a large number of
partial waves be included to properly describe the scatter-
ing in the forward direction. If a full multichannel treat-
ment is used to calculate dipole-allowed excitation cross
sections, the need to include a large number of partial
wave can add considerably to the computational effort.
Further, in our noniterative implementation of the
Schwinger method the initial set of basis functions must
span the range of the interaction potential. Hence,
dipole-allowed transitions may necessitate the inclusion of
continuum functions, e.g., plane waves, in the variational
basis from which the scattering wave function is con-
structed.

In this study we explore an expedient alternative to
straightforward application of the full Schwinger mul-
tichannel method for use in computing dipole-allowed ex-
citation cross sections. Although a large number of par-
tial waves are needed to converge the small-angle scatter-
ing, above a certain minimum angular momentum /,,, the
remaining partial waves are weakly scattered. Thus, if a
full multichannel treatment of the scattering is used to
calculate the partial-wave contribution to the differential
cross sections, do/d6, up to I,,, the remaining terms can
be obtained from a weak-scattering theory such as the
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first Born approximation (FBA). For this dipole-allowed
transition our procedure will hence be to use the
Schwinger multichannel formulation®®?! for the full
scattering treatment and a modified Born-closure (BC)
scheme to include contributions to the differential cross
section from large-angular-momentum partial waves. Re-
cent applications!#?2~2* of the multichannel Schwinger
(SMC) method, in which the trial scattering wave func-
tions were expanded in discrete basis functions, have
shown that the procedure is very effective in describing
the low-angular-momentum partial-wave contributions to
the differential cross sections. In such applications, ex-
pansion of the trial scattering wave function in a large dif-
fuse basis is clearly desirable. Finally, we note that the
scheme of using a weak-scattering approximation to in-
clude contributions to the cross section from high angular
momenta has been used in many applications, including
collisions with polar molecules®>~2’ and electron-impact
excitation of dipole-allowed transitions.”

II. THEORETICAL DEVELOPMENTS

Details of the Schwinger multichannel formulation
used in these studies have been discussed elsewhere?®?!
and only a brief outline will be given here. The Hamil-
tonian for the collision system can be written as

H=(HN+TN+1)+V=H0+V, (1)

where H) is the target Hamiltonian, Ty, is the kinetic-
energy operator of the incident electron, and V is the in-
teraction potential between the incident electron and the
target, i.e.,
N
yost 5 Ze @
Ziriv+t @ Rani

In Eq. (2) the first and second terms are the electron-
electron repulsion and electron-nuclei attraction, respec-
tively. The total scattering wave function satisfies the
Schrédinger equation

(E —H)W,=HW¥, =0 . 3)

To obtain a Schwinger variational principle for the
multichannel scattering matrix associated with Eq. (3), we
begin by introducing a projection operator P which de-
fines the open-channel space in terms of the eigenfunc-
tions of the target Hamiltonian Hy, i.e.,

open
P:E|<Dm(l,2,...,N))(<b,,,(1,2,...,N)| s 4)
m
and
Hy®,,=E,®,, , E—E,>0. (5)

Note that the projector of Eq. (4) is different from the P
operator of the Feshbach formalism.?""? With this opera-
tor we obtain a projected Lippmann-Schwinger equation:

PY " =PS, + PG, VW) (6)
from
\P{‘+)=SL+)+G8+)VW:{+), 7

where Sy is an eigenfunction of the unperturbed Hamil-
tonian Hy, ie, ®,(1,...,N)e' "+ and G4+ in the
Green’s function associated with E —H,. Note that the
continuum states of the target molecule must be included
in G4 in order to make the wave function Wi*’ on the
left-hand side of Eq. (7) antisymmetric.3°

We proceed by writing the Schrodinger equation in the
form?!

H[aPV, " +(1—aP)¥,"]=0, (8)

where a will be chosen to be N 4 1.2%3! Insertion of Eq.
(6) for PW{*’, followed by rearrangement of the resulting
expression, gives the multichannel equation for Wi+,

AW =S, | 9
where
A  PH+HP PV4VP
= - —VG/Yv (10
AT =N 2 T2 » (10)
and
(+) yg(+) C D )
G, —'2 | @ 28m Ty 1T N 1) (P | (11)
m
with
explik,, |r—r'|)
g )= — 2P m | (12)

2w |r—r'|

Based on Eq. (9) we can write a variational functional
for the scattering amplitude

1 (W | VIS ) (Sm | V W)

[f,,,,,]:—;; (‘Pﬁn_)lAH)l‘I’(nH)

(13)

Equation (15) is our multichannel extension of the usual
Schwinger variational principle. Note that Egs. (9) and
(13) incorporate closed-channel effects without requiring
the closed-channel Green’s function which, in turn, would
have to include the target continuum states. Expanding
the variational scattering wave function in Eq. (13) in a
basis of (N + 1)-electron Slater determinants ¥;, the varia-
tional expression can be written as

= 1 _
’th'/;[c:__gg(sm | VI“’,')(A 1),’j<‘l'j | | 4 ’S,,) ’

(14)

where (A4 “l)ij is an element of the matrix inverse of A.
In this formulation all configurations representing both
open and closed channels are treated equivalently. Furth-
ermore, the variational formulation is clearly based on the
variation of the total wave function rather than of a
specific scattering orbital.

Some important features of the variational principle of
Eq. (14) are as follows. As in the original Schwinger prin-
ciple,® an L? expansion of the trial wave function is pos-
sible and will be assumed here. Furthermore, if the orbi-
tals appearing in the (N + 1)-electron Slater determinants,
Y;, in the expansion of the scattering wave function are
chosen to be Cartesian Gaussian functions, all the matrix
elements arising in Eq. (14), except those of VG,E*')V, can
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be evaluated analytically for molecules of arbitrary
geometry. The matrix elements associated with VG;*" 4
can be obtained analytically if a large quadrature basis of
Cartesian Gaussian functions is inserted around G,*’.3%3*
We use this technique to obtain the principal-value contri-
bution to the VG;J”V matrix elements, but the on-shell
contribution is obtained via insertion of a complete set of
plane waves around G.z(:+)' This procedure results in an S
matrix that is very nearly unitary without resorting to
large Cartesian Gaussian insertion basis sets.?*

Equation (13) provides an analytical approximation to
the full scattering amplitude in the body frame. To obtain
the differential cross section, we expand f SMC(k,, k ) in
partial waves and make the requisite transformation to ex-
press the scattering amplitude in terms of the laboratory
frame angles 73;,,, denoted by (6’,¢’). This partial-wave
decomposition is carried out via a Gauss-Legendre quad-
rature.”> The random orientation of the target molecule is
accounted for by explicitly averaging over the incident
(body-frame) angles 73,,, viz.,

SMC( gt 4. _ 1 km opon sMey s 2
MO ki Ken) = " [ dk, | fMCk k) |2

(15)

Finally, the physical cross section oSM€(9’) is obtained by
averaging over the azimuthal angle ¢’ and performing the
appropriate average over initial and sum over final spin
states for the transition of interest.

The cross section described above includes contribu-
tions from a finite number of angular momenta because
the partial-wave decomposition of the scattering ampli-
tude is truncated at some finite body-frame value
(Imaxs | Mmax | ) denoted by /,,. This value of I, is, in
turn, determined by the size of the Gauss-Legendre quad-
rature used in calculating the body-frame full scattering
amplitudes for various plane-wave orientations. When the
transition potential contains long-range moments, such as
in dipole-allowed excitations, the number of partial waves
required to converge oMS(@') in the forward direction
can be quite large. However, above a certain value of [,
the contributions from high-angular-momentum partial
waves can be included by means of a weak-scattering
theory such as the first Born approximation. Further-
more, the FBA differential cross section o72A(6’) can be
obtained in closed form™3? without resorting to a partial-
wave expansion. Thus, within the FBA, ofP4(0’) con-
tains contributions from all angular momenta. Hence, our
Born closure differential cross section 02<(8') is given by

B8 )=0"BA(0') +Ac(0') , (16)
where
Ao(6')=[oMC(6')—oEBA(6")] . 17)

In Eq. (17) ofp™(#') is obtained from a finite expansion
containing exactly the same number of partial waves as
oSMC(@’). Thus, for angular momenta below /,,, contribu-
tions to 0B%(@’) are obtained from the Schwinger varia-
tional calculation, while the first Born approximation is
used to include contributions to the cross section above
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l,. The criterion?’ for the validity of Eq. (16) is that
above /,, the contributions to Ao are zero, i.e., Ao is con-
verged.

In Sec. III we will discuss the results of an application
of this procedure to the X '35 —B !} transition in H,.
An alternative to this Born-closure approach would be to
explicitly include plane waves in the expansion of the trial
scattering wave function. It can be shown that,>® with
plane waves and Cartesian Gaussian functions in the ex-
pansion of the trial scattering function, all the matrix ele-
ments arising in the variational expression, Eq. (14), can
still be evaluated analytically. This alternative remains to
be tested.

III. PROCEDURES AND RESULTS

We have used this multichannel Schwinger formulation
and Born-closure procedure to study the differential cross
sections for the X'S}—B'S} transition in H, for
electron-impact energies of 15, 20, and 30 eV. This appli-
cation should be a reasonable test of our proposed pro-
cedure since the measured differential cross sections are
quite strongly peaked in the forward direction for these
energies while the cross sections obtained with a large
discrete basis in the Schwinger variational expression are
not. Measured cross sections’®37 and results of other
studies”?® are also available for comparison.

In these studies we include only two open channels and
neglect closed channels. The cross sections are calculated
within the framework of the fixed nuclei and Franck-
Condon approximations. The nuclei are held fixed at the
ground-state equilibrium value of 1.4003a, and the
dependence of the electronic scattering amplitude on in-
ternuclear distance is nelgected. The rotational levels are
treated as degenerate and the physical cross section in
averaged over all molecular orientations. The fixed-nuclei
cross sections reported here thus correspond to the full
band system, i.e., summed over all final vibrational levels.
Unless otherwise stated, atomic units are used throughout.

For the ground electronic state we used a self-
consistent-field (SCF) wave function obtained with a 6s 6p
Cartesian Gaussian basis on the nuclei and a 4s 4p basis at
the midpoint. These basis functions are shown in Table 1.
For the B !Z}( loglo,) state we made the frozen-core ap-
proximation and obtained the 1o, orbital by diagonalizing
the Vy _; potential of the 1o, core in the SCF basis. The
resulting vertical excitation energy is 12.73 eV. The entire
set of “improved virtual orbitals” (IVO’s) obtained in this
diagonalization was augmented by 6d,, Gaussian func-
tions. These d,, functions are needed to expand the 2A
trial scattering functions. This expanded basis was then
used to construct the (N -+ 1)-electron scattering wave
function, including the appropriate correlation terms re-
quired to relax the orthogonality constraint between the
scattering and bound orbitals. Contributions to the body-
frame scattering amplitudes from °Z,, 23, °I1,,, 11, A,
and %A, symmetries were included.

In these studies we chose 7, such that the contributions
from the body frame °%,, 23, I1,, ’II,, ?A,, and A,
scattering amplitudes with /<5 were obtained from a
Schwinger variational calculation. Scattering amplitudes
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TABLE 1. Cartesian Gaussian basis sets, defined as X,
=Nipmn(x — A (y — 4,)™z — A4,)"exp(—a |r— A |?), where A
locates the Gaussian center. Basis sets used for the ground and
excited states of Hj, in the expansion of the trial scattering wave
functions, and in the insertion quadrature in VG;*'V.

Center and type Exponential

H, 6s 48.4479, 7.28346, 1.651 39,
0.462 447, 0.145885, 0.07
H, 6p 4.5, 1.5, 0.5, 0.25, 0.125,

0.03125
0.25, 0.05, 0.01, 0.002
0.8, 0.2, 0.0625, 0.007 8125

4.5, 1.5, 0.5, 0.25, 0.125,
0.03125

Midpoint, 4s
Midpoint, 4p
H, 6d,,*

2Additional functions to expand the 2A scattering wave func-
tions.

of these symmetries are the ones that can be determined
from an 8X8 Gauss-Legendre quadrature for the full
scattering amplitudes. The contributions to 0(6’) from
partial waves with />6 and | m | >3 were included via
the first Born approximation. This choice of /,, is suffi-
cient to converge Ao of Eq. (17) at 15 eV. However, at 20
and 30 eV Ao(6’) is not fully converged for this choice of
1., particularly for scattering angles between 30° and 50°.
At this stage, instead of resorting to the considerably
more extensive Schwinger calculations that would be re-
quired in extracting higher partial-wave amplitudes from
the Schwinger amplitudes with the accuracy needed to
converge Ao(6') in this range of 6’ at these energies, we
chose to use the following simple interpolation procedure.
For the differential cross section at 20 and 30 eV, we take
oBC(0’) for 6’ between 0° and 20° and then use a cubic
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FIG. 1. Differential cross sections (DCS’s) for the

X2 —>B!S} transition at 15 eV: , present results;
— — —, distorted-wave results of Ref. 7; X, experimental re-
sults of Ref. 36.
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FIG. 2. DCS’s for the X 'S} —B 'S} transition at 20 eV:
, present results; — — —, distorted-wave results of Ref. 6;
X and A, experimental results of Refs. 36 and 37, respectively.

spline interpolation to smoothly join the differential cross
section onto o"MC(6') at 8’ =40° and 50°, respectively.

In Fig. 1 we show our calculated differential cross sec-
tions for the X '3} B 'S} excitation at 15 eV impact
energy along with the distorted-wave Born-closure results
of Ref. 7 and the experimental data of Srivastava and Jen-
sen.’® The agreement between our Born-closure cross sec-
tions and the measured data is very satisfactory at this en-
ergy. Although not shown in Fig. 1, the forward peaking
in the calculated cross sections is not present in the cross
sections derived solely from the Schwinger variational
principle, i.e., without Born closure.

Figures 2 and 3 show our calculated differential cross

15

—
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FIG. 3. DCS’s for the X 'S} —B '3} transition at 30 eV:
, present results; — — —, distorted-wave results of Ref. 7;
X and A, experimental results of Refs. 36 and 37.
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TABLE II. Integral cross sections for the X '3} —B '3} excitation in H, (10-"7 cm?).

Impact
energy
eV) DW? cc SMCe FBA! Expt.© Expt.f
15 1.05 1.41 4.12 1.7£0.5
20 3.09 2.66 6.31 2.5+0.7 2.140.4
25 4.12 4.31 6.90
30 4.46 4.0 7.0 2.4+0.7 2.440.5

2Distorted-wave Born-closure results of Ref. 7.

*Two-state close-coupling Born-closure results of Ref. 28.

°Present results.

dFirst Born results of this work.
°Experimental data of Ref. 36.
fExperimental data of Ref. 37.

sections at 20 and 30 eV along with the distorted-wave
Born-closure results’ and the experimental data of Refs.
36 and 37. The overall agreement between our calculated
cross sections and the measured values is quite good for
all angles. For higher angles at 20 eV our cross sections
show a slight backward peaking beyond 120°, a feature
seen in the data of Srivastava and Jensen®® but not in
those of Ref. 37. Measurements of these cross sections at
these larger angles, as well as at small angles, are difficult,
in general, and calculated differential cross sections, par-
ticularly in the experimentally inaccessible region beyond
120°, would clearly be very useful in any extrapolation of
experimental data into these angular regions. Note that
the distorted-wave Born-closure cross sections, particular-
ly at 20 eV, continue to fall off beyond 120°, in contrast to
the results of the present two-state calculation.

Our integral excitation cross sections are listed in Table
IT along with available experimental data and the results
of the distorted-wave calculations of Fliflet and McKoy’
and of the two-state close-coupling studies of Chung and
Lin.® The agreement between our calculated two-state
cross sections and the experimental data at 15 and 20 eV
is quite good. The large uncertainties in the measured
cross sections at these energies come primarily from the
experimentally difficult low-angle region and from extra-
polation procedures used in obtaining integral cross sec-
tions from differential data over a restricted angular
range. At 30 eV impact energy our calculated cross sec-
tion, and its trend with energy, agrees poorly with the the
measured values. This may be due to the inherent limita-
tions of a two-state calculation as the collision energy in-
creases and/or greater uncertainties in the extrapolation
procedure used in deriving the experimental cross section
at this higher energy. This serves to emphasize the need
for reporting differential excitation cross sections in
theoretical studies of electron collisions. For example, the
differential cross sections shown in Figs. 1—3 provide a
more meaningful physical comparison among the theoret-
ical procedures and the experimental data. The
distorted-wave results’ in Table II are quite similar to the
present two-state Born-closure cross sections. Some of the
differences between these cross sections arise from the
fact that in the distorted-wave calculations’ an explicit
sum over discrete vibrational levels with appropriate

Franck-Condon factors and final-state momenta was used.
The apparent agreement between the two-state close-
coupling results of Chung and Lin,?® obtained with ortho-
gonality constraints between bound and continuum orbi-
tals, and our interpolated cross sections at 25 eV, is
reasonable. The corresponding cross sections for the
X'2r—»b?3} transition in H, showed significantly
larger differences. Finally, we note that both the
distorted-wave’ and close-coupling results?® in Table II
also utilized some form of Born-closure scheme to obtain
the higher-partial-wave contributions to the cross sections.

IV. CONCLUSIONS

In this paper we have presented cross sections for
electron-impact excitation of the X IE; —B!Z} transi-
tion in H, at collision energies of 15, 20, and 30 eV. For
this dipole-allowed transition with its long-range transi-
tion potential, these results were obtained from a
Schwinger multichannel calculation and a Born-closure
procedure. The Schwinger multichannel calculation was
carried out with a discrete basis expansion of the trial
scattering wave function and was used to obtain the con-
tribution to the cross section from the strongly scattered
low-angular-momentum partial waves. The Born-closure
scheme provided the contributions from the remaining
weakly scattered partial waves. The agreement between
the calculation differential cross section and available ex-
perimental data at these impact energies is encouraging.
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