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A new version of perturbation theory is described. It extends the admissible class of Hamiltonians
Ho to nondiagonal matrices via use of the nondiagonal unperturbed propagators. Numerically, its
efficiency is demonstrated on the standard anharmonic-oscillator example where it works as an ef-
fective resummation technique.

I. INTRODUCTION

Let us consider a Schrodinger bound-state problem

H
I
4&=E

I 0&

and its approximate (tentative) solution

I g&= IX„&, E=E„, n =0, 1,. . . . (1.2)

Obviously, this solution may be treated as corresponding
to a tentative component

Q Ix„&E„(x„
I
=H,

n=0
(1.3)

of the complete Hamiltonian H =H, . Thus, an improved
solution of Eq. (1.1) may be constructed by the perturba-
tive methods in principle.

The textbook Rayleigh-Schrodinger (RS) perturbation
theory usually starts from the explicit knowledge of (1.2).
In this paper we shall try to get rid of such a strong
requirement —we shall assume that H, is a nondiagonal
matrix in our (a priori chosen or constructed) working
basis

I
0&,

I
1&,. . . .

For this sake of definiteness, let us assume that

H, =

ap bp 0 0

ci ai bi 0 0

0 c, a, b& 0

0 0 c3 Q3 b3

0 c4 a4

0

0

(1.4)

is an infinite tridiagonal matrix. Such a structure is the
simplest form of nondiagonality and appears in a number
of applications. For example, we may recall the strong-
coupling scheme appearing in nonequilibrium statistics,
"chain models" used in solid-state physics, etc. At the
same time, matrix (1.4) is sufficiently general —we en-
counter a tridiagonalization of Hamiltonian within the
universal numerical Lanczos method of solving (1.1), e.g. ,
in nuclear physics computations.

An important formal merit of the tridiagonal choice
(1.4) lies in its connection with the analytic continued
fractions. ' In this framework, unfortunately, an in-
clusion of corrections seems rather complicated. In this
paper we shall avoid the generalized continued fractions

used in Ref. 5 and describe a simpler technique of a sys-
tematic perturbative inclusion of the higher-order correc-
tions related to the general small perturbation A, V
=H —H, .

Within the Rayleigh-Schrodinger (RS) standard forma]-
ism, an evaluation of (1.2) or (1.3) with the "simplified"
unperturbed Hamiltonian H, is possible in a few excep-
tional cases only. For a general operator H„ this task be-
comes almost as difficult as a complete solution of the
original Eq. (1.1) itself. A removal of this difficulty is the
main purpose of this paper.

The continued-fraction tractability of Eq. (1.1) with
H =H, is closely related to an algebraic factorization of
the resolvent. A similar idea will be employed here. We
shall see that, in terms of the analytic continued fractions,
the modified RS-type expansions may be constructed even
without an explicit solution (1.3) of the unperturbed eigen-
value problem. This will be our main result.

The common features of the RS and our modified
Rayleigh-Schrodinger (MRS) perturbation theories will be
summarized in Sec. II. The essence of the new, modified
version of the formalism will be described in Sec. III. In
particular, a trial wave function

I
0& will be employed in

place of the RS zero-order solution
I
Xo& (Sec. IIIA) and

the need for a basis
I X„& when using RS theory will com-

pletely be eliminated (Sec. IIIB). In Sec. IV the further
formal details will be added —we construct the unper-
turbed propagator R (Eo) as an analytic continued-
fraction chain-model resolvent (Sec. IV A) and show that
Eo plays a role of a free parameter (Sec. IV 8).

The efficiency and good convergence of the new for-
malism will be analyzed numerically in Sec. V and docu-
mented by its application to the standard anharmonic os-
cillator example in Sec. VI.

II. THE RS FORMALISM

The extreme popularity of the RS technique stems from
the flexibility and universality of its basic ansatz

Iq&= Iy, &+xIq, &+ . . +x Iy„&+o(x +'),
(2.1)E =Eo+AE, +. . . +A, Eg+O(A, +') .

An insertion of Eq. (2.1) in Eq. (1.1) is the main idea. The
resulting relation
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[H, —Eo+A( V E—i ) —A, Ep — ]

x(
I
qo&+~ I &i&+ . . )=0 (2.2)

is to be satisfied for each value of the parameter A, i so that
we get the unperturbed equation

not appear in the MRS normalization (3.1) and enables us
to rewrite Eq. (2.4} as the requirements

Q (H, —Eo )Q I 0i & = —Q VQ
I @o&

—Q V
I
o & +E i Q I @o&

(3.2)

H,
I @o&=Eo

I @o&

complemented, term by term, by the relations

(Hi —Eo)
I
A&= —V

I A —i&+ g Em I fk —m &

(2.3) Q(Hi —Eo)Q
I 4k & QVQ I fk —i &

k

+ XE QIA

k =2,3,

k =I,2, .

Their & go I
Projection defines the energies

E, = &q, l
vip, &,

(2.4)

(2.5)

complemented by the definitions (2.5) and (2.6) of ener-
gies. This follows from a formal equivalence between the
&go I

and &Po I
(P+Q) Projections of Eq. (2.4), and en-

ables us to specify the explicit MRS corrections by the
formulas

and

k —1

Ek =~ & 40 I
v

I ek —i &
—y Em & eo I ek —m &

I fi & =& (V —Ei)
I Po&

k

I @k & =&QVQ
I A i &

—g Em~
I Pk m &,

(3.3)

k =2,3, . (2.6) k =2,3, ~ . ~

I A&+« I 4& (2.7}

remains compatible with Eq. (2.4). This ambiguity is usu-

ally removed by an RS requirement

& fo I
itk & =0, k =1,2, . . . . (2.8)

Then, expansions (2.1) become uniquely defined whenever
we pick up an unperturbed solution, say,

I
fo&= l&o& Eo=so . (2.9)

In accord with Eq. (1.3), this converts the unperturbed RS
problem (2.3) into an identity.

III. THE MRS FORMALISM

A. A MRS normalization

in a recurrent (implicit) way. Their explicit form
Ek =Ek ( po, pi, . . . , i)'jk i ) may, of course, be inserted
back in Eq. (2.4).

After an elimination of energies, we may treat Eq. (2.4)
as a recurrent specification of the wave-function correc-
tions

I fk &, k = 1,2, . . . . Obviously, it is not unique —an
arbitrary "renormalization"

Here, the MRS unperturbed propagator is defined formal-
ly,

R =Q(Eo —QH, Q) 'Q .

Its non-numerical construction will be discussed later.

(3.4)

B. Getting rid of the unperturbed
Schrodinger equation

Let us write Eq. (2.3) as a pair of projected equations

PHi (P +Q) I
itjo & =EoP

I
itto &

QH«P+Q)
I 0o& =EoQ

I 0o&
(3.5)

Precisely in the Feshbach spirit, we may eliminate here

Q I
Wo&=&Hi I0& (3.6)

and reduce Eq. (3.5) to its effective one-dimensional form

&0
I
H,

I
0&+ &0

I
H, Z (Eo)H,

I
0& =Eo . (3.7)

This is the standard chain-model secular equation.
Within our one-dimensional model space, we may intro-

duce a free parameter g and modify the original decompo-
sition of the Hamiltonian,

In nuclear physics calculations where the tridiagonal
approximants H, appear in a purely numerical context,
the first basis state

I
0& is carefully being constructed as

the best available approximation to the exact wave func-
tion

I 1t &. In this case, it is of course natural to replace
the RS requirement (2.8) by

(3.1)

In accord with (2.7), this may be achieved via an ap-
propriate ak&0 shift of the RS wave functions

I pk &.

On a purely formal level, we may simplify the preced-
ing construction, assuming that & 0

I
0 & =

& 0
I fo &

= 1, by
introducing the projector Q = 1 P, P =

I
0& &0

I
. It —does

H =H,'+ A, V'

H,'=H, +
I
0&g&0 I, V'= V —

I
0&~&0

I

(3.8)

g=Eo &0
I
H,

I
0—& &lo~H& «— o)~HI o& (3.9)

as a function of Eo. In this way, we may reinterpret Eo

In contrast to the RS formalism with
I
0& =

I
Xo&, t»»s

a nontrivial transformation of the MRS solutions and, in

fact, a core of the present proposal. Its first consequence
may be seen immediately: the primed form of the secular
Eq. (3.7) defines
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as a free parameter and treat (3.9) as a mere definition of
the primed decomposition (3.8).

After replacing all the unprimed H, and V by the
primed ones, the unperturbed secular equation becomes
satisfied identically. There is just one other change in the
preceding formulas: in place of Eq. (2.5), we may write

(3.10)

and avoid any explicit use of the primed components (3.8)
of H.

IV. THE EXPLICIT CONTINUED-FRACTION
MRS FORMULAS

A. The unperturbed propagator

Up to now, the MRS definitions of energies [(3.9),
(3.10), and (2.6)] and wave functions [(3.6) and (3.3)] con-
tain R (Ep) as a numerical inverse of the operator
Ep —QH, Q. Due to its tridiagonality, we need not even
use the numerical techniques —its analytic continued-
fraction inversion is a well-known procedure. It is based
on the algebraic identities

EpI—

0

~ +2 ~ +2

n+ 1. n+] bn+1

0
0 0

0 0

1 b„f„+—1
1

0

b. +if—.+2

X o 1/fn+1
Cn+ Ifn+1

0 —Cn+2f +Z 1 0

(4.1)

and

fk =(Ep ak bkfk+lck+1) k n n +1—1 (4.2)

~hen we put, formally, f&+1——0 in the limit N~ cc, we may interpret Eq. (4.2) as a definition of the ana-
lytic continued fractions. " Then, after an explicit inversion

T

~11 ~12 0
0 1 cO21

. . —— 0 b. +if.+2—
I

Sk!= g (b&+n+k 2f&+n+k 1), k, l = 1,2, . . .
m=1

(4.3)

of the two-diagonal factors in (4.1), we may determine the unperturbed MRS propagator (3.4) completely,

M
(m ~R

~
n) = g d;f +id„';, M =min(m, n) —1, mn =1,2, . . . , dp ——dp ——0, di ——di =1,

dk ckfkdk —1~ dk dk —1bk —ifk ~ (4.4)

All its matrix elements are simple products of the auxiliary continued fraction f„. Moreover, any finite subset of these
elements may be also expressed as elementary expressions containing a single continued fraction only. This is a conse-
quence of another algebraic identity

Eo —a„

f f„+1 .f =1/det

—C +1 EP —Q —b„+1
(4.&)

—bm —1 —0 am —1 m —1

—Cm

The matrix elements of R have a simple alternative interpretation: when we denote (k
~ gp) =dk(1

~ pp) and
(pp ~

k ) = (gp ~
1)dk, k & 1, we see immediately their relation to the components of the unperturbed vector

~
pp).
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TABLE I. The divergent RS energies and their MRS resummation for H =H2 ~ ~ and
E'""'=3V2='4. 242640687.

Method

E(&)

E(2)
E(3)
E(4)
E(5)
E(6)
E(7)

5.0

4.5
3.75
5.25
2.22
8.09

—2.47
14.38

Rs (q=1)
5.5

4.5
3.5
6.5

—2.44
22.91

—43.65
111.60

5.0

4.2487
4.2418
4.242 76
4.242 626
4.242 642 3
4.242 640 55
4.242 640 695

Mas (q =0)
5.5

4.263
4.237
4.2439
4.242 37
4.242 688
4.242 635
4.242 640 46

T
I
Po&=Eo

I 4o&,

T=H, + i0)g(0~

As a consequence, we may combine its projection

Eo&fo I 0o& = &fo I
Hr

I fo&+0
with the formula (3.10),

~El &eo I eo& = &eo
I

~I'
I eo& —P

and eliminate the auxiliary quantity g,

E"'=Eo+~Ei =&&to lH I 4o& .

(4.6)

(4.7)

This slightly simplifies the formalism —we may treat Eq.
(4.7) as the first nontrivial contribution in the present
MRS context.

In comparison with the RS formalism, we may expect
an increase in complexity of the comparable formulas.
This is the price to be paid for our complete elimination
of the strong assumption (1.3). For example, in contrast
to the arbitrary RS normalization of

i go) (paralleled here
by the choice of (0

i
0) = (0

i go) = 1), we must compute
it now as an infinite sum

B. The lowest-order MRS approximants

In Sec. III B, Eq. (2.3) has been replaced by the modi-
fied unperturbed equation

&Al@o&=1+&qoig i@o}=1+(oiH,~'H, ~0&

=1+bof i g dk dk fici

For an illustration of the various new features of the
present MRS formalism, let us choose the simplest possi-
ble example

H =Hg ~
——H, +A.V,

H, =—d l(1+1) +Jr, AV =yr
d'r r

(5.1)

with the basis specified as eigenstates of Hi 0

H, o in)=2a„ in &,

a„=(n
~

r
i

n ) =2n +1+—', ,

( n
i
r

i
n +1)=b„=(n +1)' (n +l+3/2)'

(5.2)

(4.8)

over the intermediate states. Similar interpretation should
be given to the other MRS formulas as well.

V. A NUMERICAL ANALYSIS
OF THE MRS RATE OF CONVERGENCE

TABLE II. A uniformity of the MRS convergence for small Ep (H =H2 +).

Ep

E(1)
E(2)
E(3)
E(4)
E(5)
E(6)
E(7)
E(8)
E(9)

E(10)

0.25
1.5

5.6
5.45
5.42
5.411
5.4089
5.408 38
5.408 31
5.408 31
5.408 320
5.408 325

0.50
1.5

5.8
5.67
5.63
5.615
5.6127
5.612 37
5.612 42
5.612 46
5.612480
5.612485

0.75
1.5

6.1

5.87
6.82
5.811
5.8092
5.809 22
5.809 38
5.809 46
5.809 475
5.809 477

1.00
1.5

6.3
6.07
6.01
6.0000
5.9992
5.999 66
5.99992
5.999999
6.000 008
6.000004

1.25
1.5

6.6
6.26
6.19
6.183
6.1834
6.184 31
6.184 63
6.184 68
6.184 672
6.184 662

Eexact 5.408 327 5.612486 5.809 475 6.000000 6.184658
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't0

9-
8
7

(a)

Eo 5.0 6.0

TABLE III. The sensitivity of the MRS convergence rate to
a large variation of Eo (H =H3 o, E""'=5.19615242).

3-
2-

=0.2

9=0.5

E(l)
E(2)
E(3)
E(4)

5.31
5.24
5.21
S.201

5.1967
5.196 166
5.196 152 72
5.196 152 428

5.209
5.1947
5.19628
5.196 145

0

(bj

8-

6-
5

1 Eo 5

FICx. 1. Precision of the ground-state energies for H =H2 ~,
i.e., a number of correct significant digits
= —log&0

~

E'"' E'""'
~, as a —function of the free parameter Eo

(a) The fifth-order MRS approximants E' '. (b) The tenth-order
MRS approximants E" '.

B. Freedom in choosing the parameter Ep

For the values of Eo which are safely separated from
the spectrum of QH, Q, the numerical experiments recover
a surprisingly stable MRS convergence achieved in spite
of a large distance between Eo and E'""'. Once more, we
may recall Table II as a sample of this type of result.
Indeed, the unperturbed energy Eo ——1.5 is strongly un-
derestimated even in comparison with the lowest eigen-
value E, -5.196 of the unperturbed operator H, .

Table III demonstrates an improved rate of convergence
achieved with the zero-order values of Eo chosen from a
vicinity of the exact energy E'""'-5.196. This has in-
spired a more detailed analysis of the Eo dependence for
the approximate number N = —log&0

~

E E'""'
~

of-
correct digits. In Fig. 1 we see the results —X(EO) is a
smooth curve with a broad maximum and irrelevant fluc-
tuations reflecting the change of sign of E E'""'. The-
good MRS convergence remains compatible with Eo
chosen from a large interval of its admissible zero-order
estimates.

These well-known elementary functions (r
~

n ) (Laguerre
polynomials ) enable us to treat (5.1) as a nondiagonal
operator simulating the general and realistic quantum sys-
tems.

VI. AN APPLICATION OF THE MRS EXPANSION
TO THE QUARTIC ANHARMONIC OSCILLATOR

The quartic anharmonic oscillator

A. An improvement of self-consistency d 1(l + 1)H= — + +pr +vr
dr 2 r 2 (6.1)

Our choice of the solvable model (5.1) proved its suita-
bility immediately. In a comparison between the RS and
MRS formalisms, the RS energy approximants proved to
diverge, while their MRS counterparts seem to represent
their convergent and numerically reliable resummation.
This is illustrated in Table I.

In full analogy with the more realistic examples (cf.
e.g. , Sec. VI below), the RS divergence reflects here the
non-negligibility of the off-diagonal matrix elements of
H. In fact, a shift of these components of the perturba-
tion iLV into the denominators of R (Eo) has been one of
our main motivations in developing the MRS formalism.
The example confirms nicely our a priori expectations.

In Table I, for the sake of simplicity, we have chosen an
absolutely self-consistent unperturbed operator H, =H
with A, V=O. Indeed, in Table II, an inclusion of the
A, V&0 components is seen to preserve the convergence
pattern. For the Hamiltonians H =H2 +, it does not
change up to perturbations A, V= 4 r .

2
-'

I

'10.4
I

10.5
I

'10.6 Eo

FIG. 2. Precision A" =X(Eo) of the first excited anharmonic
oscillator energy in the fifth (curve a) and tenth (curve b) MRS
approximation.
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TABLE IV. Anharmonic oscillator (6.1) with p=v=I +1=1 and convergence of its MRS energies
(E'""'=1.392352 and Ep ——1).

E(1)
E(2)
E(3)
E(4)
E(5)
E(6)
E(1)
E(8)
E(9)
E(io)

1.75
1.384
1.48
1.36
1.45
1.35
1.45
1.33
1.47
1.30

0.25

1.61
1.406
1.42
1.394
1.402
1.392 24
1.396
1.3920
1.394
1.3920

0.50

1.50
1.401
1.401
1.394
1.394
1.3931
1.3929
1.3927
1.3926
1.3925

0.75

1.44
1.400
1.396
1.3935
1.3929
1.3926
1.3925
1.392 40
1.392 38
1 ~ 392 366

is a standard testing ground for the various computational
techniques. In particular, its RS perturbative divergence
is assumed to be a good model of divergences encountered
in the quantum field theory. Its various standard resum-
mation representations (for a review, see, e.g. , Ref. 10)
start from the divergent RS series, therefore.

In the present MRS resummation framework, the pen-
tadiagonal" matrix representation of (6.1) seems to be a
good test of our method in a "realistic" situation since the
trivial choice of H =H, ceases to be possible, and the ma-
trix elements of H —H, are not small. Thus, the example
(6.1) need not give the convergent MRS expansions a
priori, and an application of the present formulas to (6.1)
is a problem with an open solution.

In the first step we may try to choose some "safe" small
Eo ——1 and incorporate the different portions of H into
the approximant H, . In Table IV a sample of the results
is displayed, based on the definition

&m IH
I
m & =&m IH Im ),

(6.2)

&m iH, im+1)=&m+1 ~H, ~m)=y&m iH im+1),
of H, . We may observe the following.

(a) For y=0, the energies seem to diverge. This choice
of the diagonal H, corresponds to a degeneracy of our

continued-fraction MRS formalism to the simple RS one.
(b) For 0 & y & 0.75, the convergent MRS results are ob-

tained. The rate of convergence of this resummation in-
creases with the increasing value of y. Beyond y=0.75,
our auxiliary continued fractions cease to converge —the
operators H, become too "off diagonal" from the present
point of view.

For the excited states, the convergence pattern of the
MRS formalism remains similar to the ground-state cal-
culations. For the particular first excited state of our
anharmonic oscillator, this is demonstrated in Fig. 2.
Again, the convergence deteriorates beyond some critical
values, while between them a flat dependence of the pre-
cision N(ED) on Eo is accompanied by the random fluc-
tuations.

The higher-order corrections seem to improve the
lower-order results in a systematic way. For the same set
of couplings, energies Eo and unperturbed operator H,
with y=0.75, this is illustrated in Table V. The magni-
tude of both the kth order corrections Ek and total errors
E —E'""', decreases with the increasing MRS perturba-
tion order k steadily.

VII. SUMMARY

In the very background of the standard RS perturbative
formalism, we may find a decision to use a diagonal un-

TABLE V. An acceleration of the MRS anharmonic oscillator convergence (the last column de-
scribes the first excited state) for a better choice of Ep.

E(k) Eexact

0
1

2
3
4
5
6
7
8
9

10

2. 1

5.1X 10-'
6.0 X 10-'
2.2x 10-'
7.9x10-'
3.3 x 10-4
1.4X 10-4
6.7 X 10-'
3 2X10
1.6X 10
8.6X 10-'

2.6
6.1X 10-'
3.1 X 10—'
2.5 X 10-'
6.3 x 10-4
3.2 X 10-4
1.2x 10
6.3x10-'
2.8 X 10
1.5 x 10—'
7.5 x 10

3.1

7.7 X 10-'
3.8 X. 10-'
4.3 X 10-'
1.2 X 10—4

5.3 x 10-4
2.8 x10—'
8.5 X 10—'
1.5 X 10-'
1.7X 10
5.6X 10—'

1.9
3.6X 10-'
1.2x 10-'
3.3 x 10-'
2.3 x 10-'
7.3x10 '
4.4X 10
2.2X 10-'
1.4X 10—'
7.6x10-'
4.2x10-'
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perturbed propagator Rp. This becomes a pure conven-
tion in the slowly convergent cases. Indeed, an inclusion
of the higher-order corrections makes the formulas com-
plicated in any case. Often, this forces us to omit the
nonnegligible contributions in the complicated (say,
many-body) calculations just because of the purely techni-
cal reasons. Hence, a minimalization of the perturbation
H —Hp becomes the most important task there.

Within the standard RS limitations, a choice of a good
approximant H=H, is complicated by its direct connec-
tion with the choice of the working basis

~
X„). This has

inspired our present proposal —we choose the trial state
~

0), the trial energy Eo, and a very flexible (tridiagonal)
form of the unperturbed matrix as input in the perturba-
tive formalism. This improves our chance to minimize
the difference H —H, up to a level necessary for a good

convergence of the expansions (2.1).
Our decision to use the unperturbed propagator R, de-

fined in terms of the analytic continued fractions, extends
the scope of perturbative calculations to the tridiagonal
forms of the unperturbed Hamiltonian. Formally, we
may return to a diagonal-matrix case simply by a formal
limit H~~Ho i.e., bn~0, en+1~0, and an~an We
would get

~

n )~
~
7„) and f„~l/(Eo —s„), i.e., just a

smooth transition to the RS perturbation formalism. Vice
versa, the RS~MRS transition may be characterized
briefly as a rearrangement of some "uncomfortable" per-
turbation components in the propagator R (Eo). Techni-
cally, the continued fractions f„represent, then, simply a
"compression" of the three diagonals of H, into an array
f„generalizing the RS unperturbed energies.
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