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Nonlinear response of closed-shell atoms in the density-functional formalism
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The nonlinear response of an arbitrary electronic system to a time-dependent perturbation is treat-
ed within the density-functional formalism. Expressions for quadratic and cubic responses for a sys-
tem of independent electrons are obtained in a form suitable for numerical calculations. The fre-

quency dependence of the linear and cubic electric susceptibilities of rare-gas atoms are computed
and compared with experiment.

I. INTRODUCTION

Linear response theory' within the density-functional
(DF) formalism has been successfully applied to atoms, '
molecules, and small metal particles. The appeal of
such an approach is that only independent-particle
response functions and local, self-consistent potentials are
needed in it. In the case of response to a static perturba-
tion the theory is rigorously based on the Hohenberg-
Kohn theorem. This is true for response of any order.
Further, a partial rationalization of the dynamical
response theory has been recently provided by Gross and
Kohn. These authors have also shown how to recover
the results of Zangwill and Soven by a suitable combina-
tion of local density and adiabatic approximation.

The extension of the theory to treat nonlinear response
is clearly of interest since nonlinear susceptibilities
enter in a fundamental way in optical processes such as
the Kerr effect, wave mixing, and Raman scattering. Al-
though perturbation-theoretic formulations based on
Hartree-Fock" and configuration-interaction' methods
exist, the local-density approximation (LDA) has the ad-
vantage of facilitating calculations for large electronic
systems. We have already examined ' the ability of
LDA to describe the static nonlinear response of closed-
shell atoms and ions by means of a perturbative expansion
of the Kohn-Sham equations, ' namely, by a self-
consistent Sternheimer procedure. However, for the case
of time-dependent perturbations, the response function
technique appears to be more suitable. In this paper we

report on the frequency dependence of the cubic hyperpo-
larizabilities (third-harmonic response) of rare-gas atoms
calculated by the latter technique.

In Sec. II we derive general expressions for the density-

II. RESPONSE FUNCTIONS IN LDA

We consider the effect of a time-dependent perturbation
V(t) on a system of many interacting particles described,
in the absence of the perturbation, by the Hamiltonian
Ho. The expectation value of an operator O(t) is given

by the standard expression

(o(t))H =(T exp ( f d~v(r) 0(t)r

exp i f d—r V(r) . (2.1)
'o Ho

Here T indicates time ordering, all operators and state
kets are in the Heisenberg picture relative to the unper-
turbed Hamiltonian Ho, and to denotes the time at which
the perturbation is turned on. To obtain density-density
response functions we specialize Eq. (2.1) to the calcula-
tion of the density change produced by a perturbation
which couples to the density operator n (r, t),

V(t) = f d r n (r, t)v(r, t) . (2.2)

A straightforward expansion of the time-ordered exponen-
tials appearing in Eq. (2. 1) and reordering of all terms in
increasing powers of v yields, after some algebra,

density response functions up to the third order. These
are then specialized to a system of independent particles.
In Sec. III results for the frequency dependence of the
linear and third-harmonic response of rare-gas atoms are
presented and compared with experimental results. Sec-
tion IV contains a summary of our investigation. Some
technical details on the angular decomposition of the
response functions are given in an Appendix.

geo ~ dcok
5(n(r, to))= lim g d r& d rk X (r, r], r2, . . . , rk,

'co]+inst,

app+iq, . . . , tok+iq)
O+ k=& 277 2'

Xv(r„co&)v(r2, co2) . . v(rk, cok)2'(')(tv —co& —co2 — . . —cok) .

(2.3)

In the above equation the Fourier transform of the density change with respect to time has been taken and the infini-

tesimal g guarantees the causality of the response. The kth-order response function is explicitly given by
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~(k)((r rl r2 rk zl Z2 zk}

d CO) d Cu2 d COk

kt 2m 2m 2m

~(k)«r(r, r],12, . . . , rk', coi, co2, . . . , cok )
X

(Z) +Z2+ ' +Zk —Coi —CO2 —' ' Cok—)(Z2+Z3+ +Zk —CO2 —CO3 —' —COk ) ' ' (Zk —Cok )

+ [all permutations of (ri,zi,'r2, z2,'. . . ,rk, zk)] (2.4)

The spectral function X'"'" is the Fourier transform of the expectation value of a kth-order commutator

X'""(r,r&, r ,2. . . , 1 kt t„t —t2, . . . —, t tk)=([—. [[n(r, t},n(ri, ti)],n(r2, t2)] . ,n(rk, tk)]) tf, . (2 5)

Equations (2.3)—(2.5) constitute the obvious generalization to arbitrary order of the linear response found in standard
texts. ' They should be compared with the finite temperature results of Wehrum and Hermeking. '

For a systein of independent particles Eqs. (2.4) and (2.5) yield simple expressions for the response functions in terms
of unperturbed one-particle orbitals and energies (or, one-particle Green s functions). In particular, for a system of in-
dependent fermions one obtains, up to the third order,

g'"(r, r, ;co)=g [P,'(r)P;(r, )G (r, r, ;e;+co&)+P;(r)P,*(r,)G (r, r, ;s; —coi)],
l

OCC

X' '(r, ri, r2', coi, co2) = —,
' y [ y,'(r)y;(12)G "(r,r]', sg+coi+co2)G "(ri,r2,'sg+co2)

(2.6)

OCC

+p;(r)p; (r2)G (r, r&, E; —coi —co2)G (11,12'e —co2)

+p;(r&)p,*(12)G"(r,ri, s;+coi)G (1,12,'c,; —co2)+ [permutations of (ri, coi', r2, co2)] I, (2.7)

(3)X (r, ri, r2, r3 coi co2 co3)

I R=—g [ p; (r)p;(r3)G (r, ri, E;+co~+co2+co3)G (r&, 12,e;+co2+co3)G (12,r3, s;+co3)
t

R*+p;(r)p; (r3)G (r, ri,'e; coi co2 c—o3)—G —(I t 12 e' co2 co3)G (12 13 s' co3)

+$,*. (r&)p;(12}G (r3, r2, E;+co2)G"(1,13,c.;+co2+co3)G (r, r&, c,; —co~)

R* R+p;(ri)p; (r2)G (r3 12 s' co2)G (r, r3 s' co2 co3)G (r, r)', e;+co))

+[all permutations of (r&, co/ 12 co2 13 co3)] I . (2.8)

The retarded one-particle Green's function appearing in
Eqs. (2.6)—(2.8) is explicitly given by

P;(r)P,"(1')
G "(r,r';co) =g

&—~;+tg
(2.9)

in terms of the orbitals P;(r) with energies e;. We notice
that in Eq. (2.9) the sum runs over all the independent
values of the one-particle energies, whereas, in Eqs.
(2.6)—(2.8) the sum is over occupied orbitals only.

In the case of density-functional theory P; and E; are,

respectively, the Kohn-Sham orbitals and energies. Also,
the infinite sum in Eq. (2.9) is easily circumvented by
determining G (r, r', co) through a direct integration of
the differential equation

[—V + V,ff(r) —co]G (r, r';co) =5(r—r') . (2.10)

In the above equation V,ff(r) is the local, one-body poten-
tial entering the Kohn-Sham equations. Also, the units of
energy and length have been taken to be rydbergs, and
bohrs, respectively.
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In the density-functional formalism the potential
v(r, co) in Eq. (2.3) is a combination of the external poten-
tial and of exchange and correlation contributions arising
from the distortion of the particle density caused by the
perturbation. This will be explicitly shown in the applica-
tions considered in Sec. III.

One advantage of using response functions over the use
of the self-consistent Sternheimer procedure ' ' is the
absence of the problem of the correct normalization of the
perturbed orbitals. ' In fact, it is readily seen that

f d r(5n(r, co)) =0 (2.11)

v"'(r, t) = V,„,(r, t)+ V',ff(r, t) (3.3)

is described by the independent-particle response function
of Eq. (2.6).

By exploiting the spherical symmetry of closed-shell
atoms one can show that

ground-state density, and Vxc denotes the first derivative
of the exchange and correlation energy of the homogene-
ous electron gas. The so-called time-dependent LDA
(TDLDA) is obtained by assuming that the response to
the total first-order potential

to any order. This follows immediately from Eqs.
(2.3)—(2.5) when one observes that

f d r[n(r, t),n(ri, t)]=0
implies

X"'(r,ri, co&)=QXt '(r, r&, co&)Yi (r)Yt (r, ) .
I, m

It then follows that

n' "(r,t) =n '~" (r, co)cos8 cos(cot),

(3.4)

(3.5)

d r X'""(r,ri, r2, . . . , rk, coi, cop, . . . , cok) =0~ ~ ~ ~ ~ ~ (2.13)

III. APPLICATION TO THE
SUSCEPTIBILITIES OF RARE-GAS ATOMS

A. Frequency dependence of the linear polarizability

for each k. In fact, one can go further. The explicit con-
struction of the spectral functions X'"" appearing in Eqs.
(2 4), (2.5), and (2.13) in the case of independent particles
shows that they are naturally decomposed into contribu-
tions g,'""arising from each occupied orbital i The s.ame
is true for the density change. We have found that at
least up to k =3, each orbital contribution to 7'"" satis-
fies a condition like the one in Eq. (2.13). Thus for
k = 1,2, 3 each contribution to the density change satisfies

f d r(5n "'(r,co)) =0. (2.14)

In the static limit the response function formalism
developed above is completely equivalent to the self-
consistent Sternheimer method. ' However, some care
must be exercised in taking the limit co~0 for the
response functions in Eqs. (2.6)—(2.8). While divergences
can occur in individual terms, they cancel out when the
various terms are grouped together. This point will be il-
lustrated in the numerical applications below.

with

ni (r, co)= dr,

rishi

(r, r&', coi)vi (ri, co)
(1) 2 (&) . (1) (3.6)

and

vi (r, co)= r+ dr'r' ni (r', co)(1) 8~ t I 2 (1)

+ n'i" (r, co) Vxc(n' '(r)) . (3.7)

a(co)= — dr r ni (r, co) .
4' 3 (])

0
(3.8)

We have numerically solved Eqs. (3.6) and (3.7) for rare-
gas atoms by using the explicit expression for 7'&" in
terms of orbital wave functions and Green's functions
given in the Appendix. The Careen's functions were calcu-
lated by straightforward Numerov integration of the dif-
ferential equation, Eq. (2.10). In particular, one has

In writing Eq. (3.6) use has been made of the fact that for
a closed-shell system and away from resonances
X',"(r,r', co) is real if one restricts to values of co below the
one-particle ionization threshold. The self-consistent
solution of Eqs. (3.6) and (3.7) yields the TDLDA density
change n'i" (r, co) and hence the dynamical polarizability
a(co). In our units we have

Here we consider the LDA linear response of a closed-
shell atom to a harmonic dipole potential

G (r, r', co)=+Gi (r, r';co)YP(r)Yt . (r'),
1,m

(3.9)

V,„,(r, t) =r cos8 cos(cot) . (3.1) with

Following Zangwill and Soven, in the spirit of perturba-
tion theory, we assume that the local effective potential is
changed by an amount

u,"'(r )u,"'(r )
Gi (r, r jco) (i) (2)rr'W [ut, ui ]

Here u1'" and u1' ' are solutions of

(3.10)

n'" r' t
V ff(r, t)=2 f d r', ' +n'"(r, t)Vxc[n' '(r)]

fr —r'/

d l (1+1)+ + V,tt(r) —co ui' (r) =0(i)

dp p'
(3.1 1)

(3.2)

Here n"'(r, t) is the density change induced by the per-
turbing potential, n ' '(r) is the unperturbed LDA

which are regular at the origin and at infinity, respective-
ly. W[u"', u' '] denotes the Wronskian of these two
functions. Self-consistent solutions of Eqs. (3.6) and (3.7)
were readily obtained with a few iterations (of the order of
10) to an accuracy of one part in 10 for a(co). The
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Ceperly-Alder results' for the exchange and correlation
energy of the uniform electron gas, as parametrized by
Perdew and Zunger' were employed.

As a preliminary check of the numerical procedure we
have calculated the static polarizability of hydrogen by
setting Vxc ——0. Our result differs from the exact result
by only four parts in 10 . It should be noted that in their
calculations, Stott and Zaremba' quote a result which is
worse by 3 orders of magnitude for the same check. We
have also repeated the calculations for the static polariza-
bility of rare-gas atoms. We find agreement with our pre-
vious results using the Sternheimer procedure to within a
few parts in 10 or better. Then we performed calcula-
tions of a((o) at optical frequencies. In this frequency re-
gion both our theoretical results and experimental re-
sults' are accurately described by the simple formula

a(co) =ao(1+C2(u ) . (3.12)

B. Third-order nonlinear susceptibility
of rare-gas atoms

In Table I we report our results for ao and C2 for rare-gas
atoms, together with the experimental values for these
quantities. Note that our values for no, using the
Ceperly-Alder exchange correlation results, are slightly
higher than those reported previously' ' using the
Gunnarsson-Lundquist parametrization' of Vxc. The
overall agreement with experimental data is satisfactory,
although the LDA systematically overestimates the defor-
mability of the electronic cloud. ' The limits of LDA are
even more evident in the coefficient Cz which describes
the dispersion of the dipole polarizability. The agreement
with experiment improves in going to the heavier atoms
as is to be expected.

We note that while the LDA makes the atoms too
' soft, " any modification to introduce self-interaction
corrections (SIC)' ' would appear to destroy the simpli-
city of the response function formalism. Indeed, it is not
obvious how to calculate the Green's functions for a
Hamiltonian which is state dependent. As to the
discrepancies between calculated and measured values of
Cq, we argue that these should be ascribed to the LDA
ground state rather than to the "adiabatic approximation"
needed to obtain the time-dependent LDA. Gross and
Kohn have, in fact, shown that the adiabatic approxima-
tion is not a severe one.

TABLE I. Linear polarizabilities of rare-gas atoms in LDA.
Frequency dependence is expressed as a(~) =o.p(1+ C2co ),
where co is in wave numbers.

ap (10 cm )
Theory Expt. '

C, (10 " cm')
Theory Expt. '

He
Ne
Ar
Kr
Xe

0.246
0.452
1.78
2.67
4.26

0.205
0.395
1.64
2.48
4 04

0.31
0.31
0.65
0.85
1.14

0.24
0.23
0.54
0.75
1.05

'From Ref. 18.

{2)

1,1,1I 2 mmIm2
m, m), m2

(3.13)

By expanding the local effective potential up to the third
order in the density change, in a way similar to that em-
ployed for the first-order calculation, we find that the
second-order density change contains the term

n' '(r, t)= [no '(r, 2')+n2 '(r, 2(u)P2(cosO)]

generation (EFSG)22 and third-harmonic generation
(THG)."

Here we consider the TDLDA calculation of y(3'),
which is the quantity measured in the THG experiments.
To this purpose one has to examine the third-order
response to the harmonic field of Eq. (3.5). This, howev-
er, requires the knowledge of the first- and second-order
response. The first order was explicitly considered in the
previous section. We therefore start by examining the
second-order response to a harmonic field. We are only
interested in that part of the second-order induced density
which oscillates with frequency 2'. We use below the
fact that the second-order response function can be writ-
ten as (see the Appendix)

y' '(r, r), r2', (u), (02)

Recent experimental results for the cubic hyperpolariza-
bility ' for rare-gas atoms have been reported. They were
obtained both with electric-field-induced second-harmonic where

&& cos(2cot), (3.14)

n( (r, 2') =(~) V~(21 +1) ~ "
2 2 (2) ()) (1) {1) . {2)

3 0
dr( dr2r lr2+111(r, rl r2'co co)u 1 (11 ~)u 1 (r2 (u)+ dr)X( (r, r) ,'2')u( (r), 2(u)0

(3.15)
for I =0,2. In the above equation

1
00 r&ut' '(r(, 2')= dr'r' n)' '(r', 2') t ( +n)' '(r„2')Vxc(n' '(r))+ [nI"(r),(u)] V'xc(n' '(r)), (3.16)
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and Vxc denotes the second derivative of the exchange and correlation potential. Similarly, by using the fact that (see
the Appendix)

(3)X (r, r&, r2, r3 co] co2 co3)—
l, 1),12, 13

m, m&, m2, m3

X! ! ! ! (r rl r2 r3 col co2 co3)+! (r)1! (rl)~l (r2)~l (r3)
mm&m&m3

(3.17)

we find that the third-order density change contains the term

n' '(r, t) =n '& '(r, 3co)cosg cos(3cot),

where

(3.18)

n ~ (r, 3co) = — dr! dr2 dr3r &r 2r 3X~!& &(r, r &, r2, r3, co, co, co)v
&

(r &,co)u
& (r2, co)v

& (r3,co)(3) 7T 2 2 2 (3) . (1) (&) (&)

3 0 0 0 0000
1/2

0 2 21 + 1
dr, dr2r!rz[X!~!(r,r!,r2,'co, 2co)v~ (r~, co)u! (r2, 2co)2 2 (2) (]) (2)

0 0 000

+X!!!(r,r~, r2, 2co, co)u
& (r2, co)u! (r&, 2co)](2) (&) (2)

In the above,

dr, r, XI"(r,r&, 3co)uI '(r~, 3co) .
0

(3.19)

uI '(r, 3co)= J dr'r' nI '(r', 3co) z +nI '(r, 3co)Vxc(n' '(r))
3 0

+ 2 nI" (r, co)[no '(r, 2co)+ , n2 '(—r,2co)]Vxc(n '(r))+ ~ [nI"(r, co)] Vx'c(n' '(r)), (3.20)

and Vx'c denotes the third derivative of Vxc. Also, we
have restricted ourselves to the case in which 3m lies
below the one-particle ionization threshold. In order to
obtain nI '(r, 3co) one has first to solve the self-consistent
Eqs. (3.15) and (3.16) for the second-order density change
and then Eqs. (3.19) and (3.20). Once n I '(r, 3co) is
known, the cubic dipole polarizability y(3co) is readily ob-
tained as

—,'y(3co)= — f dr r nI '(r, 3co) . (3.21)

We have performed calculations of y(3co), as outlined
above, for all the rare-gas atoms at a few frequencies, up
to that corresponding to A. =10550 A. This was the
wavelength of the laser light utilized in the THG experi-
ment. As is customary we define

creases in going to higher-order processes. This, we ar-
gue, happens because of the major importance of the outer
part of the electronic distribution which is not well treated
in LDA. Nevertheless, we find again the same trend as
that encountered in the linear process, in that the situation
is worst for lighter atoms and tends to improve somewhat
for heavier ones. Qualitatively TDLDA predicts an in-
crease in X' ' with frequency, in agreement with experi-
ments.

IV. SUMMARY

We have extended the LDA linear-response theory' to
treat nonlinear processes. Expressions for the quadratic
and cubic response of a system of independent electrons

X'"(3co)=4
6

(3.22)
TABLE II. Hyperpolarizability P' ' of rare-gas atoms in

LDA. Both static values and values for third-harmonic genera-
0

tion with A, = 10550 A are given.
so that in the limit co—&0, X' '(3co) tends to

(3)
+static 7 static~ (3.23)

g' '(static) (10 esu)
LDA' Expt. b

g' '(3~) (10 esu)
TLDA Expt. '

We have checked that in the limit co~0, X' '(3co) repro-
duces the values of 7,'„'„cobtained within the Sternheimer
method, ' within two parts in 10 or better. In Table II
we report the TDLDA predictions for X' '(3co) together
with the experimental results of Lehemeier et al. The
static results' are also listed. As we previously found for
the static case, ' the TDLDA grossly overestimates the
deformability of the electronic clouds in a way which in-

He
Ne
Ar
Kr
Xe

7.40
17.7

156
332
769

3.5+0.4
5.9+0.6

72 +7
174 +17
403 +40

7.96
19.5

187
420

1048

3.7+0.4
6.6+0.7

86 +9
234 +23
688 +69

'From Ref. 10.
Extrapolated from finite frequency measurements of Ref. 23 ~

'From Ref. 23.
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have been obtained in a form suitable for numerical calcu-
lations. As applications we have computed the frequency
dependence of the linear and third-harmonic electric sus-
ceptibilities of rare-gas atoms. The discrepancies in the
results are of the same order as those found for the static
response. The discrepancies are worse for the lighter
atoms than for the heavier ones. We attribute the
discrepancies primarily to the rather unsatisfactory treat-
ment of the electronic tails in the LDA. Conceptual diffi-
culties are encountered in including self-interaction
corrections within the response function scheme.
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APPENDIX: ANG ULAR COMPONENTS
OF RESPONSE FUNCTIONS UP TO THIRD ORDER

Here we give explicit expressions for the angular corn-
ponents of the response functions up to third order, ap-
pearing in Secs. II and III. We start by writing the occu-
pied LDA ground-state orbitals as

(A 1)

The spin projection quantum number o has been dropped
here. Factors of 2, to account for the sum over cr, will be
explicitly included where needed.

When Eqs. (3.9) and (Al) are used in Eqs. (2.6)—(2.8),
after some algebra and use of 3j,6j,9j technology, we
find the following.

(1) First order:

with

min l, l'I
(r, ri, co) =2+R„g (r)R s'(r, ) CI ~ [Gg +~ 2k(r, r &, E«+coi)+Gi'+I 2k(r, r—, ;e« —co&.)]

(1) l'+1 —2k R

n, l' k=0
(A2)

CI +I —2'k 21'+ 1 ~i a&k&i k 2(l'+ 1) 4k + 1

4m 2(l'+ 1)—2k + 1al'+1 —k

(2)
Xl / c (r, r&, r2, co&, co2)

mm1m2

and ak ——(2k)!/[2 (k!) ]. Formulas (A2) and (A3) were already given by Ekardt
(2) Second order.

I' ll 122 [ R«(r)R«(rp)[ CI I' ~' G&, (r, r, ;e«+co~+coq)G, (r&, r2, E„I +co2)
n, l 12

1, , 12 mm m
1 2

1'

+Cl 11 12

11 12 G&, (r, r&, c,„, co& —co2—)G, (r&, r2 , E« —co2)]'
11 '2

—m —m —m
1 2

11121 Re R+R«(r&)R«(r2)CI ~ I G&, (r, r2, e« —cop)G& (r, r&, E«+co)) I

mmlm2

+all permutations of (r, ,co„l„m„rz,co2, 12,m2) (A4)

In the above,

1' l1 12
C1111

mmlm2

I'+ I
&
+ I z

3/2[(21+1)(2l)+1)(212+1)]'(2l'+1)(21',+1)(212+1)

r

l' l ] l l ) l2 l I

0 0 0 0 0 0

r

l2 I' l2

0 0 0

l l) 12 l l) l2
r

m m
& m2 l2 l' l'&

(A5)

where 3j and 6j symbols are used.
(3) Third order:
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(3]~l I ! I (r rl r2 r3 col co2 co3)
Nf 7Fl ) Nlzm3

1 l~ 12 13
IR„!(r)Rnl'(r3)[ C! I1 I2 13 Gl' (r, rl', En!'+Col +co2+co3)

I
1', , lz, l', m02)Pfzm3

Q 6 i ( r 1 ~ r 2 i En 1 +M2 +&3 )61~ ( r 2 ~ r 3 ~ En l +~3 )
R R

2 '3

1' ll lz 13+ Cl 1) lz l3
—ltd —PPf )

—P2l z
—772 3

Gli (r, r1', E !—co1 —co2 co3)—
1

)C, Gl, (r1 !'2,'Enl —CO2 —CO3)GI (12 r3 En!' CO3)]'2 '3

213 1' ll Re+R I'(r1)R I'(r2)[ CI I I I Gl' (r3 r2 E I' a 2)
Ptg Pl%) mz m3

~6!, (r, r3, E„I co2 co3)—GI, (r—, r1, E„I +co1)

1z 13 1'

+ cl
/& lz 13

—m —m )
—mz —P13

6, , (r3, r2,'E„l +co2)
l

R
&&6,, (r, r3 ,E„!+co2'+co3)6, , (r, r1,E„l co'1)] I—

2 '3

+a11 permutations of [(rl, co1,11,m1), (r2, co2, 12,m2), (r3 co3 13 trt3)] (A6)

In the above equation,
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where use has been made also of 9j symbols.
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