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Multiconfiguration Hartree-Fock method and many-body perturbation theory:
A unified approach
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The multiconfiguration Hartree-Fock theory and many-body perturbation theory are combined in
a calculation of the correlation energy of the ground state of the neutral beryllium atom. For this
purpose the two-component Be multiconfiguration Hartree-Fock wave function is treated as a refer-
ence state and perturbation theory is used to systematically improve upon the accuracy of this func-
tion. The correlation energy of each pair of occupied orbitals is determined by solving numerically a
coupled set of two-particle inhomogeneous equations. A detailed comparison is made with other
beryllium calculations.

I. INTRODUCTION

Over the years extensive atomic calculations have been
carried out using the multiconfiguration Hartree-Fock
method (MCHF) and many-body perturbation theory
(MBPT). Although accurate calculations can be per-
formed with either scheme, these methods are clearly at
their best under quite different circumstances. The
MCHF method is most effective at capturing the dom-
inant correlation effects which describe the dynamics of a
many-electron state at a qualitative level; however, one
often encounters difficulties with the method in dealing
with a series of weakly interacting states. In Fig. 1 we
show the percent of outer correlation that is included by
MCHF expansions of varying length for the ground state
of Be. While the first few configurations capture appre-
ciable amounts of correlation, one rapidly approaches a
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FIG. 1. Plot of percentage of correlation vs the number of
configurations.

region of diminishing returns in which increasing the
length of the expansion by an order of magnitude only has
a marginal effect.

Perturbation theory, on the other hand, has exactly the
opposite characteristics —large correlation effects are diffi-
cult to incorporate but a large number of small effects can
readily be included. In a perturbation calculation on Be,
for instance, Lindgren and Salmonson' found it necessary
to go to 12th order in the perturbation theory to obtain
convergence for the correlation energy of the 2s pair.
The reason for this, of course, is that the 1s 2s and
1s 2p configurations of beryllium interact quite strongly
and perturbation theory is poorly suited for calculating
such a strong effect. The ideal approach could very well
be a combination of these two methods.

Although this paper describes an atomic calculation, we
would like to point out that the formal difficulties associ-
ated with combining the MCHF and MBPT approaches is
quite relevant for molecular calculations as well. Pertur-
bation theory has the advantage over the ordinary
configuration-interaction (CI) approach that it is size con-
sistent, that is, by including diagrams corresponding to
disconnected pairs (so-called coupled-cluster diagrams)
the theory has the proper asymptotic dependence in the
limit in which the molecule separates into two parts. For
this reason perturbation theory is ideally suited to the cal-
culation of disassociation processes. Since the weight of
the various electronic configurations in the ground-state
wave function of a molecule depends generally upon the
internuclear distances, however, it is important to use
multiconfigurational wave functions to study molecular
disassociation and coupled-cluster effects. These funda-
mental considerations are, of course, widely recognized
and are responsible for the large number of multireference
calculations that have been reported recently. The point
which we would like to emphasize here is that due to the
relative ease and flexibility of atomic calculations, atomic
theory provides a good testing ground for the most suit-
able ways of combining the MCHF and MBPT ap-
proaches. Even though our calculation here is on an
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atomic system, we shall take care to preserve the size con-
sistency of the theory. In any case, to be effective we
must use a form of many-body theory that is concise and
well suited to the MCHF method.

The many-body perturbation formalism was developed
by Brueckner and Goldstone and first applied to atomic
systems by Kelly. In these early calculations, Kelly ex-
plicitly constructed a complete set of eigenfunctions of the
approximate Hamiltonian (Ho say), and then treated the
difference between H and Hp as a perturbation. Pertur-
bation calculations for bound-state systems can be carried
out much more readily, however, by solving inhomogene-
ous one- and two-particle equations for the linear com-
binations of excited states that contribute to the Gold-
stone diagrams. Single-particle equations have been used
by Sternheimer to evaluate the effect of quadrupole
shielding, by Dalgarno and Lewis in their study of dipole
polarizability, and by others. Accurate methods for solv-
ing the two-particle equation were first developed by
Musher and Schulman and also by McKoy and Winter. '

Such equations have been applied in perturbation calcula-
tions by Schulman and Lee" and by Morrison. ' More
recently, this approach has been used extensively by Garp-
man and co-workers at Chalmers University of Technolo-
gy, Gothenburg, Sweden, where the numerical methods
have been improved considerably. ' The solution subrou-
tines of the pair program which we have used in this cal-
culation are essentially the same as those in Martensson-
Pendrill's recent version of the Gothenburg code. ' We
have modified these subroutines slightly and altered them
to read wave functions and lists of angular coefficients
produced by our software package. '

In this paper, we combine the MCHF and MBPT ap-
proaches in a calculation of the correlation energy of Be.
Some preliminary results of this calculation have been re-
ported recently. ' In the next section we consider the ex-
citations from the valence shell from quite a general point
of view in order to gain some insight into the general
structure of the theory. Then in the following section we
derive equations for the valence excitations by explicitly
adding the Goldstone diagrams for excitations from the
2s and 2p pairs. One of the surprising features of the
theory which emerges is that the ground state of Be,
a

~

ls 2s 'S)+b
~

ls 2p 'S), is coupled to the other
linear combination of the

~

ls 2s 'S) and
~

ls 2p 'S)
states by the approximate Hamiltonian Hp. In Sec. IV we
consider excitations of the core orbitals.

II. GENERAL STRUCTURE OF THE THEORY

Our aim now is to obtain an approximate solution of
the Schrodinger equation

for the neutral beryllium atom. For this purpose, we
separate the Hamiltonian into an approximate or model
Hamiltonian Hp and a perturbation V:

H =Hp+V.
We shall suppose that Hp and V are of the general form

Ho ——g ——,V'; ——+u; =+ho(i),
l

V= g 1 lr;J —gu;, (4)

and suppose that it is normalized

(4 ~% )=1.
A two-configuration MCHF calculation for the lowest

'S state of Be yields

a =0.9500344, b =0.312 145 1 .

What we would like to do now is to develop a perturbative
procedure for calculating corrections to the MCHF
method. For this purpose it is convenient to introduce a
wave operator, 0 which acts upon the model space and
generates the corresponding eigenfunctions of H,

(10)

The projection operator (7) and the wave operator (10) are
illustrated in a simple way in Fig. 2. The operator P pro-
jects the eigenfunctions of H upon the model space and Q
generates them back from the model functions. A
thorough treatment of these aspects of perturbation
theory is given in a recent book. '

In order to obtain the Rayleigh-Schrodinger expansion,
we must eliminate the energy from our basic equations.
To do this we multiply the Schrodinger equation (1) first
with P and then with 0 to obtain

APHID%'=E%

where we have used Eqs. (7) and (10). Now subtracting
Eq. (1) from Eq. (11) and using the properties of the pro-
jection operators we obtain

(QHO —HOQ)% = VQ%' QPVQq'—(12)

This generalized form of the Bloch equation was first ob-
tained by Lindgren. '

We can now use Eq. (12) to evaluate the matrix ele-
ments of the wave operator Q between the model and the
orthogonal spaces. However, when Hp operates on the

and the eigenstates of ho may be written

P( nlm, mi) =r 'P„i(r)Y, (8,1(j)X

The eigenstates of Ho, for which a certain number of the
single-particle states (5) are occupied, can be used to parti-
tion the Hilbert space into a model space and an orthogo-
nal space.

Since the
~

1 s 2p 'S ) state of Be mixes strongly with
the

~

ls 2s 'S) state, we include both of these states in
our model space. The lowest eigenstate of H then has its
two leading components in the model space

%' =a
~

ls 2s 'S)+b
~

ls 2p 'S)+ .

We shall denote the component of 'P within the model
space by +

+ =P+ =a
~

ls 2s 'S)+b
~

ls 2p 'S)
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equation leads to a linked diagram theorem and size con-
sistency is preserved. This would not be true if, for in-
stance, we had added QPV'0 to each side of the equation
in order to transform QHp+~ into QPH%'~.

Equation (15) differs from the generalized Bloch equa-
tion by the last term on the right. This term couples the
MCHF functions to the orthogonal linear combination of
the states

~

ls 2s 'S) and
~

ls 2p 'S) by means of the
approximate Hamiltonian Hp. As we shall see this leads
to a two-component theory.

FIG. 2. Illustration of the wave operation (Q) and the projec-
tion operator (P). P projects out of any function the component
in the model space, and the wave operator generates the exact
wave function 4 by operating on the model function 4 .

model function (7) to the right, it will produce

H p% = 2m &,a ~

ls 2s 'S )

+2@2&b
~
ls 2p 'S)+2E),%~ . (13)

Thus because 4' is not an eigenfunction of Hp we cannot
use Eq. (12) without decomposing 4 into its component
parts. This is certainly a disadvantage. We would like to
treat the MCHF state as a single reference function, and
we know that any decomposition of this kind will inevit-
ably lead to intruder state problems. In order to avoid
this difficulty we insert a complete set of states between Q
and Hp in the first term of Eq. (12),

QHp+~=A+
~
P)(P

~
Hp

~

a)

=Q(a
~
Hp

~
a)+~+QPj Hp+ (14)

—QP) Hp+ (15)

In the next section we shall derive equations of this
kind by explicitly adding together the Cxoldstone diagrams
for excitations from the 2s and 2p pairs. At this point
we only make a few observations.

When Eq. (15) is expressed in diagrams the additional
term QP&Hp will generally be linked and so our basic

I

where Pz is the projection operator for the linear com-
bination of the states

~

ls 2s 'S) and
~

ls 2p 'S) that is
orthogonal to the MCHF ground state. Substituting Eq.
(14) into Eq. (12) and taking the term QP&Hp+ over to
the right-hand side we obtain the basic equation

(Q(a
~
Hp

~

a) HpQ)% = VQ—+~ QPVQ+—

III. EXCITATIONS FROM THE VALENCE SHELL

Figure 3(a) shows a Goldstone diagram which describes
the excitation of a pair of valence electrons (p, q) into ex-
cited states (r, t) This .diagram corresponds to the two-
particle wave function

g(pq~(1„/, )'S)

= g ~
(n, l„,n, l, )'S)

n„,n,

((n„l„,n, l, ) S
~

I/r&2
~
(nzlz, nqtq) S)

X
E, +6p q p 1'

(16)

In addition to the wave function for the excited state,
~
(n„l„n,l, )'S), there is a matrix element corresponding

to the dotted interaction line and an energy denominator,
which is the negative of the excitation energy. Both the
valence electrons and the excited electrons are coupled to-
gether to form an S state. Clearly this is a two-particle
function that does not explicitly depend on the 1s elec-
trons. We shall refer to the two valence electrons by 1

and 2.
By multiplying Eq. (16) from the left with

[s~+Eq —hp(1) —hp(2)] we obtain the pair equation

[s~+Eq —hp(1) hp(2)]n—(pq~(l„l, )'S)

~
(n„l„,n, l, )'S)

n n&

X ((n„l„,n, l, )'S
~

I/r&2
~
(nzlz, nqlq)'S) . (17)

The sum over n„and n, may be removed by making use
of the completeness relation for the single-particle states.

We are interested now in deriving an equation which
describes the excitation of a pair of electrons from the
MCHF state described by Eqs. (7) and (9). So we multiply
Eq. (17) for the case, p =q =2s, by a and add Eq. (17) for
the case, p =q =2p, times b

[2s~ —hp(l) —hp(2)]ay(2s ~(1„1,)'S)+[2Ezz hp(1) —hp(—2)]by(2p ~(l„l,)'S)

= g ~
(n„l„,n, l, )'S)((n„l„,n, l, )'S

~
I/r&2

~

ag(2s 'S)+bg(2p 'S)) . (18)
n„,nr

We note here that the right-hand sides have combined to produce a matrix element involving the state
ag(2s 'S)+bf(2p 'S); however, due to the fact that the single-particle energies, 2Eq, and 2s2~ are not the same, it has
not been possible to combine the two terms on the left-hand side of this equation. To deal with this problem we first
take the inner product of Eq. (18) from the left with a particular excited state ((n„l„,n, 1, )'S

~
to obtain

(2ez, —s„—s, )a((n„l„,n, l, )'S
~

0"'
~

2s 'S)+(2E2& —E„—E, )b((n„l„,n, l, )'S
~

Q"'
~
2p 'S)

=((n„l„,n, l, )'S
~

1/r, 2 ~ag(2s 'S)+b@(2p 'S)), (19)
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where 0'" is the first-order term in the expansion of the wave operator. We now make use of the fact that cz, and E2p
are different eigenvalues of the same operator, hp, and write Eq. (19) in the following way:

((n„l„n,l, )'S
i
A"'[ho(1)+ho(2)]

i
ag(2s 'S)+bg(2p 'S))

—(8„+e,)((n, t„,n, t, )'S
~

0"'
~

att(2s 'S)+bf(2p 'S)) =((n„l„,n, l, )'S
~

1 lr, 2 ~
an't(2s 'S)+bf(2p 'S)) . (20)

This last equation is fairly simple, but we have here the same problem that we encountered in the last section:
[hp(l)+hp(2)] will mix into the model function the orthogonal linear combination of the states 2s and 2p . Since it
should be clear by now that we are being led into a two-component theory we make the following definitions:

=a/(2s 'S)+bg(2p 'S),

p+ = —b1t(2s 'S)+a/(2p 'S) .

(21a)

(21b)

Here g is related to the MCHF ground state and P+ is the model function that is orthogonal to this state. Our nota-
tion is analogous to that used for two spin states. With this notation we again insert a complete set of states between the
operators QI" and [hp(1)+hp(2)] in Eq. (20) and carry the nondiagonal term over to the right-hand side to obtain

((@
~

Ho
~

ttj ) —E„E,&—((n„t„,n, t, )'S
~

0"'
~

'P )

=((n„l„,n, l, )'S
)
llr, 2 ( P ) —&(n„l„,n, l, )'S

)

fl'"
[ P+ &(@+ )Ho ( P

Finally, we multiply this last equation by
~

( n„l„,n, l, )'S ) and sum over n„and n, to obtain

[(P ~
Ho

~ Q ) —ho(1) —ho(2)]tt ('S~(t„t, )'S)

= 2 I
(n, t„n t~)'S&&(n, t„n l, )'S

I 1«i210 & &0+ IH—o I 0 &@+('S-(t,t, )'S)
n, n

(22)

(23)

where tt (' S~( ,tt)' S) [q+('S~(t„t, )'S)] is the pair
function that describes the excitation of two electrons
from the ttj [g+] state.

Equation (23) and the equation obtained by the inter-
change —~+ are the basic equations we shall use to
describe excitations from the valence shell. These equa-
tions may be solved iteratively by first solving the "uncou-
pled" equations obtained by neglecting the last term in
Eq. (23).

[(P ~
H,

~

tt ) —h, (1)—h, (2)]q"'('S (l„l, )'S}

g ~
(n, l„,n, l, )'S)((n„l„,n, l, )'S

~

1/r, z ~
P+)

nr*n
(24)

and then solving for the difference between the "coupled"
and "uncoupled" functions

[&q—IHo
l

1t —&
—ho(1) —ho(2)]btt—

which represents the Hamiltonian within the model space.
From Eqs. (1) and (10) it follows directly that the eigen-
values of H, ff are the exact energies. Using the relation

PAP =P (28)

and the fact that the projection operators commute with
Hp, the effective Hamiltonian may be written

H, ff ——PHpP+PVAP . (29)

0=1++,
we obtain

(30)

Finally, decomposing the wave operator into a part which
operates within the model space and a part which gen-
erates the component of the wave function in the space
orthogonal to the model space

=(ttj+
~

—Ho
~

lt )rt+, (25a)
H, ff ——PHP+PVgP . (31)

[(l//+
~
Hp

~ P+ ) —hp( 1)—hp(2)]kg+
Since the correlation operator 7 generates the component
of the wave function in the orthogonal space, it must have
at least one perturbation. X can then be expanded as

Here Ag and b g+ are given by the equation

Sq =q ('S (l„t, )'S) q"'('S (t„t, )'S)—.

/(1)+ /(2)+. . .

and the effective Hamiltonian to second order is

(32a)

We thus solve the uncoupled equations (24) to obtain pair
functions that describe excitations from the states g and

g+, and then used these functions to form the right-hand
sides of Eqs. (25). Continuing in this manner we generally
obtained convergence within a few iterations.

Once the solutions of Eq. (23) are known, the energy
may readily be calculated using the effective Hamiltonian

H, ff ——PHAP,

H ff —PHP +PVA "'P (32b)

(P(ls )f
~

H
~
tt(ls )Pp) =5~pE (33)

where o, and P=+, —.
Using Eqs. (31)—(33), we can form the matrix of H', ff

within the model space:

In the MCHF calculation, of course, H was diagonalized
within our model space. So we have
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EMcHF+(q
i

V
i

(ls (l! )ls))

(g+ ~

V
~ q ('S~(l, l, )'S) )

(q ~
v~q ('s (t„l,)'s))

~McHF (y ~

V
~

(ls (!!)IS) )
(34)

We shall thus solve Eq. (25) iteratively for g and g+ and
then determine the second-order contribution to the corre-
lation energy by diagonalizing the matrix (34) of H,'rr'
within the model space. Before giving numerical results
for excitations from the valence shell, however, we shall
consider the effect of core excitations.

IV. EXCITATIONS FROM THE CORE

(2si, —8, —c, )(2p 'S, (n„l,n, !)'S
~

0"I

~ f )

=b(2p 'S, (n„!,n, !)'S,'S
~

V
)

ls 2p 'S) . (37)

Since the core excitations do not couple the various com-
ponents of the MCHF wave functions, we can derive a
pair equation for the excitation of the two core electrons
from each component of the model function. For in-
stance, using Eq. (36), one can readily show that the two-
electron wave function

Excitations of the core orbitals can most effectively be
studied by using the general approach based on the Bloch
equation adopted in Sec. II. A perturbation expansion of
the wave function can be generated by substituting the ex-
pansion (32a) of 0 into Eq. (12) and identifying terms of
the same power on the left- and right-hand sides. In par-
ticular we obtain the first-order equation

(O'"Hp —HpQ'")4 = V%P —PVqiP

lit = g ~

( n „t,n, !) 'S )
n, nt

&& (2s 'S, (n„l,n, !)'S,'S
~

0'"
~ g )

satisfies the pair equation

[2E] —hp( 1 ) —hp(2}]g

= g ~
(n„l,n, !)'S)(2s 'S, (n„l,n, !)'S

~

V
~ g ) .

(38)

=QV+

We shall use
~
l! ) to denote the MCHF ground state.

Replacing 'k with
~
l! ) in Eq. (35) and taking the inner

product from the left with (2s 'S, (n, l, n, !)'S,'S
~

we ob-
tain

(2E„—c,„—s, }(2s 'S, (n, l, n, l)', 'S
~

0"'
~ Q )

=(2s 'S, (n„l,n, !)'S,'S
~

V
~ P )

(39)
Here we have assumed that the state

~
( n „!,n, !) 'S ) is an-

tisymmetric. Also, the sums on the right-hand side of
Eqs. (38) and (39) extend over the excited states.

Intershell correlation effects, for which one electron in
the core and one electron in the valence shell are excited,
are amenable to the same basic approach. Replacing +
with

~ g ) in Eq. (35) and taking the inner product from
the left with

=a (2s 'S, (n„l,n, l}'S,'S
j

V
~

ls 2s 'S ) .

Similarly,

(36)
~

(ls2s)' S,(n, l, n, !)'S, 'S)

we obtain

(s~, +Ez, —E, —E, )((ls2s)' S, (n, l, n, !)'S, 'S
~

Q"'
~ g ) =((ls2s)' S, 'S

~

V
~

1! ) . (40)

The notation ' S is meant to cover both the singlet and the triplet cases. In most instances the state
((ls2s)' S,(n„l,n, !)'S, 'S

~

is joined by the perturbation only to the first component (ls 2s 'S) of the MCHF wave
function and we have the same kind of separation as before. The quantum numbers n, =2, I =1, however, require spe-
cial consideration since ((ls2s)' S,(2pnp)' S, 'S

~

is joined both to ls 2s 'S and to ls 2p 'S. Perturbing configura-
tions of this kind, which contain a single excited orbital, are most suitably calculated using single-particle, perturbed
functions. Since this lies outside the scope of the pair approach which we have adopted in this paper, we have used the
MCHF method to evaluate this particular family of excitations. For all other possible combinations of quantum num-
bers, Eq. (40) leads immediately to the pair equation

[ei, +sq, —hp(1) —hp(2)]f'= g ~
(n, l, n, !)'S)((ls2s)' S(n„t,n, !)'S, 'S

~

V
~ P ) (41)

for the two-particle function

~

(n„l,n, !)'S)((ls2s)' S,(n„l,n, !)'S, 'S
~

0'"
~ P ) .

n„,nt

(42)

The intershell ( ls 2p)'P and ( ls 2p) P pairs can be treated similarly.
The contribution of the innershell and intershell excitations upon the energy can again be calculated by using Eq.

(32b). We can write

(43)

for the various contributions to the first-order wave function.
In order to entirely define our procedure we must specify the single-particle potential, u which appears in our approxi-

mate Hamiltonian, Ho. For this purpose we review briefly the MCHF theory for beryllium.
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V. DEFINITION OF POTENTIAL AND INCLUSION OF SINGLE-PARTICLE EFFECTS

In order to derive the two-component MCHF equations for Be one considers the wave function

—a
I
ls 2s S)+b

I

ls 2p S)

E=a (ls 2s 'S
I

H
I

ls 2s 'S)+2ab(ls 2s 'S
I
H

I
ls Zp 'S)+b (ls 2p 'S

I
H

I
ls 2p~S)

=a [2I(ls)+2I(2s)+F (ls, ls)+4F (ls, 2s)+F (2s, 2s) —2G (ls, 2s)] 2—abG'(2 s2p)/(3)'~ 2

+b [2I(ls)+2I(2p)+F (ls, ls)+4F (ls, 2p)+F (2p, 2p)+ —,F (2p, 2p) ——,G'(ls, 2p)] .

This expression assumes that

P„I(r)P„I(r)dr =6„„
0

a +b =1.
Introducing a Lagrange multiplier for each constraint on the wave functions, we obtain the energy functional

W'=E+X&, &, & ls
I
ls)+k»2, (ls

I
s)+X2, 2, (2s I 2s&+k2&2p&2p I 2p& .

(45)

(46)

(47)

(48)

The requirement that 58' be zero for all variations, 6P„l, of the radial part of the wave functions then leads to the
MCHF equations for the 1s 2s, and 2p orbitals'

LP~ = Yo( ls, ls 'r)P& + [2Y (2s 2s; r)P„—Y'
( ls, 2s;r)P2, ]

T 7

2

+ [2Y (2p, 2p;r)P» ——, Y ( ls, 2p;r)P2&]+8»»P»+E~, 2, P2, ,0 (49)

LP2, ———[2Y (ls, ls;r)+ Y (2s, 2s;r)]P2, ——Y (ls, 2s;r)P» — ——Y (2s, 2p;r)P2&+E2, q, Pz, +e2, ~,P~»2 o o 2 o
s r ' ' '

3 a r
(50)

LP2~ —[2Y (ls,——ls, r)+Y (2p, 2p;r)+ —, Y ( p2, p2;r)] P&2——, Y'(ls, 2p;r)P&, — —Y''(2s, 2p;r)P2, +e2&q&Pqz,
T 3 b

where the operator I is defined as

d' 2Z 1(1+1)+ 2dr ~ r

the Y"(nl, n'1', r) functions are those introduced by Hartree,
k—Y"(nl, n'1;r) =

k P„I(s)P„~(s)ds+ k P„I(s)P„~(s)ds,k+1

and the coefficients e„~ „ I are related to the A.„l „~ by the equations

(51)

(52)

(53)

and

9'nl

(54)

(nl
I
n'1) =0 .

9'nl

Accordingly, for s and p states we made the following choice of potential:

u, =—Y (ls, ls;r) —K), +—Y (2s, 2s;r)+ a —Y (2s, 2s;r) K2g ——Y (2s,2—s;r) IP)g)(P)g
I

T T r
T

K2p IP2 &&P2
I
+b Y {2p 2p'r) 3K' IP»&(P» I

3 a r
L

u, =—Y'(ls, ls;r) ——,
'

I~ I, +—[Y'(2p, 2p;r)+ —', Y'(2p, 2p;r)1—

(55)

{56)

(57)
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where

K„~P„i(r)= —Y (nl, n'I', r)P„ i(r) . (58) }}

u, and u& are both N —1 potentials —as Kelly found
preferable in his early work on beryllium. Also if one de-
fines

1 d' Z l(1+1)
hp ———— ——+ +Q

2 dp r 27.
(59) (a) (c)

one can readily show that the eigenvalue equations for the
1s, 2s, and 2p orbitals

ho I Pni &
=&niPni & (60)

are identical to the MCHF equations (49)—(51) except for
the Lagrange multipliers associated with orthogonality.
The fact that we have neglected these terins here will
mean that we will have to deal with the orthogonality re-
quirements explicitly when we solve the pair equations.

On the left-hand sides, of Eqs. (23), (39), and (41) we
should clearly use the form which these potentials assume
for excited states. Since the excited orbitals are orthogo-
nal to the occupied functions, the defining equations (56)
and (57), reduce in this case to

FIG. 3. Goldstone diagrams for the excitation of one or two
valence electrons. (a) describes a two electron excitation, (b) and
(c) describe the excitation of a single electron by means of a
direct and an exchange interaction with the core, and (d) de-
scribes the excitation of an electron by the potential.

u, =—Y ( ls, ls;r) K„+——Y (2s, 2s;r),2 o . o 1 o

T T
(61)

u =—Y (ls, ls;r) —K»—2 1

T 3

+—[Y (2P, 2p;r)+ —', Y (2p, 2p;r)] .
T

(62)

For excited states with l ~ 1, we chose to weight the 2s
and 2p components of the potential with the coefficients
of the respective configurations squared,

particle functions that describe the excitation of the first
and second electron, respectively, and we denote by
il"(1,2) a pair function corresponding to a two-particle
excitation. These functions satisfy the equations

[E„i—ho( l)]vl'(1)

= —u""(1)P„i(i) —QP„ i(1)(n'I
~

—u""
~

nl &,
n'

ui ———Y ( ls, ls;r) — Ki, +a —Y (2s, 2s;r)2 1 I 21
2l+1

+b [Y (2p, 2p;r)—+ —, Y (2p, 2p;r)] .
T

(63)
[sni —ho(1)]9'(2)

(64)

= —u""(2)P„I(2)—QP„ (i2)(n'I
~

—u""
~

nl &,

This is reasonable since a and b correspond to probabil-
ities that these configurations are occupied; however, one
should emphasize that the MCHF potential can be chosen
in a variety of different ways. Equations (49)—(51) only
serve to define the potential within a three-dimensional
manifold.

In some cases single-particle effects can readily be in-
cluded in the pair function. Figures 3(b) and 3(c), for in-
stance, show Goldstone diagrams which describe the exci-
tation of a single valence electron by means of a direct
and an exchange interaction with the ls core. Figure 3(d)
describes the excitation of a single electron by the poten-
tial. The diagrams shown in 3(b) and 3(c) will cancel the
-contribution from the potential diagram 3(d) that is due to
the closed shell. What remains is a diagram of the same
form as the diagram 3(d) with the matrix element of the
part of the potential which is due to the valence shell,
(nl

~

—u""
~

nl &. According to Eq. (4) a negative sign is
associated with this potential interaction. This single-
particle effect can be incorporated into the pair function.
For this purpose, we denote by il'(1) and il'(2) single-

n'

[c,„i+E„i—ho(1) —h p(2) ]il "(1,2) =g(1,2) —X .

(65)

(66)

i)(1,2) =i} (1,2)+il (1)P„i(2)+P„i(1)i}(2)

satisfies the equation

[Ezi +E„i—hp( 1)—"o(2)]il( 1,2)

=g (1,2) —[u ""(1)P„i(1)]P„i(2)

P„ (1)i[ u(2)P„i(2)—]—X' .

(67)

(68)

The last terms on the right in Eqs. (64) and (65) have the
effect of forcing the orthogonality of the right-hand side
with the solutions of the corresponding homogeneous
equation. The right-hand side of Eq. (66), and in particu-
lar the orthogonality term X, have only been indicated
schematically.

By multiplying Eq. (64) with P„i(2) and Eq. (65) with
P„i(1) and adding these equations to Eq. (66), one may
readily show that the pair function
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Single-particle excitations from the valence shell can thus
be included in the pair function by adding to the right-
hand side of the pair equation terms for which the valence
contribution to the potential operates on the occupied or-
bitals. Explicit expressions for these additional terms can
be readily evaluated by making use of the defining equa-
tions for the potential, (56) and (57). We obtain

—u""Pz, ————Y (2s, 2s;r)
r

+ ——Y (25, 2p;r)Pz~,
3 a r

(69)

—u"'Pzz ————[ Y' (2p, 2p;r)+ —, Y (2p, 2p;r)]
r

+ ——Y' (25,2p;r)Pz, .1 a 1

3 b r

These terms generally have the effect of reducing the
magnitude of excitations of the valence electrons to states
having the same angular momentum. For correlation ef-
fects involving core orbitals single-particle effects can also
generally be incorporated into the pair function; however,
in the intershell case, as we have seen, single-particle exci-
tations from the model space lead to a different interac-
tion mechanism and they are best considered separately.

Thus far we have only considered the first-order correc-
tions to the wave function. Among the various diagrams
that occur in the next order is the ladder diagram for
which the excited orbitals interact. As has been shown
previously, higher-order effects of this kind can be in-
cluded in a systematic way by solving our basic equations
iteratively. In our calculation we have taken these terms
over to the left-hand side of the equation and included
them with our potential.

VI. RESULTS AND DISCUSSION

For the excitation of valence electrons to s, p, d, f,
and g states, Eqs. (24) and (25) with the ladder correction
mentioned above were solved in 3S-, 60-, 8S-, and 110-
point grids and Richardson extrapolation was used to re-
move the numerical error due to grid size. In solving the
pair equation we used an absolute convergence criterion of

one part in 10 . From this fact and from the consistency
of our extrapolated results, it is reasonable to suppose that
our numerical solution of the pair equation is generally
accurate to a few parts in 10 . However, we encountered
some difficu1ty in solving the s equation and our solu-
tions are somewhat less accurate in that case. Apparently
this instability is due to the presence of near-lying Pz,P
states which are solutions of the corresponding homogene-
ous equation.

In Table I we show the results of separate MCHF cal-
culations for the s, p, d, f, and g series. In the
MCHF calculations for the s and p series we allowed
the 2s and 2p functions to relax to include single-particle
excitations; however, for the other series the 18, 2s, and
2p orbitals were held fixed to the value they have for the
ls (2s +2p )'S MCHF calculation. The reason for this,
of course, is that the relaxation of these orbitals is not in-
cluded in the pair calculation. We note here also for later
reference that the sum of the energy contributions of the
individual MCHF calculations ( —0.0025503) is greater
than the energy contribution produced by the single large
MCHF run ( —0.0023634). Apparently in this case cou-
pling effects between different pairs have the effect of
lowering the overall energy contribution.

The result of these separate MCHF runs are compared
with our pair calculations in rows three and four of Table
II. The pair contributions are complete in the sense that
all pairs of orbitals of that symmetry are included; howev-
er, these are still basically second-order results. To the ex-
tent that higher-order effects can be neglected the magni-
tude of the pair results should be somewhat larger than
the corresponding MCHF value. This is true for all of the
pair contributions except for the excitation to p states.
Our s results may also be somewhat too large. The fact
that our s and p results disagree slightly with what
could be naturally inferred from the MCHF calculation is
reasonable since the s states give the dominant result and
the contributions from this series is expected to converge
rather slowly. The p series is undoubtably more strong-
ly coupled to the s series than are the states with a larger
value of the angular momentum. In the first two rows of
Table II we also show results that were obtained by
neglecting the coupling terms in Eq. (23) and by omitting
the final matrix diagonalization. Clearly the coupling

TABLE I. A summary of MCHF calculations for the valence shell. The underlined orbitals were
held fixed.

Configurations

1s (2s +2p )'5
s (2s +2p +3s +4s +5s )

1s (2s +2p +3p +4p +5p )'S
1S L2ss+2~ +3d +4d +sd )'S
1s'(2s'+2~'+4f'+ 5f'+6f')'S
s (2s +2+ +5g +6g +7g )

1s (2s +2p +3s +4$ +5s
+3p +4p + 5p +3d +4d +5d
+4f'+5f'+6f'+5g'+6g'+7g')'S

Total energy (a.u. )

—14.616 845 3
—14.618 474 1

—14.617007 1

—14.617 344 7
—14.617028 8
—14.616 922 1

—14.619208 7

—0.001 628 8
—0.000 161 8
—0.000 499 4
—0.000 183 5
—0.000 076 8

—0.002 363 4
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TABLE II. Contribution to the correlation energy (a.u. ) of beryllium from excitation of the valence
orbitals.

Present calculation
Without coupling
terms in Eq. (23)
Without 2X2 matrix
diagonalization
With coupling and
matrix diagonalization

s (10 )

—1.66

—1.85

—1.86

p (10 )

—0.877

—1.416

—1.393

d (10 )

—3.944

—4.859

—5.051

f'(10 ')

—1.632

—1.849

—1.869

g2( 1Q
—5)

—7.296

—7.938

—7.972

MCHF —1.629 —1.618 —4.994 —1.835 —7.680

TABLE III. Contribution to the correlation energy (a.u. ) of beryllium from core excitations.

Present calculation
MCHF

2
( 1Q

—2)

—1.526
—1.400

p2( 1Q
—2)

—2.494
—2.365

d (10 )

—3.737
—3.651

f2 (10—4)

—10.386
—9.861

g'(10 ')
—3.931
—3.600

TABLE IV. Intershell contribution to the correlation energy (a.u.}of beryllium.

(1s Zs)'S pair s (10 ) (10 ) d (10 ) f' (10 ') g2 ( 1Q
—5)

Present calculation
MCHF

—9.857
—9.538

—9.810
—9.391

—2.591
—2.439

—6.861
—6.079

—2.546
—2.178

(1s2$) S pair

Present calculation
MCHF

s {10 )

—4.610
—4.092

p (10 )

—9.399
—8.216

d2 (10 4)

—1.707
—1.495

f' (10 ')

—2.617
—2.240

g2 ( 1Q
—6)

—6.201
—5.077

(1s2p)'P pair

Present calculation
MCHF

sp (10-')
—4.820
—3.844

pd (10 )

—2.217
—1.288

df (10 ')

—2.545
—1.947

fg (10 )

—7.223
—5.04

(1s2p) P pair

Present calculation
MCHF

sp (10-')
—1.491
—1.301

pd (10 )

—1.905
—1.659

df (10 ')

—1.576
—1.113

fg (10 ')
—2.587
—1.6

TABLE V. Contributions to the intershell correlation energy
(a.u. ) due to single-particle excitations from the model space.

Excitation

(1s2s)'S (2p np)'S
(1s2s) S—+(2p np) S

—4.02 ~ 10-4
—8.96~ 10—4

TABLE VI. A comparison of pair correlation energies (a.u. ).

Fischer and Saxena, Ref. 22
Kelly, Ref. 5
Bunge, Ref. 23
Lindgren and Salomonson, Ref. 24
Present

1s

—0.042 143
—0.042 12
—0.042 564
—0.042 63
—0.045 372

1s 2s

—0.004 126
—0.004 97
—0.006016
—0.005 54
—0.004 808

1s 2p

—0.000416

—0.000 617

2$ 2

—0.046 161
—0.044 88
—0.046 731
—0.044 78
—0.046 593

Total

—0.092 846
—0.091 97
—0.095 311
—0.092 96
—0.097 390
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terms are important in our calculation while the matrix
diagonalization has only a marginal effect.

One of the few other correlation calculations with
which our approach can be directly compared is the mul-
ticonfigurational model space calculation of Salonomson,
Lindgren, and Martensson. ' We redid their calculation
using MCHF wave functions and including a ladder
correction as we have in our calculation. In most cases
the two calculations then agree quite closely. The princi-
pal difference between our approach and theirs is that
they solve the pair equations for the pure 2s 'S and
2p 'S states and diagonalize the first- and second-order
contributions together to obtain the energy levels, whereas
we solve the pair equations for excitations from the linear
combination of 2s 'S and 2p 'S states that is produced
by the MCHF method.

In Table III we compare our results for excitations
from the core. The agreement is quite good although our
results may be slightly too large. In our calculation we in-
cluded the third-order hole-hole and hole-particle dia-
grams as well as the ladder correction. The hole-particle
diagrams have the effect of removing the core electrons
from the single-particle potential. As a result our excited
states interact only with two units of charge in the valence
shell and in addition the two excited electrons interact
with each other. Although this potential contains more
third-order effects than we included in our valence-shell
calculation, one can only appraise the accuracy of our re-
sults by carrying the calculation to higher orders or by
comparing them to other accurate calculations. A more
complete comparison with other beryllium calculations
will be given presently.

In Table IV we compare our results with the MCHF for
the intershell excitations. The MCHF calculations for the
(ls2s)'S and (1s2s) S pairs were performed with three
excited orbitals in each case. It is partly due to the con-
sistent way that the MCHF calculations were performed
that the difference between the perturbation and MCHF
calculations is so uniform in this case. The contributions
from the (ls2p)'P and (ls2p) P pairs were considerably
smaller and in several cases the MCHF wave function
only contained a single excited configuration of that sym-
metry. In cases such as these where there is a large num-
ber of small effects perturbation theory can provide useful
information about the completeness of a MCHF calcula-
tion.

In Table V we give the contribution to the intershell
correlation energy due to the particular effect involving a
single excited orbital, which was discussed in Sec. IV.
This correlation effect could also be included in the corre-
lation energy of the (ls2p)'P and (ls2p) P pairs. We fol-
low here the assignment made in the earlier paper of
Froese Fischer and Saxena. Finally, in Table VI we
compare our pair correlation energies with other accurate
calculations that have been performed on beryllium. The
agreement is quite good. This is encouraging since ours is
still basically a second-order result while the calculations
of Lindgren et al. and Bunge in particular are more ex-
tensive. The discrepancy for the 1s pair is probably
mainly due to the same kind of higher-order coupling ef-
fect which we noted in conjunction with Table I. The
contributions to the 1s correlation energy are quite large
and we obtained the value shown in Table VI simply by
adding up these individual contributions. In order to
understand the coupling between the different components
of the first-order wave function, the present calculation
should be extended to higher order. Accurate second-
order calculations, however, are interesting in their own
right since the MCHF and MBPT theories can most easi-
ly be used in conjunction at low orders of the perturbation
theory.

VII. CONCLUSION

We have seen that it is feasible to combine the MCHF
and MBPT approaches. Using a formalism in which the
multiconfiguration state is treated as a reference function
we obtain a quite reasonable description of the correlation
energy already at second order.
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