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Further evidence for causality violation
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Further evidence is presented for the violation of causality in the Compton scattering of light by
protons for the energy region near the 6(1232) resonance. A very simple precausal model has been
found to reproduce both the photon absorption and scattering cross sections. Since dispersion rela-
tions are significantly violated in the same energy region, it is concluded that no causal model can
fit the data as well as the precausal model.

INTRODUCTION

In the preceding paper, ' we pointed out that the low-
energy limit of the Kramers-Kronig dispersion relation
for the scattering of light by protons was in substantial
conflict with the experimental data on the proton electric
and magnetic polarizabilities, which serve to determine
the angular distribution of elastic photon scattering. We
observed that the implication of this conflict is that mi-
croscopic causality is violated. We were able to reproduce
the measured electric and magnetic polarizability of the
proton with a theoretical model. We were able to show
that this model explicitly violates local commutativity, in
that the commutator of the charge density operator at two
points did not always vanish for spacelike separations. In
the present work we extend the results of Ref. 1 into the
b, (1232) resonance region, and demonstrate further evi-
dence for causality violation.

We begin with a brief discussion of the existing prob-
lems in fitting the Compton scattering and photoabsorp-
tion data. We then consider a simple model of a damped,
harmonically bound, radiating charge, except that we re-
tain solutions which violate causality. We find that this
simple model of "precausality" is able to account for the
frequency spectrum of photoabsorption and scattering
through the entire b, (1232) resonance region. The y decay
branching ratio of the b, is also well accounted for. These
results from such a simple model are remarkable in that a
conventional Breit-Wigner parametrization gives a very
much inferior fit and dispersion relations are definitely
violated in some regions for this same data. We feel the
conclusion that precausal effects are manifest in nature to
be strongly indicated based on these results.

THE PROBLEM

The earliest clear signal that there was a problem with
the comparison of dispersion relations to photoproduction
data can be seen in the analysis of Noelle, Pfeil, and
Schwela. These authors found a factor of 2 discrepancy
between the amplitude M&

' needed to fit pion pho-
toproduction data, and the results from dispersion theory.
This work was extended in Ref. 3 and included more re-
cent and more accurate data, but the disagreement with
dispersion theory persisted. A partial wave analysis of

proton Compton scattering in the b, (1232) energy region
showed substantial evidence for a discrepancy between the
dominant fM~ amplitude needed to fit data and the corre-
sponding dispersion theory amplitude. The f~+M ampli-
tude describes the magnetic dipole excitation of the proton
to the 6 resonance followed by magnetic dipole deexcita-
tion, and is the dominant amplitude throughout the entire
first resonance region. More recently, the systematic mea-
surements of Genzel et al. show very clearly that there is
a discrepancy between the Compton scattering cross sec-
tion and the results of dispersion theory, which is most
readily discernible in their 90 data. Despite the evident
violation of the dispersion relations, the possibility that
causality might be violated seems to have been rejected
out of hand. Numerous alternative explanations have
been suggested over the years. Some typical examples
selected from an extensive literature include such sugges-
tion as erroneous data analysis, neglect of certain pole
terms in the dispersion relations, or neglect of the annihi-
lation channel. The development ' of model-
independent lower bounds, however, seems to eliminate
the dispersion-theoretic uncertainties. To quote from Ref.
9, "These violations clearly reveal that the results of the
pion photoproduction multipole analyses used in the
evaluation of the bounds and at least some of the experi-
mental data for the Compton-scattering unpolarized dif-
ferential cross section in the b resonance region are at
variance. This conclusion, previously reached in a
phenomenological way in [our Ref. 4] on the basis of a
purely unitarity bound. . . is now reached rigorously. " In
Ref. 10, the model-independent lower bounds are im-
proved (i.e., increased) so that the discrepancy with the ex-
perimental data is increased. Despite the evident violation
of the dispersion relations, no claim of causality violation
was made.

We see the failure of the data to conform to any disper-
sion relation as a serious problem, and since we will show
that we are able to fit the data with an extremely simple
precausal model, we do not believe that the problem of the
discrepancy with dispersion relations lies with errors in
the experimental measurements. Rather, we believe that
the a priori assumption of the universal validity of causal-
ity must be abandoned.

Although our use of a classical model may be criticized
on the grounds that only a fully relativistic, quantum-
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mechanical theory can possibly be a correct description,
we will show in subsequent papers that our semiclassical
treatment of the spectrum of Compton scattering is a
reasonable approximation to a more complete, relativistic,
quantum-mechanical theory which happens to violate
causality. As the classical approach is extremely easy to
apprehend and discuss, in the present article we confine
our analysis entirely to the semiclassical treatment.

X(co)= F (co)e =6 (co)F(co)e—i r(co —co] )(co —coq)(co —co3)

so that, making a Fourier decomposition of f ( t) we find
the general solution

x (t) = f f (t')g (t t'—)dt', (9)

where

CLASSICAL THEORY OF PRECAUSALITY g(t —t')=(1/2') f G(co)e '"" ' 'dco (10)

We first consider the purely classical Abraham-
Lorentz-Dirac model of a harmonically bound charge
driven by an external electric field:

x —rx+rx+coox=(e/m)E(t) = f(t) .

This equation accounts for normal damping through the
I term, and radiative damping through the ~ term. The
radiative damping time constant in the Abraham-
Lorentz-Dirac model is given by

2 e'T=
3 m

The most general solution to this equation in the absence
of a driving force is a linear superposition of terms of the
form

is the Green function for Eq. (1).
In the usual analysis, " there are no roots of the quadra-

tic secular equation with positive imaginary parts, so that
the Green function is guaranteed to vanish for t (t', and
therefore there is no effect of the future on the past. In
the present case, because of the positive imaginary root,
this Green function is generally precausal, in that effects
may precede their cause.

We now consider an impulsive driving force

f (t)=fo&(t)

and demand that both the position and velocity be con-
tinuous and finite for all times. The solution for this case
is proportional to the Green function (10):

—ICOit —iCO~ix (t) ~ (co3 cop)e +(co] co3)e— , t &0

where

—t Cgtxoe —ico 3t
cc(co]—cop)e, t &0 .

From this we determine the acceleration

(12)

CO +i~CO +iCOr —COp=o . (4)

Provided the appropriate cubic discriminant of this equa-
tion is positive, the roots of this equation are generally of
the form

1/~= 1/w' —I ',
r/r =r /r —(r'/4+~, '),
coo/7 = (coo +r'/4) /r'

(6)

CO~ =COp —l I /2,
co2 ——cop —jI /2

CO3= l /'T

where the relation between the primed and unprimed
quantities is

2 I CO) t —E COgta (t) co](co3 cop)e —co,(co] —co,)e, t & 0
2 —ico3t= —co3(co] —coq)e, t & 0,

with a frequency spectrum proportional to

a(co)= f a(t)e'"'dt,
2 2 2co](cop co3) cop(co3 co] ) co3(co] cop)

a(co) 0:
CO —CO ~ CO —CO2 CO —CO3

We also get a velocity
—ia))t —iCO~t

u (t) = i co](co3 c—oq)e —i co&(co] co—3)e, —t & 0
—l cd3t

i co3(co] ——coq)e, t & 0

with a frequency spectrum proportional to

(14)

(16)

For small values of ~, the primed quantities become ap-
proximately equal to the unprimed quantities in (1).

The cubic secular Eq. (4) differs from the usual quadra-
tic secular equation in that one of its roots has a positive
imaginary part. This root leads to either runaway solu-
tions or acausal solutions and thus is conventionally dis-
carded. We now consider the consequences of retaining
the positive imaginary root. The solution to (1) for a
purely harmonic driving force

co](cop co3) cop(co3 co]) co3(co] cop)
u(co) ~ +

CO —CO ~ CO —CO2 CO —CO3
(17)

Since the impulsive force contains all frequencies with
equal strength, we can find the entire frequency depen-
dence of both the light scattering and absorption cross
sections from the above solutions. The scattering cross
section is determined by the component of the accelera-
tion perpendicular to the observation direction n, so that

da/dfl„,«(co)=(e /8m. )
~
n)&a(co)

~

1S

f (t) =F(co)e
By summing over polarizations, this purely classical ex-
pression yields an angular distribution
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do./dQ„,«(co) =(e /8m. )
~

a (co)
~

(1+cos 9) .

The total scattering cross section is then

o„«(co)= —,e
~

a (to)
~

(19)

(20)

For the scattering of the spin-1 photon by a spin- —,
' nu-

cleon through a spin- —,
' resonance, we instead use a dif-

ferential scattering cross section which matches the classi-
cal value of expression (19) at forward angles and is given
the correct quantum-mechanical angular distribution else-
where, ' as is dictated by the correspondence principle

der/dQ„, «(to) =(e /8m)
~

a(to)
~

(7+3 cos 8)/5 . (21)

This incorporation of the correct quantum-mechanical an-
gular distribution is our only nonclassical effect. The to-
tal scattering cross section resulting from this expression
1S

o„„t(td)= —', e
~

a(td)
~

(22)

The absorption cross section is determined by the power
loss to the damping term which depends on the velocity of
the charge, so that

oaban~(td ) =m I
~

U ( co )
~

(23)

The ratio of the scattering cross section to the absorption
cross section is given by

o„,«(co), e
~

a (td)
~

Oaba(&q, (~) ml
~

U(N)
~

(24)

—', e
(
to,

)
/(m I ) =6.4 X 10 (25)

which is in reasonable agreement with the data. This is
not a remarkable result, since almost the same expression
results from a causal semiclassical model.

SIMPLE LIMITS

We note that the simple expression (20) contains five
distinct and interesting regions. For example, consider
the application of (20) to an electron bound in an atom,
for which case the characteristic precausal frequency I/r
is very large compared to the atomic binding energy. For
photon energies small compared to the binding energy,
our expression reproduces the characteristic cu depen-
dence of Rayleigh scattering. As the frequency increases,
we enter a "resonance" region where the cross section ex-
hibits large enhancements. Well above the resonance re-
gion, but for frequencies small compared to 1/r, the cross
section becomes approximately constant, and equal to the
classical Thompson scattering cross section, when proper-
ly normalized. As the product of cur becomes significant,

We can immediately confront this expression with the
data for energies near the peak of the b, resonance by ob-
serving that the expressions for the acceleration and velo-
city are dominated by the contribution from the nearby
pole at tot. We thus find, using the accepted values for
the energy and width of the b, resonance to determine to&,

the radiative branching ratio for the 5 resonance predict-
ed by Eq. (24) is

we find a region where the electron behaves as though it
has a polarizability, in the sense of having a quadratically
growing deviation from the constant Thompson cross sec-
tion. Finally, at very high energy, the cross section van-
ishes inversely with the square of the energy. The absorp-
tion cross section behaves in a similar fashion, except that
the extreme-low-energy limit grows only quadratically
with energy, and there is no "Thompson"-like plateau re-
gion.

For the proton, we expect a similar behavior, and
indeed the low-energy (below about 50 MeV) Compton
scattering cross section for protons is given by the
Thompson plateau limit of (20). The polarizability region
above 50 MeV, however, shows clear evidence for sub-
structure within the proton, and in fact is the first place
we noticed evidence of causality-violating behavior. In
view of this we should expect to see a characteristic pre-
causal time constant (2) determined by the quark charges
and masses. For the up and down quarks, using masses
derived empirically, ' we find precausal time constants

r„~=8e /27m„~= 1/(2 GeV),

rd,„„2e/27m——d,„„-1/(8 GeU) .
(26)

Since the up-quark time constant is largest, it is likely to
dominate in the proton, so that for two up quarks we ex-
pect an effective precausal time constant for the proton of

(27)

Since these values are so similar to the period of the 6 res-
onance, it is not a coincidence that the clearest example of
acausal behavior is provided by light scattering near the 6
resonance frequency. Before we proceed to the compar-
ison with data we consider the generalization of the above
results to purely magnetic interactions, since we believe
that the dk resonance is primarily a magnetic excitation.

MAGNETIC PRECAUSAL MODEL

+ 3n(n. M)™(1—k ) '"". (28)
7

where n is a unit vector in the direction of the observer.
The response of an absorbing universe to the radiation
zone limit of this field is

k2nX(MXn)(e'"" —e '"") 3n(n M) —M
~response 2r

+
2T 3

X [(1 ikr)e'"' (—1+ikr)e —'"'] (29)

(Bretarded Badvanced ) / (30)

We now consider the appropriate equations for a mag-
netic dipole with radiative reaction effects explicitly in-
cluded. Following Wheeler and Feynman, ' we can calcu-
late the radiative reaction fields for an absorbing universe
explicitly.

Considering Fourier components whose time depen-
dence is given by e '"', the full retarded field of a mag-
netic dipole M is given by

k n X (M X n)e'""
~retarded
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In the direct particle interaction theory, the intrinsic field
of the magnetic dipole would be

r = —,yMa t

we get a secular equation

(41)

intrinsic ( retarded+~advanced)/2 (31)
r co +cd —top+i I /2=0 (42)

net ~retarded ' (32)

From the detailed expression for the radiation response
field, we find at the position of the dipole

2
'"

~response 3 ~ (33)

This reaction field produces a torque on the magnetic di-
pole which causes a change in the angular momentum J,
and in terms of the gyromagnetic ratio r, defined by

M=rJ, (34)

so that the net field surrounding the magnetic dipole is
just the full retarded field, because we have no second time derivative term, the roots

of this secular equation must sum to zero. If we did have
a second derivative damping term in (39), there would be
no constraint that the roots sum to zero, but there would
still be only three roots. In any event, treating the case of
magnetic radiation in the same way that we treated elec-
tric radiation above leads to exactly the same spectrum for
magnetic scattering when expressed in terms of the three
roots of the corresponding magnetic secular equation. In
the more general case, we should expect to be able to
describe a mixture of electric and magnetic modes in
terms of three complex numbers, representing the roots of
a general cubic secular equation.

we find a Bloch equation

M=y(MXB) . (35) THE EXPERIMENTAL EVIDENCE

If we include a transverse damping term as well, we find
the equations of motion for a magnetic dipole exposed to
a transverse electromagnetic wave traveling in the z direc-
tion:

2 1M„=repMy yM, B—
y
——,yM, My ——,I,M„,

My = copM„—+yM, B„+—,yM, M„——,I,M», (36)

If we ignore the time variation of M, we have only the
two equations for x and y components to solve, which can
be written in terms of

M, =M +i',
B B +i'

(37)

as

—,yM, M, —M, i rppM, —, I—M, =—iyM, B—e =f(t) .

(39)

M, = icopM, +iy—M,B,+ —,yM, M, ——,I M, . (38)

We thus have a magnetic counterpart to Eq. (1),

We now consider the comparison of the above theory
with the experimental Compton scattering data. We wish
to maintain contact with previous analyses" ' of the
low-energy Compton scattering data (which are generally
done in terms of laboratory system energies and laborato-
ry differential cross sections), and so we retain the "polar-
izability expansion" in powers of co/M, and simply add
our precausal scattering cross section incoherently to this
low-energy form. It turns out that whether laboratory or
center-of-mass quantities are used, the quality of fit and
resulting parameters change only slightly. We thus rely
on the low-energy polarizability expansion to account for
the terms up to order co . Since eventually the polarizabil-
ity expansion becomes unreasonable (certainly by the time
the quadratic correction terms produce a negative cross
section), we cease to add in the polarizability expansion
above a certain energy. We specifically cease adding in
the polarizability expansion above 275 MeV, where its
contribution has become generally less than the experi-
mental uncertainties. The quality of the fit and the result-
ing best fit parameters are not very sensitive to this
changeover point, as long as it does not occur at such high
energy that the quadratic polarizability terms have be-
come important. Very explicitly, the model we use for the
cross section is that above 275 MeV we have only

Once more assuming a time dependence do/dQ„„t(to)=~~a(co)
~

(7+3cos 8), (43)
oe

-'"'

and defining
where ~ is the normalization and below 275 MeV we also
add in

do/dQ=e /(2M )I [1—2y(1 —cos8)+3y (1—cos8) —4y (1—cos8) ](1+cos 8)

+y [(1—cos8) +ap+aicos8+a2cos 8][1—3y(1 —cos8)]

—y M /e [2a'(1+cos 8)+4Pcos8][1—3y(1 —cos8)] j .
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TABLE I. Precausal fit to Compton scattering cross section. All differential cross sections are in units of 10 cm /sr, laboratory photon energies
are in units of MeV and angles are in degrees.

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23-

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

(deg)

70.0
90.0

120.0
150.0
90.0
90.0
90.0
90.0
90.0
90.0
90.0
90.0
50.0
50.0
50.0
90.0
90.0
90.0
90.0
90.0
90.0
90.0

135.0
135.0
135.0
135.0
135.0
135.0
135.0
75.0
90.0

120
135.0
150.0
90.0

150.0
90.0

150.0
150.0
90.0

150.0
90.0

110.0
130.0
69.9
90.0

109.9
70.1

129.9
90.2
70.2
60.0

110.1
90.0

130.0
49.8
69.8
89.7

109.7
129.6
50.0
89.8
69.9

(MeV)

60.0
60.0
60.0
60.0
55.0
65.0
75.0
90.0

102.0
112.0
126.0
137.0
90.0

105.0
115.0
54.0
65.0
75.0
86.0
97.0

107.0
121.0
55.0
67.0
80.0
92.0

106.0
120.0
130.0
60.0
60.0
60.0
60.0
60.0
80.9
81.9
85.4
86.3

106.7
109.9
111.1
236.9
238.6
249. 1

265.6
272.6
279.7
284.6
285.0
289.4
316.9
323.1

329.4
329.5
334.8
367.4
370.8
380.6
382.4
386.5
406.7
407.8
415.8

d~expt

dO,
(10 cm /sr)

1.06
1.08
1 ~ 18
1.47
1.08
1.09
1.08
1.08
1.04
1.04
0.98
0.93
1.34
1.34
1.20
1.37
1.19
1.22
1.34
1.27
1.10
1.13
1.62
1.52
1.59
1.74
1.99
1.22
1.67
1.12
1.10
1.34
1.56
1.93
1.15
1.44
1.09
1.37
1.60
1.03
1.44
5.3
5.5
6.9
7.1

11.6
1 1.7
14.6
15.8
14.1

22.3
24.0
19.1
16.0
19.5
16.1
15.7
12.1
10.6
12.5
11.1
10.5
8.7

~~stat

(10 cm /sr)

0.08
0.04
0.05
0.06
0.18
0.21
0.16
0.18
0.11
0.14
0.25
0.53
0.35
0.35
0.35
0.37
0.31
0.25
0.20
0.20
0.24
0.28
0.51
0.42
0.41
0.33
0.44
0.37
0.87
0.08
0.05
0.08
0.08
0.07
0.06
0.12
0.04
0.10
0.08
0.06
0.06
0.5
0.90
1.1
1.0
1.0
0.8
1.1

1.3
1.0
1.5
1.6
1.1
1.1
1.3
0.80
1.1
0.80
0.80
1.0
1.4
2.3
0.9

~~syst

(10 cm /sr)

0.08
0.09
0.09
0.12
0.11
0.11
0.1 1

0.11
0.10
0.10
0.10
0.90
0.13
0.13
0.12
0.10
0.08
0.09
0.09
0.09
0.08
0.08
0.1 1

0.11
0.11
0.12
0.14
0.09
0.11
0.07
0.07
0.08
0.09
0.11
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.23
0.24
0.30
0.31
0.51
0.51
0.64
0.70
0.62
0.98
1.06
0.84
0.70
0.86
0.71
0.69
0.53
0.47
0.55
0.49
0.46
0.38

d~theor

dQ
(10 cm /sr)

1.28
1.15
1.34
1.76
1.17
1.13
1.10
1.06
1.04
1.03
1.04
1.08
1.30
1 ~ 15
1.05
1 ~ 17
1 ~ 13
1.10
1.07
1.04
1.03
1.03
1.59
1.50
1.41
1.35
1.30
1.29
1.32
1.23
1.15
1.35
1.55
1.75
1.08
1.57
1.07
1.54
1.44
1.03
1.44
5.48
6.16
9.28

10.14
11.84
13.34
14.37
16.19
14.57
18.00
18.92
17.67
16.82
19.39
15.74
13.68
12.08
12.50
13.57
11.73
9.89
9,83

expt theor

Ao.
(10 cm /sr)

—1.93
—0.69
—1.61
—2.12
—0.41
—0.17
—0.09

0.1 1

0.03
0.07

—0.23
—0.14

0.10
0.52
0.42
0.52
0.18
0.46
1.24
1.03
0.28
0.33
0.06
0.05
0.41
1.1 1

1.49
—0.20

0.40
—0.99
—0.56
—0.05

0.07
1.34
1.14

—1.06
0.52

—1.66
1.95
0.02
0.08

—0.34
—0.71
—2.09
—2.91
—0.21
—1.74

0.18
—0.27
—0.40

2.40
2.65
1.03

—0.63
0.07
0.34
1.55
0.02

—2.05
—0.94
—0.43

0.26
—1.16
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TABLE I. ( Continued).

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
ill
112
113
114
115
116
117
118

(deg)

89.8
109.9
130.0
140.0
139.8
139.7
139.6
92.1

129.5
139.5
92.0

139.3
69.0
91.7

129.0
91.7
91.6
91.6
91.5
91.4

131.4
147.4
91.9

107.2
68.8
70.0
93.0

131.9
108.4
147.7
142.0
138.0
92.0
90.0

136.0
132.6
132.8
105.8
132.1
104.6
131.6
104.4
132.2
103.7
131.8
90.6
90.3
90.0

120.0
75.0
90.0
75.0
90.0
90.0
80.0

~lab

(MeV)

420.8
427.4
429.4
120.0
139.0
163.0
184.0
193.0
197.0
200.0
213.0
226.0
230.0
239.0
239.0
244.0
262.0
267.0
276.0
282.0
212.9
213.4
214.7
215.2
215.4
247.8
248. 1

248.5
248.8
249.2
210.0
260.0
272.5
310.0
310.0
375.0
400.0
425.0
425.0
450.0
450.0
475.0
475.0
500.0
500.0
450.0
500.0
287.5
307.5
312.5
312.5
325.0
362.5
412.5
450.0

~~expt

dQ
(10 cm /sr)

9.5
8.4
9.0
1.77
2.28
2.17
2.99
1.93
3.65
5.30
3.40
7.58
5.4
6.81

12.4
8.27

13.4
17.3
13.2
18.0
4.25
6.58
1.86
2.49
3.28
7.13
6.66
9.59
8.54

13.0
4.4

15.2
15.5
14.5
21.3
13.2
1 1.1
1 1.5
1 1.3
8.1

8.7
9.2
8.6
8.3
7.3
6.3
5.7

15.8
20.6
18.0
14.3
19.5
13.3
12.0
10.0

~stat

(10 cm /sr)

0.7
0.5
0.8
0.24
0.24
0.24
0.24
0.20
0.90
0.71
0.70
0.94
0.5
0.7
1.2
0.9
1.4
4.2
1.7
4.7
0.35
0.41
0.2
0.26
0.34
0.85
0.55
0.63
0.65
0.7
0.8
1.6
3.1

1.6
1.8
2.1

1.1
2.8
0.9
1.8
0.9
1.2
0.7
1.0
0.6
1.2
0.8
1.1
2.1

1.6
0.9
2.6
1.3
1.7
0.75

~~syst

(10 cm /sr)

0.42
0.37
0.40
0.18
0.23
0.22
0.30
0.19
0.37
0.53
0.34
0.76
0.54
0.68
1.24
0.83
1.34
1.73
1.32
1.80
0.85
1.30
0.37
0.50
0.66
1.43
1.33
1.92
1.71
2.60
0.0
0.0
0.0
0.0
0.0
0.71
0.60
0.6
0.6
0.4
0.5
0.5
0.5
0.5
0.4
0.0
0.0
4.0
5.0
4.5
3.5
5.0
3.5
3.0
1.00

~+theor

dQ
(10 cm /sr)

9.05
9.10

10.07
1.34
1.43
1.80
2.50
2.10
2.88
3.41
3.18
6.03
4.32
5.78
7.30
6.50
9.67

10.69
11.95
13.18
4.12
4.94
3.30
3.54
2.99
6.77
7.16
9.33
7.71

11.08
4.33

12.71
11.85
16.96
20.72
15.08
12.53
9.08

10.50
7.76
8.98
6.77
7.87
5.99
6.96
7.55
5.85

14.23
18.61
17.55
17.06
17.51
13.85
9.57
7.65

~expt ~theor

5o
(10 cm /sr)

0.55
—1.13
—1.20

1.42
2.55
1.14
1.28

—0.64
0.79
2.13
0.28
1.28
1.47
1.05
2.95
1.45
1.92
1.46
0.58
0.96
0.14
1.21

—3.43
—1.87

0.39
0.22

—0.35
0.13
0.45
0.71
0.08
1.55
1.18

—1.54
0.32

—0.85
—1.14

0.84
0.74
0.18

—0.27
1.87
0.85
2.07
0.47

—1.05
—0.19

0.38
0.37
0.09

—0.77
0.35

—0.15

0.70
1.88

In the above expression, y =co/M, and the values

ao ——42.9, a
&
———34.6, a2 ———3. 1 (45)

are determined independently, and very precisely, by the
magnetic moment of the proton. We show in Table I a

detailed comparison of the above model with the available
data on the Compton scattering cross section for energies
below 500 MeV. We stop at 500 MeV, since the second
baryon resonance begins to become important at energies
somewhat above this. Table II contains a key to which



2426 CHARLES L. BENNETT 35

Data points Ref.

TABLE II. Summary of results in Table I.

X /n yes n

1—4
5—15
16—29
30—34
35—41
42—66
67—83
84—93
94—98
99—108
109—110
111—117
118—118

18
19
20
15
16

5
21
22
23
24
25
26
27

11.31
0.75
7.15
3.10
9.24

43.23
39.92
17.76
6.28

12.08
1.13
1.51
3.53

2.83
0.07
0.51
0.62
1.32
1.73
2.35
1.78
1.26
1.21
0.57
0.22
3.53

—6.36
0.20
7.37

—0.19
0.99

—7.18
22.08

—2.41
1.59
4.75

—1.23
0.98
1.88

—3.18
0.06
1.97

—0.08
0.37

—1.44
5.36

—0.76
0.71
1.50

—0.87
0.37
1.88

data points are measured by which experimental groups,
as well as a breakdown of the individual contribution of
each group's data to the total sum of squared residuals,

Because of the great diversity in the experimental
data, we have added in quadrature the quoted systematic
errors, when available, to the listed statistical errors in or-
der to determine the estimated standard errors of the indi-
vidual points. The total X is 157 for 111 degrees of free-
dom, which would not be very likely if the errors were
purely statistical. However, by examining the largest de-
viations in detail, it is clear that the data contains some
outlyers. For example, the very worst point, number 86,
is at an angle and energy nearly identical to that of point
number 74 taken by a different group, and the alternative
measurement does agree with our theory. The second

worst point, number 78, is also apparently an outlyer, in
that it is in conflict with other points at similar angles
and energies. Furthermore, it is at one extreme end of the
energy range covered by the experiment, and the observa-
tion conditions may have been marginal. Since some of
the other large residuals are apparent outlyers, we ex-
plored the effects of pruning some of the most poorly fit
points. If the four worst points, for example, are removed
from the data set, the resulting parameters are only slight-
ly changed while the 7 becomes 117 for 107 degrees of
freedom.

In contrast to our precausal model, we note that the res-
onance data is very poorly fit by a simple Breit-Wigner
parametrization without invoking rather arbitrary back-
ground amplitudes. In the Bernardini reference, ' for ex-

TABLE III. Theoretical photoabsorption cross sections compared to Bloom data.

~ (MeV) O expt (pb) Ao. (pb) a
O theor

~expt &theor b
theor

~expt 0 theor

188
205
223
242
260
279
298
318
337
357
377
397
418
438
459
481

78.8
118.9
168.2
202.4
323.4
387.1

504.2
532.6
542.3
480.8
411.0
311.9
249.6
210.9
174.2
188.8

41
38
34
31
32
34
37
37
32
30
31
33
31
26
27
26

86.5
117.3
161.5
224.8
302.8
399.3
490.8
545.5
536.8
478.3
401.3
328.6
265.6
218.6
180.5
149.9

—0.19
0.04
0.19

—0.73
0.64

—0.36
0.36

—0.35
0.17
0.08
0.31

—0.51
—0.52
—0.30
—0.24

1.49

58.2
86.5

131.4
202.3
296.4
415.5
518.0
557.2
524.6
454.9
382.8
321.7
271.3
234.2
204. 1

179.6

0.50
0.85
1.08
0.01
0.85

—0.83
—0.37
—0.66

0.56
0.87
0.91

—0.29
—0.70
—0.90
—1.1 1

0.36

Total X =4.44
12 degrees of freedom

Total X =8.75
12 degrees of freedom

'Acausal model fit with parameters: ~l ——315—i 80 MeV, m3 ——+i 5503 MeV.
Austern resonance model fit with Breit-Wigner resonance parameters: coo ——301 MeV, I /2=70. 5

MeV.
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ample, a one-level resonance model using the Walker pa-
rametrization gives a terrible fit, as can be seen in their
Fig. 16, for example. Furthermore, because of the signifi-
cant violation of dispersion relations, most evident in the
energy distribution for a scattering angle of 90' displayed
by Cxenzel et al. , we conclude that no causal model will
fit the data as we11 as our simple precausal model. The
parameters of our fit, and their standard deviations ob-
tained from the diagonal elements of the error matrix, are
(for the case with the four worst points removed)

a'= (17.1+0.9) && 10 fm

P=( —3.0+1.3)X10 ' fm3,

co~ ——292.9+2.7 i 7—1.6+3. 1 MeV (cg2 ——~& )

co3 ——+i 719+212 MeV .

(46)

We note the polarizabilities we find are consistent with
those found by Akhmedov and Fil'kov when they correct-
ed the low-energy Compton scattering data for co terms.
This result vindicates their analysis, and strengthens our
conclusions of Ref. 1. We also note that the precausal fre-
quency co3 is remarkably close to the crude estimate given
in expression (27) above.

We now turn to the absorption cross section. Since in
this case we have no other interfering processes, the ab-
sorption cross section is given simply by

(47)

We have already discussed the relative normalization of
the scattering and absorption cross sections in (24), so that
it only remains to compare the energy dependence of (47)
with the data. Despite the great significance of the total
photoabsorption cross section of the proton, this impor-
tant quantity has not been carefully measured in the re-
gion of the 5(1232) resonance. The apparent best direct
measurement of the total absorption cross section by
Armstrong et al. appears to be fraught with systematic
errors well outside the claimed values. By summing the
measurements of Fischer et al. of the neutral pion pho-
toproduction to those of Fujii et al. ' for charged pion
production, we find substantial discrepancies with the
measurements of Armstrong. The most glaring
discrepancy is the Armstrong cross section at 265 MeV of
424.5 pb, which appears to be high by about 100 pb com-
pared to the summed cross section of 338 pb for single
pion photoproduction, whereas the error quoted is only 8
pb. Qn the other hand, the indirect measurements of
Bloom et al. , based on extrapolation to q =0 of inelas-
tic electron scattering, appear to agree very well with the
integrated pion photoproduction data. For this reason, we
consider only the Bloom data.

From the extremely small value of X (4.44 for 12 de-
grees of freedom, which occurs statistically only 2.6% of
the time if the estimated errors are statistical) that we are
able to obtain in our fit to the Bloom data, as exhibited in
Table III, we are led to consider the possibility that the
systematic errors have been overestimated. In the Bloom
work, systematic errors were incorporated at several

stages of the data analysis. First in the measurements of
the eIectron scattering cross sections, second in the sub-
traction of "multiple photon" tails in the data, third in the
estimate of radiative corrections, and finally an arbitrary
overall systematic error was added in. We feel it is very
plausible that they have been conservative in their data
analysis. One of the implications of an overestimation of
the errors would be that the discrepancy with dispersion
relations discussed in Ref. 4 would become even more sig-
nificant. Also the rough agreement with phenomenologi-
cal analyses would disappear. We illustrate this by com-
paring the Bloom data to a simple one-level resonance
model of Austern, where an apparently reasonable fit,
with X =8.75 for 12 degrees of freedom, becomes a high-
ly unlikely X =23.7 (which is exceeded only 2.3% of the
time) if the assumed experimental errors are arbitrarily
scaled to make our precausal model fit have a 7 per de-
gree of freedom of unity. On the other hand, the reason
the Bloom data remains unpublished is that there was
not a satisfactory conclusion as to what the best estimate
of the systematic errors should have been, and the possi-
bility that the agreement with our precausal model is
merely fortuitous cannot be overlooked. If nothing else
comes of our analysis of this data in terms of a causality-
violating model, we at least hope that the total photon ab-
sorption cross sections will be better measured.

An important test of the consistency of our model is to
demand that the same parameters fit both the absorption
cross section and the scattering cross section. The photo-
absorption data appears to need a somewhat higher value
for the precausal frequency, but with the value of co3 con-
strained to be 922i MeV, which is one estimated standard
error above the value of our best fit result in the analysis
of the Compton scattering data, we obtain a X of 5.44 for
the fit to the Bloom data, with the resonance parameter:

317.9+2.9—i 83.0+4.6 MeV

so that after accounting for the covariance of the fit pa-
rameters, we conclude that the absorption and scattering
cross sections are consistent with a single set of precausal
model parameters.

We must emphasize that, although arbitrary
phenomenological parametrizations may well fit the data
on scattering and absorption as well as our simple pre-
causal model, no purely causal model can violate the
dispersion relations, so the fact that our model not only
fits the data, but by construction violates the dispersion
relations, indicates that the most natural explanation of
our successful fits is not that there is a conspiracy of ex-
perimental errors, but that nature, in fact, behaves in a
precausal way.

SUMMARY

We have presented a simple semiclassical model of pre-
causality, which fits the proton Compton scattering and
photabsorption data better than any dispersion theory.
We also suggest that because of a possible overestimate of
systematic errors in the best existing measurement of the
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total photoabsorption cross section, previous agreements
with phenomenological models and mild disagreements
with dispersion relations may become significant disagree-
ments. We conclude that there is significant evidence for
the existence of precausal behavior in nature.
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