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Evidence has been discovered for the violation of microscopic causality in the Compton scattering

of light by protons.

A calculation of the degree of acausality expected on the basis of a semiclassi-

cal model is found to be in quantitative agreement with the data.

It is well known that the classical model of the electron
violates causality.! The Abraham-Lorentz-Dirac electron
exposed to a sharp-edged pulse of electromagnetic radia-
tion experiences a ‘“preacceleration” which occurs before
the wave front hits the electron. Such acausal behavior
seems so philosophically distasteful that this feature of
classical electrodynamics has usually been regarded as an
artifact of the classical treatment, and merely symptomat-
ic of an incomplete theory. We wish to emphasize that re-
gardless of one’s prejudices, the question of the possible
existence of acausal physical phenomena should be
answered based on experimental data, not on the basis of
epistemology. It is a perfectly reasonable question to ask
whether the acausality of classical electrodynamics has a
corresponding description in quantum theory, and realiza-
tion in nature. We maintain that classical preacceleration
has a direct counterpart, both in quantum electrodynam-
ics (QED) and in nature. We further claim that the exist-
ing data on proton Compton scattering strongly suggests
causality-violating behavior.

In view of the apparently outrageous nature of our sub-
ject, we will first discuss precisely what we mean by
“causality violation.” We will explicitly contrast various
types of causality violation with each other and discuss
their connection to dispersion relations. We will motivate
the search for causality violation specifically in “low-
energy” proton Compton scattering. We then turn to the
experimental data. In this paper we will discuss the low-
energy limit, where a precise sum-rule test of the disper-
sion relations can be formulated. In the following article
we consider the behavior of both proton Compton scatter-
ing and photomeson production cross sections throughout
the region of the A(1232) resonance.

MOTIVATION AND DEFINITIONS

In classical electromagnetism, the forward scattering
amplitude for light of angular frequency w scattered by a
free nonrelativistic particle of mass m and charge e is
given by

flo)=—e*/m(1+ioT), (1)
where
r=2e%/3m . (2)

(We use units such that ¢ =h/2m=1.) This expression
may easily be derived from the nonrelativistic limit of the
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Lorentz-Dirac equation of motion for a particle in a
monochromatic electric field, including radiative reaction:

m(x—71x)=eEe %" (3)

Heitler’s quantum electromagnetic expression for the non-
relativistic, unpolarized, forward scattering amplitude of
the electron is given by?

flo)=—(e*/m)[(14+ioT)" '+ hIn(m /w)dew? /37*m?]
)

which exactly agrees with the classical expression in the
limit 4 —0, and exactly agrees with the perturbative QED
expression®

flw)=—(e*/m)[1—iwT+h In(m /o)4e’w?/3m*m?]  (5)

to order e* (since 7 is of order e?). The first term in
square brackets in (4) is the nonperturbative radiation
damping term of Heitler, while the second term is the
lowest-order radiative correction, which is a purely
quantum-mechanical effect, as can be seen by the presence
of h. Regarded as a power series in w, the quantum am-
plitude becomes

flo)=—(e?/m)[1—ioT—w’7
+hIn(m/w)3w0?*? /7% -]  (6)

from which we see that radiation damping terms of order
w? are insignificant compared to the purely quantum-
mechanical terms at all real frequencies.

In general the phase shift 8(w) of the forward scattered

light is determined by
tand(w)=Imf (v)/Ref (w) (7)

which becomes —w7 in the nonrelativistic limit. From
this phase shift the time delay in Compton scattering is
given by

Tyetay =dd/dw=—71 for w <<m . (8)

This negative time delay precisely corresponds to the
phenomenon of preacceleration, except that rather than
dismissing this effect as unphysical, we see that the same
phenomenon is given by QED.

The essential result that there be a time advance is dic-
tated by the optical theorem
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Imf(w)=w0(w)/47>0 9) It is very instructive to consider how the group velocity

¢ h less than c arises microscopically. Consider a disk-shaped

and the fact that light pulse impinging on a planar, monolayer array of
Ref(w)~ —e%/m <0 for all o . (10) electrons. We again neglect the nuclei, but will discuss

Using the fully relativistic Klein-Nishina* formula for
Compton scattering in the optical theorem (9) leads to an
expression for the time delay identical to (8) in the low-
frequency limit, but which tends to

Tgetay— —€2/4w for o >>m (11)

in the extreme relativistic limit. Numerically, the limit
(11) is approximately reached already at w =~ 10m. For all
frequencies, the Compton scattered waves are advanced.
As the Klein-Nishina formula has been experimentally
verified from low energy to extreme high (~5 GeV) ener-
gy,5 there is no doubt that the time advance, which varies
smoothly between the limits (8) and (11), is a real
phenomenon, and not some ‘“unphysical artifact of classi-
cal electromagnetism.”

Is it possible in principle to directly measure the time
advance of electron Compton scattering? If we construct
a photon wave packet which is characterized by a width
AT in time, then we must have, by the uncertainty princi-
ple, a distribution of frequencies with width characterized
by Aw > 1/AT. The ratio of the time advance acquired by
the scattered wave packet to the width of the incident
wave packet is bounded by

T advance /AT < Awe?/4w,, <e?/4 . (12)

Thus the time advance is never as large as the width in
time of the incident photon wave packet. However, the
centroid of the scattered wave packet is advanced in time.
Thus, in principle, by making repeated measurements of
the transit times of identically produced photons, some
would arrive ahead of the wave-packet centroid, some
behind, but the statistical ensemble of arrival times would
precisely trace out the scattered wave-packet shape, and
its centroid would be found to be advanced. There is no
restriction by the uncertainty principle on how precisely
we may determine the centroid of a wave function. For
example, the centroid of the spatial wave function for the
ground state of the electron in the hydrogen atom is ex-
actly at the nucleus, even though its width is approxi-
mately the Bohr radius.

Now consider the influence of this time advance on the
propagation of light in a material medium. The index of
refraction is approximately

n(w)=1427Nf(w)/0?, (13)

where N is the electron density, and we have neglected nu-
clear scattering. For bound electrons f(w) varies as o’
for w—0, but for high enough frequency that our free-
electron scattering amplitude is relevant, we find

n(w)=~1—2wNe*/mw*(1+ioT) . (14)

This index of refraction leads to a phase velocity greater
than c, but a group velocity less than ¢, which is the fami-
liar case for light propagation above the plasma frequency
in a plasma.

the effect of wave-packet spreading below. On either side
of the monolayer, the light pulse propagates at the speed
of light. As the pulse passes through the plane of elec-
trons, the forward scattered pulse adds coherently to the
incident pulse. However, the scattered pulse is advanced
in time and reversed in sign with respect to the incident
pulse. As a result, the scattered pulse interferes destruc-
tively more with the leading edge of the incident pulse
than with its trailing edge, so that the total transmitted
pulse is retarded in time. If a succession of monolayers of
such scatterers are encountered, the net result is that the
speed of light in the medium is less than ¢, and in fact is
given, as expected, by the group velocity. Thus in order
not to transmit energy at speeds exceeding c it is absolute-
ly essential that the negative scattered waves be advanced
in time with respect to the incident waves. In the final
analysis we conclude that the classical preacceleration of
the electron has a counterpart both in quantum theoretical
physics and nature, and is an essential feature that must
be present in order that electromagnetic energy propagate
at speeds less than ¢ in material media.

Furthermore, it turns out that a scattered photon, even
though it may gain a time 7 in being scattered, on average
arrives at a remote detector /ater than an unscattered pho-
ton proceeding directly from source to detector. Consider
a scattering center located approximately midway be-
tween, but slightly off the axis joining source and detec-
tor. For a source-detector separation L, the extra path
length for a ray scattered through a small angle 6 is
L6?/2. If the scattered wave packet is to arrive at the
detector in a shorter time than a ray traveling along the
direct path, then we must have

CTadvance>L92/2 . (15)

On the other hand, if we are to observe the scattered wave
packet independently of the unscattered wave packet,
whose transverse spread we assume to be characterized by
w, we must have

60>w/L . (16)

Finally, in order that the spreading of the scattering wave
packet be negligible,® we must have

w2/L >c/o . (17)

This chain of inequalities leads to the requirement

Tadvance > 1/2(’) . (18)
But we have already found that
a)Tadvance <€2/4 ) (19)

so that (18) is never satisfied. In brief, the scattered wave
packet, even though advanced in time by the scattering
process, never beats out a wave packet taking a “shortcut”
along the direct path from source to detector.

We now turn to the relation between time advance and
dispersion relations, essentially following the treatment of
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Bjorken and Drell.* Consider a monochromatic plane-
wave component for a given polarization propagating
along the x axis

ainc(w)e—iw(t—x) . (20)

A scattering center at the origin produces a corresponding
frequency component given by

Ageat(@) =f (0)@j5c(@) . 21
For a localized incident wave packet
Ainc(x’t)z f do aim(w)e —ialt —x) (22)

the scattered wave packet tends asymptotically to

Aan(x,0) — (1/%) [ do f(0)apelwle ™= . (23)

If the incident wave packet exactly vanishes for x >t,
then the frequency components of the incident wave,
given by

O .
ajnc@)=(1/27) f_mdx Ajpo(x,0)e ~i@x | 24)

may be analytically continued into the upper half of the
complex imaginary frequency plane, by simply replacing
o—Rew +1 Imw, since the integral (24) has better conver-
gence properties in this case. We will refer to the upper
half of the complex frequency plane by @ from now on.
By demanding that there be no scattered wave before the
incident wave reaches the scatterer, we impose the so-
called “relativistic causality” condition:

Agan(x,8)=0 forx >z . (25)

By the same reasoning used for the incident frequency
components, the causality condition (25) implies that
f(w)aj(w) may also be analytically continued into Q.
Consequently, for any contour contained in Q,, we may
write a Cauchy relation for any frequency « within such a
contour

flo)=(172m) [ flo"do' /(o' —w) . (26)
This identity leads to the dispersion relation
Ref(0)=(1/m)P [ do'Imf(@')/(0'—w)  27)

provided only that f(w) vanishes sufficiently rapidly for
w— . If f(w) does not vanish sufficiently rapidly, we
may write a similar Cauchy relation for f(w)/w, which
leads, with the use of the optical theorem, to the famous
Kramers-Kronig relation

Ref (w)=Ref (0)+w?/2m7*P fo“’ do' o0 /(02 —w?) .
(28)

How does this relate to our discussion of the time ad-
vance in light scattering from electrons discussed above?
The expressions for the scattering amplitude (1) and (4)
have very different analytic structure compared to (5),
even though (4) and (5) coincide exactly to order e*. Both
(1) and (4) have a pole in Q_, while the perturbative ex-
pression (5) does not. Note that any finite number of
terms of a series expansion of the classical function (1) in
powers of w7 would still not produce a pole in . Such

a power series expansion of (1) has a radius of conver-
gence equal to the distance to the pole at w=i/7. The
classical expression (1) will therefore not satisfy any
dispersion relation which ignores the presence of this pole
in Q,. However, the corrections to the classical
Kramers-Kronig relation for visible light will be at the
level of w?*P?~10"1% and thus utterly unobservable in
practice.

Even if the exact scattering amplitude has no poles in
Q,, there may still be a violation of the relativistic
causality condition (25). For example, the function

flo)=—(e2/m)e " (29)

coincides, to lowest order in w7, with both the classical
scattering amplitude (1) and the QED amplitudes (4) and
(5). It has the feature that it shifts the incident wave
packet forward in time by 7 completely undistorted. [We
hasten to state that (29) is unphysical as it certainly
violates the optical theorem whenever sin(w7) <0.] This
hypothetical scattering amplitude is analytic throughout
Q.. As a result, the relativistic causality condition (25)
would be violated, yet the usual dispersion relations would
be satisfied. Generalizing this example, we can readily see
that if there is any finite time A7, no matter how large,
for which

Ageare(x,8)=0 for x >t +AT , (30)

then the analyticity argument holds and the dispersion re-
lations would be true, despite a potentially enormous
violation of causality. Incidentally, retaining any finite
number of terms in a power series expansion of (29) would
still satisfy the relativistic causality condition (25), yet the
limit of such a series disobeys (25).

For the order e* amplitude of QED, we find that the
centroid of the scattered wave packet is advanced in time,
but the leading edge is not, so that the causality condition
(25) is satisfied. Consider

Agan(x,0—(1/x) [ do(—e?/m)(1—ior)
X @ine(w)e ~l =) 31
=(—e?/mx)(1473/3t)Ajpc(x,1)
for x <t (32)
~(—e?/mx)Ap.(x,t +7), x <t (33)

=0, x>t.

Similarly, each term in a power series expansion of (29)
would lead to a corresponding term in a Taylor expansion
of (33) about the time ¢, yet every individual term would
vanish for x >t. The point is that safe conclusions about
the analytic properties of a function cannot be drawn
from only a finite number of terms in a perturbation ex-
pansion. For a general discussion of the dangers of ana-
lytic extrapolation in dispersion relation theory, see Ref.
7.

It is thus quite possible that the centroid of a scattered
wave packet be advanced in time, and in fact is essential
for Compton scattering in order that light not propagate
macroscopically at speeds exceeding ¢ in material media,
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as we have shown. It is an open question at this point
whether causality is violated, either in the manner of (30)
or in the form resulting from the classical amplitude (1),
for which there is no time AT such that (30) is true. It
surely runs against intuition to have a wave which never
exactly vanishes for any time in the past, no matter how
remote. Yet the magnitude implied by the classical preac-
celeration is damped exponentially in the past, by e*’”, so
that even for a time corresponding to the light travel time
across a Compton wavelength, we have a damping factor
e~2%, Such small amplitudes are unobservable for all
practical purposes. It is thus only our intuition which is
offended, not our measurements. As our intuition has
been seriously offended twice this century, first by rela-
tivity, and second by quantum mechanics, it should be left
to the data to decide whether or not causality is violated,
and whether or not dispersion relations are obeyed.

Having various examples and counter examples in
hand, we now explicitly define our terms, essentially fol-
lowing Nussenzveig:® “Primitive causality” is the require-
ment that the “cause” precede the “effect.” All of our
forms of causality concern the time ordering of cause and
effect, and we do not discuss the concept of effects
without cause. .

“Macroscopic relativistic causality” is the condition
that energy not be transmitted at speeds exceeding c. We
have shown that this condition is obeyed by Compton
scattering even with preacceleration. ‘“Microscopic rela-
tivistic causality” is the condition that a response strictly
vanish at a time and place prior to a stimulus. We have
seen that this condition is not true for classical Compton
scattering, or for Heitler’s expression, that it is true to or-
der e* but that this is insufficient grounds for con-
clusions about nonperturbative effects. We have also seen
that the existing data on Compton scattering from elec-
trons is insufficient to decide whether this condition is
violated at the level expected on the basis of the classical
preacceleration. Henceforth, when we speak of generic
causality violation, we mean, specifically, microscopic rel-
ativistic causality violation.

“Local commutativity,” also known as ‘“‘microscopic
causality,” is the condition that the commutator of two
Heisenberg field operators taken at two spacelike separat-
ed points strictly vanish. It has been proven®!© that under
very general, although not universal, circumstances this
condition implies that corresponding dispersion relations
be obeyed. The condition of local commutativity is a
property of theories, and is thus, by itself, not directly re-
lated to experimental properties. It was noted in Ref. 9
that Heitler’s radiation damping theory does not satisfy
this condition. We quote, “The causality condition is not
fulfilled for the scattering of light by a classical electron,
as has been noted by Toll. The same criticism applies to
the scattering formula obtained by Heitler’s radiation
damping theory. It turns out that in those cases the
scattering amplitude has a pole in the upper half-plane. It
gives a nonvanishing contribution to the commutator out-
side the light-cone which decays exponentially with a
half-width of the order of the classical electron radius.
This seems to be connected with the well known preac-
celeration of the classical electron.”

From our collection of examples, we can see that it is
possible to obey the dispersion relations, yet violate mac-
roscopic relativistic causality, as could be the case with
expression (29) for a sufficiently large phase constant. It
is possible to obey the dispersion relations, obey macro-
scopic relativistic causality, but disobey microscopic rela-
tivistic causality, as with (29) with a sufficiently small
phase constant. It is also possible to violate the dispersion
relations, obey macroscopic relativistic causality, but not
obey microscopic relativistic causality, as is the case with
the scattering amplitudes (1) and (4). Of course the con-
ventional wisdom is that all causality conditions are
obeyed, and that the corresponding dispersion relations
are all obeyed. What possible motivation is there to look
for a breakdown in this conventional picture, and what
would it mean?

Here is a fascinating possibility. The scattering ampli-
tude is closely related to the S matrix, so that a function
of the form (1) or (4) would imply that there is a pole in
the S matrix in Q. Poles of the S matrix are known to
correspond to particles,!! but it is regarded as impossible,
on the basis of causality, to have any poles in Q.. We
conjecture that not only does such a pole exist, but that it
corresponds exactly to a particle, and that particle is the
muon for the case of light interacting with electrons. The
basis for this conjecture is the remarkable numerical coin-
cidence between

1/7=3m /2e*=105.04 MeV (34)

and the muon mass, m,=105.66 MeV. Furthermore,
there are tantalizing similarities between the pole at
w=1i/7, and other well-understood nonperturbative phe-
nomena, specifically solitons and instantons.'> In all
three cases we are dealing with solutions to classical equa-
tions of motion corresponding to nonlinear quantum field
theories. Just as the existence of the pole at w=i/7 can-
not be detected by any finite number of terms of a pertur-
bation expansion of (1) or (4), so too is the existence of a
soliton inaccessible through perturbation theory alone.
Also, just as the frequency 1/7 is inversely proportional to
the electromagnetic coupling constant, so too is a soliton’s
mass inversely proportional to the relevant coupling con-
stant. A general discussion of the utility of classical
theory for exposing nonperturbative aspects of quantum
field theory is given in Ref. 13.

The classical solution corresponding to the pole w=i/7
is just the usual runaway solution of the Lorentz-Dirac
equation. It is almost universally argued that this solu-
tion is completely unphysical, and must be discarded,
since it diverges as — + o0, and so is unacceptable. But
consider the so-called acceptable solutions corresponding
to poles of the form w=wo—iT /2. These solutions vary
as e "“e~T/2  and have exactly the same divergent
character for times in the distant past. Without imposing
a boundary condition at some time in the past, these solu-
tions are no better behaved than the “runaway” solutions.
Of course our intuitive feeling, based on lifelong experi-
ence, wherein we remember the past, and cannot see the
future, is that imposing boundary conditions “in the fu-
ture” to determine the behavior of a particle “in the
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present” is unphysical, whereas imposing boundary condi-
tions “in the present” to determine the behavior of a parti-
cle “in the future” is acceptable. There are nonetheless
situations wherein the behavior of a system “in the
present” is dependent upon the boundary conditions “in
the future.” Such a situation is most clearly apparent ex-
perimentally in the Aspect, Dalibard, and Roger experi-
ment.'* In order to determine just what the ensemble of
results of such a “delayed choice” experiment will be, it is
necessary to specify the entire time history of the experi-
mental arrangement. Such a situation has the clearest
theoretical expression in the “transactional interpretation”
of quantum mechanics.!’ Still, we must confess that the
precise physical meaning of a possible pole in £, remains
mysterious to us. In brief, we are suggesting that the
muon is a ‘“quantized runaway,” but we do not have a
theory to fully describe this suggestion. If we did, it
would be clear whether or not a series of sequential lep-
tons would be expected, but as it is this remains an intri-
guing further speculation. Experimentally our conjecture
stands or falls based on the true behavior of the scattering
amplitude for complex imaginary frequencies in the vicin-
ity of i /7. According to our conjecture, macroscopic rel-
ativistic causality would hold, while microscopic relativis-
tic causality would fail, as would dispersion relations
which do not take into account the poles in Q. We take
the liberty of defining such behavior as “precausal” as op-
posed to ‘“‘acausal,” to avoid suggesting effects without
cause.

Considering the above analysis, we view the testing of
dispersion relations as of great importance. For the case
of Compton scattering from the electron we can say no
more than that the Klein-Nishina formula is entirely con-
sistent with the data. As a result, as we have discussed
above, it is impossible to determine on the basis of the ex-
isting data whether the dispersion relations are violated to
the extent expected on the basis of our conjecture of a
“muon pole” near w=i/7. Furthermore, it will be ex-
tremely difficult to ever see the effects of the precausal
pole at i/7 in electron Compton scattering, since the
quantum-mechanical  effects are important at
o~m << 1/7. It would be much easier to see precausal
effects if the preacceleration frequency were not so large
compared to the mass m. Fortunately, there appears to be
a situation for which this is the case.

Consider the influence of radiative reaction on the elec-
tromagnetic interactions of the quarks in a proton. When
probed at a scale of about 1 GeV, the up-quark mass is es-
timated!® to be about 5 MeV. From this mass we can esti-
mate a preacceleration frequency of 1/7,qon=~1 GeV.
This is self-consistently of the same order of magnitude as
the energy scale for which the scale-dependent quark mass
was estimated. We regard this as a strong hint that one
might expect trouble with the dispersion relations for pro-
ton Compton scattering at relatively low energy. We now
turn to the experimental data, which should be the final
arbiter of the validity of such ideas.

THE EXPERIMENTAL EVIDENCE

Our claim for causality violation is specifically founded
on the observation that the Kramers-Kronig dispersion re-
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lation for Compton scattering of photons by protons is
apparently violated. As a framework for understanding
this we consider a semiclassical version of the Skyrme-
Witten model of the proton, and we find quantitative
agreement with the degree of violation apparently ob-
served.

The first application of causality conditions to quantum
field theory was the work of Gell-Mann, Goldberger, and
Thirring.® They derived the Kramers-Kronig dispersion
relation for the scattering of photons by a quantized
matter field. Their formal expression of the microscopic
causality condition is the demand that the commutator of
two field operators vanish for spacelike separations. This
requirement seems so axiomatic that the validity of the
Kramers-Kronig relation for light scattering by protons
has been regarded as sacrosanct. As a result, rather than
subjecting this most basic dispersion relation to a test, in
most subsequent analyses of Compton scattering data, its
validity has been assumed.

As written explicitly by Gell-Mann and Goldberger, !’
microscopic causality demands that the low-frequency
forward Compton scattering differential cross section
obey the relation

(do/dQ)y=e*/m?+w? [4/1‘3, —(e?/mm?)
x [” orle)do’ /o”
+ (higher-order terms in ) ,

(35)

where u 4 is the anomalous part of the magnetic moment
of the proton, o7 is the total absorption cross section, and
o is the frequency of the photon in the laboratory.

The low-energy limit of elastic photon scattering is
closely related to the static polarizability of the proton,
since a low-frequency photon field is essentially
equivalent to a static superposition of perpendicular E
and B fields. Specifically, if the second-order electromag-
netic energy change in static electric and magnetic fields
is given by

AU =—aE?/2—B%/2, (36)

then the dispersion relation implies a relation between the
electrostatic and magnetostatic polarizabilities and the
term in the forward scattering cross section:

a+B+eXr?) 3m=(1/27) [~ or(w)do' /o |
(37)

Gell-Mann and Goldberger,!” Goldhaber,'® and Ericson
and Hufner!® discuss very clearly the relation between the
low-energy photon scattering cross section and the polari-
zability in both quantum and classical mechanics. In
view of the importance of relation (37) to our analysis we
display a brief classical derivation of it. We first note the
low-energy theorem of Goldhaber!® to the effect that “the
unpolarized cross section is completely classical through
order w?, with the corollary that for spinless targets this
result applies to the amplitude itself, and extends to much
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higher order.” We are thus justified in following the clas-
sical arguments of Ericson and Hufner.!® For simplicity
we assume a spherically symmetric spinless charge distri-
bution of total charge e and mass m, and thus neglect the
anomalous magnetic moment term in equation (35), which
in any case makes only a small contribution (comparable
to the experimental errors in the measurements). Gold-
haber gives a more detailed and enlightening discussion of
the origin of the anomalous magnetic moment term
through Thomas precession effects. In the presence of an
electric field

E(r,t)=Eos(k-r—wt) , (38)
the net force on the proton center of mass is
F(t):eEofp(r)cos(k-r—cot)d3r
=eEGg(k?)cos(wt)
~eEy(1—k*(r?) /64 - - )cos(wt) . (39)

In the above expression Gz(k?) is the proton electric form
factor for momentum transfer k2. The center of mass un-
dergoes periodic oscillation

mR(t)=F(t)=eEGg(k?)cos(wt) (40)

producing an oscillating electric dipole moment eR. In
addition, because of the polarizability there is an induced
electric dipole moment

d(t)=aEByGg(k?)cos(wt) . 41)

Similarly, the response to an incident magnetic field is an
induced magnetic dipole moment

M(t)=BB,G(k*)cos(wt) . (42)

In the lowest order in w? the form factors appearing in the
induced dipole moments can be replaced by unity. The re-
sulting magnetic field at a distance r in direction n in the
radiation zone resulting from the oscillating electric and
magnetic dipole moments is

B(1)=[D(1)Xn+(MXn)Xn]/r . (43)

The total electric dipole moment D(¢) is the sum of the
induced dipole moment and the dipole moment resulting
from the motion of the center of mass, which again
]
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suffers a retardation correction
D(t)=d(t)+eR(1)Gg(k?)

~[(e?/m)(1—w*(r?) /3)—w’a]Ecos(wt) . (44)
The power radiated into the solid angle d{} is

dP =BXt)r’d /4w (45)

which, after dividing by the incident power flux, results in
a differential cross section

do/dQ=[(e*/m)1—k*(r?) /3)—aw*](1+cos%6)/2
—2(e?/m)w?*Bcosh . (46)

By comparing with the low-frequency expansion of Eq.
(35) for forward scattering, and ignoring the anomalous
magnetic moment term which has been left out of our
simple derivation, we find the relation (37). We thus see
that the term involving the mean square charge radius of
the proton is a simple dynamical effect which would be
present even if a and B vanished, resulting from the ex-
pansion of the proton electric form factor in powers of
momentum transfer

Gek)=1—k*(r?) /64 - -- (47)
so that the value of
eX(r?)/3m =3.3x10"* fm* (48)

is very well determined. Various authors lump this term
together with the electrostatic polarizability, and call the
sum a “dynamic” polarizability. We will always explicitly
keep these terms separate for clarity of discussion.

The numerical value of the dispersion integral,

(1727 [ " or(e)de’ /0=(14.2+0.3)x 10~* fm? ,
(49)

is well determined by detailed measurements® of the total
photoproduction cross sections through the resonance re-
gion, and by assuming that the cross section does not be-
come so large at some high energy that the integral is sig-
nificantly altered.

The experimental situation for ¢ and 3, summarized in
Table 1, is quite different. In principle, from measure-
ments of the angular distribution for Compton scattering
[now including the effects of the magnetic moment
neglected in expression (46) above],

do/dQ=e*/(2m*){[1—2y(1—cos8)+3y*(1—cos0)*](1+cos?)
+72[(1—cos8)*+aq+acosd+a,cos6]

—y*m3 /e[ 2(a+e?(r?) /3m)(1+cos?0) + 4B cosO]} + (higher-order terms in ¥) , (50)

the values of a and 3 can be determined. In the above ex-
pression, ¥ =w/m, and the values

ay=42.9, a,=—34.6, ay=—3.1 (51)

are determined independently, and very precisely, by the
magnetic moment of the proton. In practice, the existence

of forward peaked backgrounds makes it difficult to ob-
serve low-energy Compton scattering at angles much for-
ward of 90°. In the first measurements,?!' for example, a
point at 45° was excluded on the basis of contamination
by such backgrounds. From the expression for the dif-
ferential cross section, it can be seen that the forward
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TABLE I. Measurements of electric and magnetic polarizability. All quantities in this table have

units of 10~* fm?3,

Reference a+e*r?)/3m B Sum Difference
Goldansky (Ref. 21) 9.01+2.0 2.0+2.0 fixed 7.0+4.0
Bernabeu (Ref. 22) 10+2+5 44245 fixed 6.0+10.0?
Baranov (Ref. 23) 10.7+1.1 —0.7+1.6 10.0 11.4+1.9
Akhmedov (Ref. 25) 20.0+1.1 —6.0+1.6 fixed 26.0+1.9

scattering cross section depends only on the sum of a and
B, the 90° cross section depends only on «a, while the 180°
cross section depends only on the difference of a and B.
As a result, the experimental data is far more sensitive to
the difference of a and B rather than the sum. In analyses
of the Compton scattering, the sum a+fB-+e%(r?)/3m
has, with only one exception, been constrained to equal
the value obtained from the dispersion relation. Because
of this constraint on the data analysis and the lack of data
for forward angles, it is not reasonable to believe either
the a or the B values alone; only their difference has been
well determined by the fit to the data. As a conservative
estimate of the errors in this difference, we quote in the
table the linear sum of the errors quoted for the individual
terms derived from the Goldansky data. The original
Goldansky best fit values indicate a positive value for the
difference

a+eXrt)/3m —B. (52)

This is a surprising result. One reason for surprise is the
implication that the electric polarizability is so large,
whereas the single most important feature of the nucleon
excitation spectrum is the almost pure magnetic dipole A
resonance. With this motivation, Bernabeu, Ericson, and
Fontan?? reanalyzed the Goldansky data, attempting to
estimate the effects of systematic errors, but still found
that the electric polarizability was dominant, although
within the limits of their assumed errors they could make
(52) negative. Since they held the sum of the polarizabili-
ties fixed at the sum rule value, this analysis sheds no
|

light on the validity of the forward dispersion relation.
New data?> by Baranov et al. were analyzed without
demanding a fit to the dispersion relation, and in fact they
found a very significant difference. These data were
thought to be questionable,?* since they “seem to violate
forward dispersion relations very significantly at certain
energies.” Since this data was fit without regard to the
dispersion relation, the errors in a and f are less correlat-
ed, so that we have conservatively added the errors in
quadrature in the difference column of our tabulation.
Since the data is most directly sensitive to the difference
of a and B, true uncertainties are probably smaller than
this estimate. Finally, in the most recent analysis®> of the
Baranov data by Akhmedov and Fil’kov, the neglect of
higher powers of w in the Baranov data analysis was
corrected for, but the sum of polarizabilities was con-
strained to fit the dispersion relation.

The interpretation of these results has been controver-
sial for decades. Our point of view is that the data clearly
indicates that the value of a is substantially larger than .
Including the Akhmedov and Fil’kov corrections for the
neglect by Baranov of higher powers of o, this difference
is at least a ten standard deviation effect. We will show
below that this nonvanishing difference is sufficient to
demonstrate microscopic causality violation.

Let us now reconsider the dispersion relation (37)
without the assumption of microscopic causality. To be
concrete, we consider the Skyrme-Witten model of nu-
cleons, although our main conclusion is model indepen-
dent. The Skyrme-Witten Lagrangian, including anomaly
terms, is2%27

L =(FZ/16)Tr{(D,U)D*U~"]—4(3,4,—3,4,)(3*4%—3"4")
+(e/16m*)e***P 4, TrQ (3,UU ~'3,UU ~'3gUU ' + U~'3,UU ~13,UU ~'35U) (53)
+i(e?/8m)e" (3, 4,)4,Tr(Q?dgUU ~' +Q?U 135U +Q3UQU ~'/2—QUQ3U ~'/2)

+ (other meson terms) ,

with D, U =9,U —ied,[Q,U].
In the two-flavor approximation the field U consists of
space-time dependent SU(2) matrices, and

2 o0

2=, 1 (55)

This Lagrangian is invariant under the finite gauge

f

transformation

U(x)—»e+iea(")QU(x)e—iea(1)Q’
(56)
A,(x)—>A,(x)+d,0(x) .

The baryons are represented by soliton solutions to the
field equations deduced from (53). Terms in the Lagrang-
ian, not explicitly written, involving mesons are needed to
stabilize the soliton solutions and realistically describe
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baryon physics. Under the simple assumption that the
soliton field has the maximum possible symmetry, it is
possible to write the eigenfunctions to the above Lagrang-
ian in the form

U(x)=A (t)exp[iF (r)r-r]A 1) , (57)

where F(0)=m, and F(o )=0 describes a one-baryon
state. Quantization of this field yields wave functions
identical in mathematical form to the collective wave
functions for an axially symmetric rigid rotor, with the
isospin degree of freedom corresponding to the projection
of angular momentum on the symmetry axis. The nu-
cleon states correspond to the states of total angular
momentum 5, and the A states correspond to the states of
total angular momentum <. The additional meson in-
teraction terms do not affect this basic structure, only the
detailed form of the soliton field function F(r) is
changed. Because the Skyrmion behaves as a rigid body,
we might anticipate that it produces acausal behavior.

We will write the Hamiltonian corresponding to the
above Lagrangian as an expansion in powers of e

H:H0+H1+H2 ’ (58)
where
H, =ej#A“ (59)

is the usual first-order electromagnetic coupling. The vec-
tor current j, contains both an isovector piece, which
comes from the Skyrme part of the Lagrangian (53), and
an isoscalar piece which comes from the anomaly part of
the Lagrangian. The first-order term enters only in Figs.
1(a) and 1(b), while the second-order term enters in Fig.
1(c).

Matrix elements of the isovector current constructed
from the above Lagrangian explicitly fail to satisfy the
commutation relations demanded by microscopic causali-
ty. In the notation of Adkins, Nappi, and Witten, the an-
gular integral of the time component of the isovector
current is?®

f dQV*kOr)=(4mi /3)A(r)Tr[ A~ ()74 ()] , (60)

where A(r)=FZ2sin’[F(r)]+ (small corrections). By tak-
ing matrix elements of this operator in any nucleon state,
the trace term can be rewritten in terms of the isospin

(a) (b) (c)

p’ . .
3 P
"
Kk
K
p
k
P P

FIG. 1. Feynman diagrams for Compton scattering or elec-
tromagnetic energy shifts, (a) and (b) represent the iterated
first-order interaction terms, (c) represents a second-order in-
teraction term.
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operator, so that
[ aQ v o) =(4mi /3)A(NI oy

where I is the kth component of the isospin operator.
Replacing the isovector current operator by its matrix ele-
ments constitutes a semiclassical approximation to the
Witten-Skyrme theory. From this we deduce the commu-
tation relations for the matrix elements of the isovector
charge densities

[fdn ViO(ry), fdQ Vf'o(rz)]
=—(167% /OA(r)A(ry)ep ] (62)

which do not vanish if r;s£r,. Although this might be
regarded as an unsatisfactory result of the semiclassical
soliton, we instead view it as an outstanding triumph of
the Skyrme-Witten theory, as we will find that it repro-
duces the data on the polarizability difference for the pro-
ton.

To calculate the polarizability of the Skyrmion, we con-
sider the change in energy in static electric and magnetic
fields in second-order perturbation theory:

2
AU=(0]HZIO)+2M. (63)
n En —E 0

Once again, we may identify the first-order terms with
Figs. 1(a) and 1(b), while the second-order terms corre-
spond to Fig. 1(c). Motivated by this expression, we will
define first- and second-order electric polarizability con-
tributions, @, and a,, respectively, where «; is the coeffi-
cient of E-E/2 arising from the iterated first-order per-
turbation, and «, arises from the diagonal second-order
perturbation. Because the off-diagonal matrix elements
which appear in (63) for an electrostatic field are exactly
the same as those which appear in the electric dipole ap-
proximation to the transition matrix element for photon
absorption, we may use a multipole analysis of photopion
production to evaluate a; directly from experimental data.
In this approach we find

a;=(1/272) fo‘” opi(0)do’ /0? (64)
and in the same way

Bi=01/21) [ " osi(0)do’ /0, (65)

where o, and o,y are the electric and magnetic dipole
parts of the total photoabsorption cross section. Because
of the 1/w" weighting, most of the contribution to the in-
tegrals comes from energy regions where the long-
wavelength approximation is good enough to trust this es-
timate of the static matrix elements. The results using the
analysis of Pfeil and Schwela? below w’'=0.45 GeV, and
of Walker®® up to 1.2 GeV, are

a;=3.7x10"* fm?, (66)
Bi=7.1x10"* fm? . (67)

The net result is that the sum

a;+Bi+e(r?)/3m =14.1x10~* fm? (68)
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is, within errors, completely consistent with the dispersion
integral. If microscopic causality were valid, then the
contribution of the second-order terms could be shown to
contribute nothing, and the dispersion relation would be
verified. Microscopic causality, when used with the
values of a; and B; from (66) and (67), and the general re-
lation B,= —a,/2 which holds for any Dirac or Klein-
Gordan particle (as shown in Refs. 19 and 31), or for the
Skyrmion [as we will show later in Eq. (80)] thus implies
that the value for the polarizability difference is

a+e2(r?)/3m —B=—0.1x10"* fm?, (69)

as opposed to the value determined by Akhmedov and
Fil’kov:

26+1.9x107* fm? . (70)

This result is substantially model independent, since the
values of the first-order polarizabilities were directly
determined by the photopion production data. The sub-
stantial polarizability difference observed constitutes the
foundation of our claim that there is direct experimental
evidence for the violation of microscopic causality.

THEORETICAL CALCULATION
OF ACAUSAL POLARIZABILITY

Let us now see what the Witten-Skyrme theory has to
say. In order to make use of the solutions to the Lagrang-
ian in the absence of electromagnetism, we choose the
time-independent gauge

A,=(—rE,—rxB/2), (71)
E-B=0 (72)

to describe uniform electric and magnetic fields E and B.
We also specify that the fields be perpendicular. We then
find the contribution to the polarizability from the
second-order term in the Lagrangian for any solution hav-
ing the symmetry of the Skyrme ansatz will not depend
on the anomaly part of the Lagrangian, and will have the
leading term

(F2e2/32)[(r-EP—(rXB)2/41Tr(1 — U U~ . (73)

For the Lagrangian of Adkins and Nappi,*? which incorp-
orates explicitly the w-vector meson, this is the only
relevant second-order electromagnetic term in the La-
grangian. To evaluate this term, we write the time-
dependent U matrices in the form?*3

U(x)=exp{i*r,-e,rj[a/37/]er(r)/r} . (74)

The 33 matrix, e;[aBy], represents a rotation in 3-
space by the Euler angles af8y. Performing the trace
operation in (73), the interaction becomes

(Fle2/8)[(r-E)*—(rx B)?/4]
X sin? [F(P)][1—(esr /r)?] . (75)

Using the collective variable wave function for the nu-
cleons expressed in terms of the rotation matrices

|nt)=i/27D\}5 (aBy) ,
|ni)=—i/2aDi%3 _1(aBy) ,
|p1Y=i/2aD"% 51 n(aBy) ,
|pLY=—i/2aD},, 1 paBy) ,

(76)

we can take matrix elements of the interaction in any nu-
cleon state, and we find the expectation value

(F%e?/12)[(r-E)*—(r X B)?/4]sinF (r) . an

Since the soliton field F(r) is spherically symmetric, we
may do the angular integrals easily, to find

Hi = —F2eXE2—B2/2)(7/9) f0°° r4sin?F (r)dr (78)
so that the polarizability is simply
ay=(2F%e%7/9) fo“’ r4sin®F (r)dr , (79)
Bo=—a5/2 . (80)

The relation (80) which we have found for the Skyrmion
is a very general feature. It has previously been noted!**!
that the same relation holds for any particle which obeys
either the Dirac equation or the Klein-Gordan equation.
The implied relation that a,+B,=(a,—f3,)/3 is an im-
portant ingredient in going from Eq. (68) to Eq. (69) in
the preceding text.

The value of the integral for the soliton solution of Ad-
kins and Nappi has been integrated numerically with the
result 1.03 fm®. Using Adkins and Nappi’s value for F,
of 124 MeV, the predicted second-order contributions to
the polarizability are

a,;=20.8%X107* fm?, B,=—10.4x10"*fm?®. (81)

The result for 3, is completely consistent with the re-
cent analysis by Nyman® of the magnetic polarizability of
the Skyrmion, using the original Skyrme Lagrangian.
Nyman’s main result was the relation

Br=—5eX(r?) o/ (My—My) (82)

which is independent of the parameters of the original
Skyrme model. In more elaborate versions of the
Skyrme-Witten Lagrangian, such as the one we have used
based on the analysis of Adkins and Nappi which includes
the effects of the » meson, the precise proportionality of
[, to the mean square isovector radius no longer holds,
but what does remain valid is the proportionality to the
mean square radius of the Skyrme field, sin?[F(r)]. Our
prediction for the polarizability difference, using the ex-
perimentally determined values for «;, 8;, and (r2), and
the theoretical values for a, and f,, is

a+eX(r?)/3m —B=31.1x10"* fm? (83)

which agrees, within the 30% errors typical of the Skyr-
mion theory, with the data:

(26+1.9)x10~* fm3 . (84)

We emphasize that our value of S, differs from the value
used by Nyman, since we do not make the narrow reso-
nance approximation in representing the effect of the A.
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This essentially perfect agreement with the data is a re-
markable result, as it was certainly not put into the
Skyrme model ab initio.

Several analyses of the nucleon polarizability have been
made in the framework of the quark bag model,*~37 but
in view of the phenomenological nature of the bag models,
it is never clear whether proper treatment of the bag de-
grees of freedom is important. As a result, none of these
treatments can unequivocably challenge the dispersion re-
lation.

We expect that other dispersion relations should also be
violated. We find that this is indeed the case. Returning
to the photopion production data, it is very clear that the
isovector part of the magnetic dipole amplitude for transi-
tions to j 2% states, M (,3_/2), is in serious disagreement38
with the relevant dispersion relation. Ironically, this fact
was noted by the authors of Ref. 38, and the statement
was made: “Dispersive calculations should be repeated in
order to see why their predictions are wrong.”

Further evidence, of an indirect and tentative nature,
that the polarizabilities we have found are the correct ones
can be found in the fact that a neutron magnetic polariza-
bility as large as expression (67) would be incompatible
with conventional treatments of neutron stars, as pointed
out by Bernabeu, Ericson, and Fontan.* Only by includ-
ing the 8, contribution is the total magnetic polarizability
brought down to a level which is consistent with the con-
ventional treatment of neutron stars. We will discuss in a
later paper that the electrostatic polarizability of the neu-
tron implied by the calculation above resolves a long
standing mystery concerning the unusual smallness of the
neutron charge radius. We will also discuss in the follow-
ing article the resolution of a long standing problem con-
cerning the shape and angular distribution of Compton
scattering in the A resonance region.

QUESTIONS OF SELF-CONSISTENCY

An important point of self-consistency is that the Wit-
ten picture of Skyrmions was motivated by current alge-
bra. The practical applications of current algebra always
involve the assumption that the equal time commutators
of currents at spacelike separation vanish. Thus the
discovery that this assumption is a priori invalid puts the
entire subject of current algebra on a shaky foundation.
In order to save it, we must suppose that many of the as-
sumed commutation relations are at least approximately
right. In this sense, we see that the semiclassical Witten-
Skyrme theory transcends its origins, in that its range of
applicability is apparently broader than the foundations
on which it was based.

A more general objection to our discovery that the
semiclassical Witten-Skyrme theory violates microscopic
causality, as shown by the commutation relations of Eq.
(62), is that the Witten-Skyrme theory is grounded on
causal behavior, so how could it lead to causality violating
results? However, by considering the foundations of
Witten’s derivation of the Skyrme theory, we see that it
rests on a principle of least action, with an action that is
chosen on the basis of very general symmetry and topo-
logical grounds. The demand that it be causal is nowhere
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made. It remains to be checked whether or not any given
action is causal. There are several known examples of
theories based on least action principles which do not
satisfy causality. The fact that acausal behavior in classi-
cal electrodynamics can be described in terms of an action
principle is well illustrated by the work of Wheeler and
Feynman,® Hoyle and Narlikar,*' and Dirac*? concerning
the Fokker action. In the work of Kramer and Palmer,*
it appears that they derive equal time commutation rela-
tions for the Witten-Skyrme theory which do obey micro-
scopic causality. However, on close inspection, these au-
thors assume microscopic causality implicitly at the
outset in their equation 4, and so their argument is circu-
lar. We have introduced causality violation by not assum-
ing that the local equal time commutation relations obey
microscopic causality, although we retain the original glo-
bal commutation relations.

On another point of consistency, we have found a viola-
tion of the Kramers-Kronig dispersion relation for light
scattering by protons, yet the corresponding dispersion re-
lation for light scattering by atoms is very successful.
Why hasn’t a corresponding violation of the dispersion re-
lation been seen in atoms? The reason lies in the relative
size of the causality violation compared to the usual Ray-
leigh scattering terms. For atoms, the normal polarizabil-
ity is given approximately by

a=e’/mw?, (85)

where o is typically a few electron volts. The acausal po-
larizability can be no more than

a=eX(r*)/m , (86)

where (r?) is typically 10~7 eV~2, and thus insignificant
changes in the Kramers-Kronig dispersion relation for
atoms are expected.

A similar argument applied to nuclei would imply that
there should be microscopic acausality effects in nuclei.
In fact there has been a long standing problem with
“missing M1 strength” and ‘“missing Gamov-Teller
strength” in that sum rules for both of these quantities are
not fulfilled. Since these sum rules are based, in part, on
the assumption of microscopic causality, we would argue
that there is no requirement to satisfy the sum rules in the
first place.

SUMMARY

We have found evidence, based on the observed angular
distribution of Compton scattering, and the measured
photoabsorption cross section of protons, that the differ-
ence of the electrostatic and magnetostatic polarizability
of the proton is much larger than can be accommodated
under the assumption of microscopic causality. We have
been able to theoretically reproduce this difference using a
semiclassical version of the Witten-Skyrme model of nu-
cleons.
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