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The three-dimensional trajectories of a neutron in an average deformed potential are studied for
two different potentials with prolate or oblate ellipsoidal deformations. The simplest one is a simple

cavity which is shown to be integrable. The motion is studied and is found to be separable in

spheroidal coordinates. It is shown that the phase space of an oblate cavity may contain a separa-

trix which is associated with the crossing of the focal circle while the prolate phase space does con-

tain a separatrix only for the planar trajectories. By using arguments based on a uniform semiclassi-

cal approximation, it is shown that the quantum-energy-level spectra present indeed a difference be-

tween prolate and oblate shapes corresponding to the crossing of this separatrix. The second poten-

tial studied, the Buck-Pilt potential, has a diffuse surface. When it is deformed it becomes

unintegrable. For this potential Poincare surfaces of section are drawn. Large regular regions are

shown in which the organization of the phase space is that of the cavity. Chaos and nonlinearities

are also seen. Consequences of the existence of the regular regions similar to the cavity are drawn

for the energy spectrum.

I. INTRODUCTION

This paper deals with the three-dimensional trajectories
of a particle in an axially symmetric potential with an el-

lipsoidal deformation. Our aim is to discuss the organiza-
tion of the classical phase space for a problem which has
a quantum analogue mainly used in the description of de-
formed nuclei. In previous papers we have already stud-
ied the planar trajectories. In Carbonell et al. ' attention
was concentrated on the case of spherically symmetric po-
tentials, and in Ayant and Arvieu ' on the trajectories ly-
ing in meridian planes of deformed potentials. In these
papers semiclassical quantization was performed by using
the Einstein-Brillouin-Kramers (or EBK) method; in
Refs. 2 and 3 the role of the uniform approximation was
particularly underlined. In the present paper we will con-
sider in a first step an ellipsoidal box with a sharp surface
and a cavity, and in a second step an ellipsoidally de-
formed version of a diffuse nuclear average potential
called the Buck-Pilt, or BP, potential. We will consider
here only the effects which come out from the purely cen-
tral nuclear part; Coulomb force, pairing effects, and the
inertial forces due to the rotation of the potential will not
be treated.

We intend to discuss three points. First we want to
sketch the organization of the phase space for nonplanar
trajectories. Because of axial symmetry the angular-
momentum projection L, on this axis is a constant of
motion. It is then sufficient to study the motion in a
meridian plane which rotates with the particle around the
symmetry axis. Our phase space is therefore simply four
dimensional. Secondly, we will underline the main differ-
ences between prolate and oblate symmetry. Thirdly, we
want to compare the phase spaces of the BP potential, a

nonintegrable potential, with that of the cavity, which is
integrable, and we will discuss the occurrence of chaotic
trajectories in the former. The two potentials will not be
treated on the same footing. The cavity is treated
rigorously in an analytic way. The numerical work done
there is given only as an illustration. There are no analyt-
ical results for the BP potential on the other hand; our
work is then entirely numerical. We have drawn a num-
ber of trajectories which provide a "reasonably dense" ex-
ploration of the phase space. What happens at a finer
scale will not be discussed in detail.

The difference between prolate and oblate symmetry is
well understood for the cavity. This difference comes into
sight if one considers the possibility of focalization of rays
for each symmetry. In the prolate case the foci stand on
the symmetry axis and the trajectories which cross the
foci are contained in meridian plane; they are limited to
L, =O. The trajectories with L,&0 have no possibility of
focalization. Trajectories which focalize are seen to stand
on a separatrix. Because of the absence of a separatrix the
phase space of L,&0 trajectories is made in one piece.
On the contrary, the foci are replaced in the oblate shape
by a focal circle which stands in the equatorial plane.
This focal circle can be attained by trajectories with any
L, . Under the present circumstances, these trajectories
stand on a separatrix. Therefore the phase space of trajec-
tories with arbitrary L, may contain two pieces for the
oblate symmetry. The effect can be explained as well by a
constant of motion specific to the symmetry. By using
the uniform approximation in order to perform a semi-
classical quantization, it can then be deduced that the
splitting of the single-particle levels is not performed in
the same way for prolate and for oblate shapes. This fact
was unknown up to this point under such simple terms.
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Since the pioneering works of Contopoulos and of
Henon and Heiles on nonlinear dynamics, it is a well-
known fact that the addition of a perturbation to an in-
tegrable Hamiltonian destroys its integrability. Compar-
ing the deformed BP potential to the deformed cavity, the
perturbation appears as a combination of deformation
with surface diffuseness. None of this effect indeed, act-
ing alone, is able to produce a nonintegrable potential. A
spherical BP potential with surface diffuseness is integr-
able' as well as an ellipsoidally deformed cavity (see later
in this paper). It is only when one combines them that the
rich organization of phase space, which is well known for
generic nonintegrable systems (see, for example, Lichten-
berg and Lieberman ), is coming out. Since the BP poten-
tial for a heavy nucleus is very flat in the interior, it is
reasonable to expect a similarity of its phase space with
that of the cavity if the nonlinearities are minimized.
Thus the cavity provides a useful "skeleton" for describ-
ing the organization of the phase space of the BP poten-
tial. However for appropriate deformations and symme-
try, and for specific initial conditions, the nonlinearities
are expected to take over, the most spectacular signature
being the generation of chaotic trajectories. In the follow-
ing we will indeed show the two aspects of the deformed
BP potential: a regular region where its phase space
shares much resemblance with that of the cavity and an
irregular one where the nonlinearity takes over. We will
show that the second case, i.e., the production of macro-
scopic chaos in a large part of the phase space, need oblate
rather than prolate shapes, large deformation, small L„
and small binding energy. These conditions justify that
the skeleton provided by the cavity can be used rather ex-
tensively and provides a basis to explain the important
similarity, observed for heavy nuclei, between the single-
particle spectrum of the BP deformed potential and that
of the cavity.

A preliminary discussion of the organization of the
phase space for oblate and prolate cavities has already
been given in Ref. 8. The description of the phase space
of the planar trajectories (L, =0) of the deformed BP po-
tential has been given by Carbonell. The topological fiow
in phase space that is simply sketched in the present paper
is more carefully done in Ref. 9 for the L, =0 case (see
also Ref. 10).

II. THE ELLIPSOIDAL CAVITY

In the following we will examine the various species of
trajectories which correspond to the motion of a free par-
ticle in a cavity of ellipsoidal shape with axial symmetry.
The cavity, assumed to be not rotating or vibrating, acts
as a perfect reflector. The difference between the prolate
and the oblate symmetries is of primary importance. This
difference originates from the existence of two focal
points on the axis of symmetry (assumed to be the z axis)
in the prolate case and, on the other hand, of a focal circle
in the equatorial plane for the oblate one. The possibility
of focalization leads to a division of the phase space into
two parts. It will be seen later on that this division is a
general feature in the oblate case, whatever the value of
L„ the projection of the angular momentum on the axis

of symmetry. On the contrary, in the prolate case, focali-
zation is possible only for the planar L, =0 trajectories by
symmetry consideration and does not affect the L,&0
phase space. This difference also comes out from a dis-
cussion of the special constants of motion that are con-
served for each symmetry. It can be equally understood
in terms of the effective potentials that appear in ap-
propriate systems of coordinates.

A. Classical description of the prolate case

Although a trajectory in the cavity is composed of a
succession of simple segments of straight lines, it is not
easy to figure out that each trajectory has an envelope (or
a caustic). These caustics are found in a system of coordi-
nates in which the motion is separable. These systems are
the spheroidal coordinates used by Strutinsky et al." and
in Ref. 2.

In the prolate case let us introduce the spheroidal pro-
late coordinates; e, g, p, 0(e& 0o, 0(g &~, 0(y &2m,

x =f sinhe sing cosy,

y =f sinhe sing sing,

2 =f coshE cosg,

(2)

where 2f is the focal distance of the cavity.
After studying the equations of motion, "one can easily

express the canonical momenta p, (p~) as a function of e
(or, respectively, g) and of p~=L, as well as E, the
separation constant, and kf. The energy W of the parti-
cle is written W =k /2m. The expressions are

Pgp, =k f cosh e-
sinh e

2

p& E—k f cosg ———
z

2 2 2 2

sin g

—E, (4)

They allow us to define the effective potentials fp(e) and
gp(g) that are seen by each variable by the relations

fp(e)=k f cosh u- p
sinh e

gp(g) =k'f'cos'g+ (7)
sin

Those functions are plotted in Fig. 1 for kf =1 and vari-
ous values of p~. The function fz(e) is monotonously in-
creasing with e. For a given E the allowed domain of
value of e has a lower bound eo, the turning point
t'p&(Ep) =0], and an upper value e~ corresponding to the
boundary (R, =f cosh'&). Thus there is always an ellip-
soidal caustic, defined by e =eo, homofocal to the
boundary.

The function g~(g) has a single maximum for g=vr/2.
This point corresponds to the lowest value of E

lnfE =p ~

while the upper value of E is given by

psupE=k f cosh e, —
s1nh E)
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The effective potential gi (g) is symmetric with respect to
g=rr/2 For every E there are two turning points: g' and
m —g', w erep~ ——, wh =0 which define the two sheets of an hy-
perboloid of revolution homofocal to the boundary.

The centrifugal effect produces one specific term for
each variable. Neighborhoods of e=0, as well as o
and n. are forbidden. This explains the two caustics. The
domain of variation of E, the location of eo, ei, and ' are
shown in ig.h

' Fi . 1 for p =0. 1 and an arbitrary e, . e sit-
sl inuation or p~ = af =0 has already been described previous y in

one elli ticRef. 2. There it was seen that we have either one e ip ic
caustic or an hyperbolic caustic.

It is interesting to remark that for p~& 0 we have two
interesting limiting trajectories.

i) For E=supE the particle stays on the boundary with
e=ei and describes a geodesic of the ellipsoid. This geo-
desic is tangen a wt t two circles defined by the intersection
of the hyperboloid caustic corresponding to the proper
values of g' with the ellipsoidal boundary.

ii) For E=infE the particle is confined in the equatori-
al plane. Its motion reduces to that of a single partic e in
a two-dimensional circular "billiard. "

Since everything changes continuously and monoto-
nously with E, kf, and p~ (p~&0), we can assert that t e
d namics of a single particle in a prolate cavity as t isynamics o
monotonous smooth feature. 'Ve'V will show later that
there are properties of the quantum spectrum that can
also be described in the same way.

The trajectories of a particle can be conveniently
represented in cylindrical coordinates. If we keep track
onl of the e, g motion, or of the z,p coordinates, the tra-onyo ee,

ments of hyperbolas bounded by two caustics: one ellipsis
with e = eo) and two branches of an hyperbola (with (=g'

and m=g'). Four different trajectories corresponding to
in Fi . 2. One ofdifferent initial conditions are shown in ig.

them has been chosen to provide a trajectory very near
from the geodesic.

The separation constant E can be express in terms o
and after elimination of kf from Eqs. (4) and6, g, p~, ail pg a ei

lation the con-(5). After a long but straightforward calculation
stant E takes the simple form

E=1)~ 12, (10)

where 1& and 12 denote the angular momentum with

B. Classical description of the oblate case

Th bl t spheroidal system of coordinates appropriateeo ae
imply deduced from the definitions ( )—

b t' coshe with sinhe. This definition brings t eby permuting cos e w'

points wit E = inth =0 in the equatorial plane of the cavity.
The values of p, and p~ are now easily seen to be

2

=k f cosh e+ E, —pqpe=
cosh e

2

p&
——E—k f sing-

Slil g

(12)

(13)

The centrifugal effect occurs only for the variable g for
=0 and g=nIt is now..necessary to discuss the struc-

li.12)0 .

This expression of the constant of motion generahzes
that oun or t e p~= cf d f th +

——0 case. However in the latter case
f 1 .1 be positive or negative; this provi es a

simple classification of the caustics. The case wit p~ =
corresponds to the separatrix which has been studied ex-
tensively in e .R f 3 The fact that li Iz is always positive
in a prolate cavity or p~1 't f r p &0 can be associated to the ex-
'

t e of a single type of inotion for this type of symme-istence o a
try. The constant of motion used here belongs gto a en-
eral class w ic app yhich a 1 to problems with cylinder symme-
try discussed by Helfrich' (see also Ref. 13 .

gp(()

3
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r the variable e in the prolate case is drawn for kf =1 an pp=, , , , 5.=0. 1 0.8, 1.0,2.5,3.5.FIG 1 Left: The effective potential fp(e) for the varia e e in e pr
for =0.1. Right: The effective potentia gp or e va

''
1 (&) f r the variable g in the prolateThe domain of the separation constant E is shown d'or p~ = . . ig

case. The domain of E is also shown for p~ ==0.1.
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e curve defined by Eqs. (19)—(21) is made by
11 f ll 1 }I,an ensemble o 'gf strai ht lines, a o e

z= z and z= —zowhich oscil a ellates between the values z= zo a
a drum connects al-wa that a string bin ing a ruin the same way

ents (this drum possesses anternatively the two parchments t is ru
hyperboloidal side).

m at ~&=m/2 whichThe curve go(g) presents a maximum at =m
one obtains if

(22)2 2 2E=Es ——k f +p~ .

h
'

symmetric double well.
found the trajectory with

maximum there is a sym
At the bottom of the well is oun t e
k=ko ~—~~o defined above.

'd ical to those of the caseIf E E the caustics are i entica
r oloid. Iro '. fk &: one e ipsoi11' 'd and a one-sheet hyper o
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'
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E=l +f ki, (23)
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'
the angular momentum. It can
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'

h s~~/2 which always crosses the equa-trajectory, wit

'th k ~p is the most interesting for

'
1 lane at the focal circle.
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at E =Ez. This transition is a pure y geome
a

' f d here by using classica
c '

. d ed for any value of f, k, an
althou h it has been oun ere
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kwhich fulfill the inequality f &p+.
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the se aration constant can a so e
h w after an identically tediouspie quantities. We can show a er an

'

calculation that E takes the form

Z ])7li',

~ I I

~ ~ ~
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P
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be written as

E=A+1,'+f'k'=A+Es,
where

(24)

P-
(a)

A =li —f k, =li, 12 (25)

The conservation of E implies finally the conservation of
A defined by Eqs. (25) in terms of li and k, or in terms
of 1& and 12, the projection of 1& and 12 on the equatorial

plane. Here I and 2 denote any opposite points of the fo-
cal circle with respect to which are defined the angular
momentum li and 12. The conservation of A =li 12 in

the oblate case is reminiscent of that of E=l& 12 for the
prolate one.

In terms of A the two topologies are characterized by
the sign of A since A &0 if E &Es. It is interesting to
note the limits of A. If E & Ez,

R0(A(k R —p (26)O' R 2

If E(E,
—(kf p~) & A &0—. (27)

In conclusion we have been able to prove that there is
an essential difference for p~&0 between the phase space
of an oblate ellipsoidal cavity and the phase space of a
prolate ellipsoidal cavity. While the latter has a monoto-
nous character, the former exhibits a bifurcation at some
stage and a division into two parts.

C. Poincare surfaces of section

2

p
pg

P 2+f2 2

The constant of motion A is written here in the form

(2g)

A=li+f k (29)

The signs + and —correspond to prolate and oblate el-

lipsoids, respectively. The curves pP(p) for various A are
plotted in Fig. 5 for kf &p~ and kf &p~. The geodesic is

represented by the point p& ——0 with p =p,„, the
boundary of the surface of section, as the curve with the

Although the discussion of the dynamics of the free
particle in the cavity is well understood, it is convenient to
add another piece of information on the phase space that
will be useful later on in the discussion of our diffuse po-
tential well. The Poincare surfaces of section are extreme-

ly useful tools to illustrate the structure of the phase space
and to follow its evolution when some parameters are
varied. We define the surfaces of sections in the conven-
tional way ' as follows. Let us calculate the projection pz
of the momentum of the particle on the equatorial plane
for every intersection p of the particle with this plane with

p, &0. The surface of section is defined as the set of in-

variant curves pP(p, kf, E) that exists for a given kf and
for various values of the separation constant E In our.
case this function can be defined analytically and is writ-
ten simply as

P (b)
P,

—

(C

FICi. 5. Poincare surfaces of section (p,pP) of the ellipsoidal

cavity. p and p~ (greater than 0) are drawn in arbitrary units

for: (a) a prolate cavity with p~/kf =1, (b) an oblate cavity

with (p~/kf ) =2.5, and (c) an oblate cavity with

(p„/kf) =0.5. In each section the energy of the particle, the

deformation, and the values of p~ are fixed. Change of the ini-

tial conditions provides different values of E or 3, hence dif-

ferent curves. The fixed points of the mappings correspond to
stable periodic trajectories: the geodesic is found at the max-

imum value of p. In the oblate case the new topology appears
on the left of the mapping in (c); it is organized around a "string

around the drum" stable trajectory for a low value of p.

On the basis of the description performed previously on
the cavity eigenstates with 1.,=0, it is interesting to use
semiclassical method in order to draw all the conse-
quences about the spectrum of oblate and prolate shapes
for L,&0.

A. Separation of variables of the wave equation

It has already been shown that the wave equation is
also separable in spheroidal prolate and oblate systems of
coordinates. The only change with respect to classical
mechanics that should be taken into account is to replace

p~ in the equivalent potential by p& —
4 in all the expres-

sions giving p, and p&. Similarly the separation constant
should be replaced by E+ —,'. Thus for p~ & —,

' the centri-

fugal terms in the wave equations have the same sign as in
the classical case. For p~=0 those terms become cen-
tripetal and their effect has already been studied. Since
the effective potentials for p& ~ 1/2 have the same shape
as in Sec. II, we can discuss the effect of the symmetry of
the potential on the WKB phases on the consideration of
Figs. I and 2 using arguments developed in Ref. 2.

B. Prolate case

The equivalent potential fp(e) is a monotonously in-
creasing function of e which can be most often approxi-

lowest possible value of 3, i.e., the planar trajectory at the
equator. It is not a surprise to see the division of the
phase space into two domains in the oblate case for
kf &p~.

III. SEMICLASSICAL DESCRIPTION
OF THE CAVITY
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mated by a linear function. On the other hand gi(g)
represents a smooth, symmetric, and rather harmonic po-
tential well. In both cases there is no particular need to
use the uniform approximation for the WKB phases for
any value of p~ & —,

' . If ep, gp, and ir —gp denote the turn-
ing points, the action integrals are defined as

Ep —E
2(k2f 2+p2 i )1/2

(36)

the function gp(g) has a maximum for k f &p~ ——,'.
The parameter a which measures how far one is from

the top of the barrier is

I~ = p~d&,
~0

Ig ———f p~dg' .

(30)

(31)

The phases P are now the same as derived previously

Ps(a) =e——+—ln
~

a
~

————,arg[( ——,
' +ia)!],

The WKB or EBK quantization conditions are now writ-
ten in units A'= 1: 8=arctan[( 1+e ) '~2+ e ], (38)

3 3I~=n + 4 =n+ 4 (32) while Pz (a) is such that

Ig ng+ —,
' =——1—

~

m
~
+ —,

' . (33) Pw (a)=Ps(a)+m20 . .— (39)

The Maslov's indices 4 and —,
' are taken from the primi-

tive WKB approximation. In a uniform approximation,
which is not attempted here, these numbers should be re-
placed by smoothly varying functions which should not
go much apart from —,

' and —,
'

as was proved for p„=0.
The quantum numbers associated with each variable are

identified to the quantum numbers of the radial and az-
imuthal motion, respectively, for the variable e and g.
Indeed in the limit where the cavity becomes spherical the
motion described by e becomes identical to the radial
motion and that described by g to the azimuthal motion.
It is known in classical mechanics that the azimuthal ac-
tion Ie is written (see Ref. 14, p. 473) in terms of the an-
gular momentum and its projection m as

Ie=l —
/
m

/
(34)

which justifies formula (33).
Since the effective potentials f~ and gp change smooth-

ly with kf or p~, we also expect a smooth change of the
WKB eigenvalues with deformation for a prolate shape.
No particularly systematic difference is expected between
even m and odd m. Section IV will provide a full justifi-
cation of this assertion.

C. Oblate case

The existence of potential barriers with variable topolo-
gy for e as well as for g is specific to this case. A particu-
lar discussion of the WKB phases is needed which imple-
ments that already given for L, =O. Let us remember
that the total wave function should be even or odd with
respect to a~. the reflection operator with respect to the
equatorial plane, i.e., to the replacement /~re g. It is-
well known' and we have redone the demonstration in
Ref. 2, that the semiclassical approximation is largely im-
proved if the WKB phase is changed continuously when
the energy level crosses the top of a barrier. This change
is calculated with the help of the asymptotic limit of the
solutions of the parabolic cylinder equation. It is done in
terms of two functions Ps(a) and Pz(a) which are,
respectively, the phases of the even and of the odd wave
functions. For the value of E given by

The curves drawn for Ps and P„ in Ref. 2 show the fol-
lowing.

(i) When a~ —00, i.e., E & Es (the domain where there
is one hyperboloidal and one ellipsoidal caustics),

Ps —o P~ —
2

.

If a=O,

(40)

(41)

(ii) When a~00, i.e., E &Es (the ellipsoidal caustics is
then replaced by a second hyperboloid),

iT
s 4 ~ A (42)

In the neighborhood of the Oz axis the motion for the
variable g has one turning point in a region where the po-
tential increases uniformly. It is therefore not necessary
to change the WKB phase in that region and the value
—m/4 can be taken. The quantization condition is now
written using also Eq. (85) of Ref. 2:

Ig= pgdg =2 ng+ + 4

0 P (43)
&0

Ig 2(ng+ —,
'

) =1—
~

——m
~
+ —,

'
(44)

(i.e., for 1 —
~

m
~

even). For states odd under o h we can
also write

Ig =2(ng+ —,
'

) =1—
~

m
~
+ —,

'
(45)

(i.e., for 1 —
(

m
~

odd).
On the separatrix the even states are quantized with the

rule

is the lowest turning point, and gp =m/2 if E &Es,
or is the second lowest turning point if E &Es. Whene~ —oo, the topology is the same as that found for a
spherical situation. This limit helps to express n~ in
terms of the combination 1—

~

m
~

found for the azimu-
thal action, as for the prolate case.

For states even under o.~ we obtain

Ep k f +p~ ——,
'—— (35) Ig 2( n g + —,

' + —, ), —— (46)
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which we write

Ig=l —
/

m
/
+ —,

'

and similarly for 1 —
~

m
~

odd we obtain

Ig=2(ng+ —, + —', ),
which we rewrite

(47)

(48)

There is a slight difficulty in this discussion when
k2f~=p ——,'. There the potential is not simply quadra-
tic at the origin but quartic and there is no possibility to
use the parabolic cylinder equation and the corresponding
WKB phases.

D. The slipping of the action cells

Ig=l —
/

m
/
+ —,

' (49)

b, Ie= —, for even 1 —
~

m
~

b, I& ——, for odd——1 —
~

m
~

(52)

(53)

For the variable e the function fo(e) has a minimum if
kf & (p~ ——,

' )'~ for a value e given by

2

4 ~V 4
cosh e=

k2 2
(54)

In the limit a~ oo the topology has been changed. How-
ever, we keep the same value to the quantum numbers and
the condition of quantization becomes

I=2(n~+ —,
' + 4 )=1—

~

m
~
+1 for even 1 —

~

m
~

(50)
I=2(n~+ —,'+ —,

' )=1—
~

m
~

for odd I —
~

m
~

(51)

The variation in the action space due to the change of to-
pology is

Thus the crossing of the potential barrier introduces
also a slipping of the action I, when E goes from + oo to
—oo which is

AI, = ——,
' for even 1 —

~

m
~

states,

b I,=+—,
' for odd 1 —

~

m
~

states .

(63)

(64)

This slipping of the phase-space cell generalizes to all
values of 1 —

~

m
~

that already found for m =0 states in
Ref. 2. Because of this slipping the semiclassical spec-
trum does not vary smoothly when we consider levels
with m of opposite parity. Note also that the slipping
occurs with the same sign for the even-m components of
the even-1 multiplets and for the odd-m components of
the odd-l ones.

E. Finding the separatrix

It is an interesting question to define the conditions
under which a semiclassical eigenstate defined by a set
[n, l, m J is found on the separatrix. In the case p~ =0 the
special values ez of the eccentricity of the boundary and
the value ksf of kf were shown to be simply given by

fo(e) =2kf(p~ ——,)'

Note that

fo(0) =k'f'+p'~

(55)

(56)

Ig
2Ie+I

ksf =
2Ig

(65)

(66)

and E should be such that

&+ —.
'

& k'f'+p", 4»kf(p", 4)—'" . —(57)

The effective potential is then reasonably approximated
by a parabola and we obtain again the parabolic cylinder
equation and the corresponding phases. In the same way
as for p~ =0 we assert that for all motions with a turning
point eo, i.e., for E ~ Es, we have the phases

Let us introduce the special value of p~ on the separatrix

p~ ——kf(cos g —k cotang g)' (68)

For p~&0 new expressions of es and ksf must be found
for E =E~. Let

Ig= —f pgdg . (67)

77

4' 4
The quantization condition can now be formulated as

with

=singo .Pq
k

(69)
3 3I~=n~+ 4
——n+ 4 (58)

An elementary integration enables us to write I~ as

When kf ) (p& —
4

)'~, the parabola is now centered at
@=0 and the above condition still holds for E~E&. If
E & Eq, the other limit should be taken and we get

2p~
Ig —— F(k) (70)

I,=n+ —, for even states,

=n+1 for odd states .

(59)

(60)

in terms of a function F(x) defined by

x 2)1/2
F(x)= —arccosx . (71)

I,=n+ —,
' for the even states,

=n+ —, for the odd states .

(61)

(62)

In the same way as for the variable g we expect on the
separatrix the rule

I,=— p~de
0

(72)

Equation (70) replaces, for p~&0, Eq. (66), which allows
us to calculate ksf for P~=0.

Similarly the action I, is obtained with the definition
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and the special value

p~ =kf(sinh e—A, tanh e) 'i (73)

I,= [F(Res)—F(A, )] (74)

which can be combined with (70) to give

In the same way the integral is easily calculated. After
defining the eccentricity es ——(coshei) ' one obtains the
formula

expect therefore a grouping of components of even m on
the one hand, and another grouping of components of the
opposite parity on the other hand. Since the slipping of
the action cell with deformation has an opposite sign
[Eqs. (52), (53), (63), and (64)], we expect that the slipping
could be visible by varying the deformation and will be
clearly seen when the semiclassical states stand on their
separatrix. A numerical solution of Eqs. (77), (78), and
(79) has been performed and the results are discussed in
Sec. III F.

2I,+Ig —F—( A.es ) (75)
F. Quantum calculations

2I, +I&=2n+1
I
m

I

—+2= mi F(A,es), (77)

while for even 1—
i
m i, A, is a solution of

Ig ——1—
i
m

i + —,= F(A)2fml (78)

and for odd 1—
i
m ~, A, is a solution of

Ig 1 —im i+ —,'=—— F(A, ) . (79)

For a given multiplet, defined by [n, l I these equations
define in the (e,kI) plane two curves according to the par-
ity of m. This proves that the splitting of the multiplet is
done in a different manner for even m and odd m. We

and then similarly to (65)

I, 2F(A )

2I, +I& F(A,es )

This equation defines the critical eccentricity ez of the
boundary grouping altogether Eqs. (75), (70), and the
values of the actions. We find that in every case A,es is a
solution of

R~p= R( (80)

where R ) and R ( are the semiaxes of the cavity.
All the multiplets are split with deformation qualita-

tively in the same way independent upon n and I. We
should concentrate on the ordering with m of the single-
particle orbits issued from the same spherical level. In the
case of a prolate shape the levels are always ordered with
increasing values of m as in first-order perturbation
theory. The energies change smoothly with deformation
and the spreading of each multiplet increases. On the
contrary, the multiplets are spread for the oblate case into

The aim of this part is to look for a possible track of
the structure of phase space found in the preceding sec-
tions. We have therefore calculated the spectrum of a de-
formed cavity for oblate as well prolate shapes. The
method used was described in Ref. 2. Typical single-
particle orbits 1d, 3d, 1h, and 2g are represented in Fig.
6. The energy spectra are measured by the value of
(kRO), where Ro is the radius of the spherical cavity (we
assume volume conservation during deformation). They
are plotted as a function of the deformation parameter de-
fined, as in our preceding paper, by

3

0 2

States 29

States lh
(kRp)

|oo"
1

3
5

5.
C

1,5
100 '

1 1,5
Lz =O

2 1,5
50

1 1,5
z=O

2

200

(k Rp)States 1d

50

St
LZ=O

150

2
0

1 1.51,51.5 1 2 2 1,5 2

FIG. 6. Examples of splittings of single-particle orbits of a cavity with deformation (left: oblate, right: prolate) calculated in
quantum mechanics. The cross or the arrows indicate solutions of Eqs. {77)—(79) of the text, i.e., the places where a given semiclassi-
cal state cross the separatrix: all the levels in the oblate case, only the level L, =0 in the prolate case.
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L,

1.5118
1.7461
1.4858
1.6821
1.3898
1.5024

E„=(kRO iso

91.785
82.687
89.745
78.944
83.554
71.309

Eg ——(kRo)g

92.754
83.769
90.720
80.075
84.531
72.667

hE/Eg

1.05%%uo

1.29%%uo

1.07%
1.41%%uo

1.15%
1.87%%uo

TABLE I. For each component of the 1h multiplet labeled
by L, an oblate deformation has been calculated by solving Eqs.
(77)—(79). They correspond to the places where the semiclassi-
cal levels cross the separatrix. The semiclassical energy levels
E„are given altogether with the energy Eg of the quantum
state for these deformations. The relative errors are seen in the
last column.

Rp
Vp =52 MeV = 1 1.5 17

a
(82)

This value of R p corresponds to A =208 if r p takes the
value 1.2 fm.

Our aim is to connect the classical trajectories within
such a potential to the quantum single-particle spectrum
in the same way as for the cavity. The first step is to pro-
duce deformed equipotentials. Our choice was to produce
them with ellipsoidal shape. The variable r is therefore
replaced by the combination u of x, y, and z:

1/2
x +y zu=Rp 2 +

Ri R,
(83)

The parameter R p can be identified with the radius of the
nucleus if R p

——r, 2 ' while a is the skin width.
Throughout this paper we will use

two components, for which m has an opposite parity.
The lowest component is the one where m has the same
parity as l. This is in exact agreement with what one ex-
pects from the semiclassical rule. The energy difference
of levels of the same parity is constant within a very good
approximation for a sufficiently large deformation, con-
trary to the expectation of first-order perturbation theory.
The domain of perturbation theory is limited to small
values of deformation only. We have indicated in Fig. 6
the place where the semiclassical eigenvalues cross the
separatrix according to Eqs. (77), (78), and (79). By vary-
ing m continuously in these equations, one generates for
given n and l two curves; the distance between these two
curves and the behavior of the two groups of levels of op-
posite parity illustrates quite concretely the different slip-
ping of the actions cells I„and I~ that is experimented
semiclassically. The difference between the quantum lev-
els and the semiclassical eigenvalue is in the limit of 1%.
This error has the same quality as that found for m =0 in
Ref. 3. Notice that the uniform approximation is, as a
matter of principle, mostly needed at the summit of the
barrier. Therefore we can expect that the semiclassical
description be generally of the same quality at least for
other deformations. Table I provides a detailed compar-
ison between the semiclassical value of (kRp) and its
quantum equivalent for the deformation where the separa-
trix is found semiclassically.

In conclusion, it is possible to assert that the difference
between spectra of oblate and prolate cavities is connected
to the difference which exists between the phase spaces of
classical trajectories. More simply, the richer spectrum
for the oblate case is related to the existence of the focal
circle.

IV. BUCK-PILT DIFFUSE POTENTIAL

1+cosh(Rp/a)
v(&) = —vp

cosh(r /a ) +cosh(R p /a )
(81)

A. Deformation of the diffuse potential

In Ref. 1 we have already studied semiclassically and
quantum mechanically the spectrum of the spherical
Buck-Pilt (or BP) potential which is defined by

The deformation parameter is kept as p =R ) /R (
=R, /Rz (prolate)=R&/R, (oblate) and the volume is
conserved in such a way that

R,Ri ——Rp . (84)

Vp —/E'/

Vp
(85)

When g~ 1 (and also if g) 1), if p&1 the variation of
the potential in the skin may play an important role for
some trajectories and this variation brings about impor-
tant nonlinear effects. It is reasonable to expect that these
effects will be amplified if the trajectory stays a long time
in the region where the potential changes the most. The
destruction of tori in phase space, i.e., production of
chaotic trajectories is then connected with the time passed

The classical planar trajectories within such a potential
were already studied by Carbonell' with particular em-
phasis on the case Rp/a=4. 89 (3=16) as well as
Rp/a=10. 96 (3 =208) and also with restriction on the
prolate case. In this work the complexity of the phase
space was already mentioned. In particular it was found
that the deformed BP potential was not integrable; indeed
chaotic trajectories were found for both values of Rp/a.
A detailed description of the topological flow in phase
space was provided and many bifurcations of periodic tra-
jectories were studied as well as the conditions under
which chaos occurred. This work was also partly dis-
cussed in Carbonell et al. '

In this paper we want to provide a description of the
structure of phase space for nonplanar trajectories in com-
parison with the planar ones and we will study also pro-
late as well as oblate shapes. Our choice of Rp/a corre-
sponds to the study of orbitals in heavy nuclei. Due to
the large amount of work which was necessary, we have
not studied the case of light nuclei.

There are two interesting limits which correspond to in-
tegrable potentials in which the phase-space structure is
known. If p~1, one obtains the spherical limit already
studied in Ref. 1. If the excitation energy is small
enough, the potential looks like a cavity with smooth
edges. The energy is measured by the parameter q in
terms of the absolute binding energy E' as
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by the particle on the surface. On the contrary, trajec-
tories confined mostly in regions where the potential is
flat will stay on preserved tori. These remarks should be
k t mind if one looks at the results of Sec. IVB.ep in min

f 1-The questions developed from now on wi11 be the fo-
lowing.

(i) What is the domain of the parameter space g, p, and
L, where the phase-space structure can be understood
mainly in terms of that of one of the integrable limits?

(ii) Where do the nonintegrable nonlinearities manifest
themselves most strongly and in particular where does the
macroscopic chaos occur'?

B. Description of the phase space

The phase space is conveniently represented by drawing
Poincare surfaces of section ' as function of various pa-
rameters. We have chosen the same representation as for
the cavity, i.e., we select the intersection of the trajectories
with the equatorial plane z =0 and we plot the successive
values of the cylindrical coordinate p and p& for various
trajectories having the same value L„ the same energy,
and p, &0. For L,&0 Poincare surface of section is
bounded by a trajectory entirely contained in the equatori-
al plane. This trajectory is itself contained by a trajectory
located in the equatorial plane and having L, =O. We
have found it interesting to represent for every surface of
section corresponding to L,&0 the boundary trajectory

associated to this value as well as the one w ith L =0.
The difference between these two curves measures the
shrinking of phase space observed when the value of L, is
increased. This is the only scale effect which we have
chosen to represent in our figures since p and pz are al-
ways rescaled in such a way that their maximum value is
a constant for every surface of section.

In order to simplify the notations the deformation pa-
rameter p printed in the drawings of the Poincare surface
of section is R, /Rz so that values smaller than unity cor-
respond to the oblate case. However when curves of ener-
gy levels are plotted, the definition p=R&/8 &, more
symmetric between prolate and oblate shapes, is preferred.

The value g=0.625 of the energy that is found most
often in our figures is the energy at which lie the spherical
eigenstate 1h for 3=208. Since for this energy the sec-
tions are rather similar to those of the cavity, a few Poin-
care' sections are also provided for higher energies. ere,

f hasebecause of higher nonlinearities, the structure o p ase
space does indeed change. The considerations of a situa-
tion adapted to a 1h level allows one also to draw con-
clusions about phase space which are large enough to ac-
commodate several values of L„for example, from 0 to 5.

1. Prolate case

Figure 7 illustrates the simplest situation found for
L =3 in the prolate case. The sections are made by in-Z

-0.6250 -0.6250 -0. 6250

I

A- 208 V -1.10 L -3 A- 208 V- 1.20 L - 3 A- 208 V
- 1.70 L = 3

q =0. 6250 q -0. 6250 q -0.6250

I

A- 208 V- Z. 00 L»- 3 P
I

A- Z08 V-3. 00 L -3 P
I

A 208 V 4'00 L 3 P

formed rolate BP otential. The energy is labeled by gFIG. 7. Poincare surfaces of section for the trajectories of a particle in a de.orme pr
r =0.625 corres onds to the 1h level of ' 'Pb). The deformation is p=R, /R~. For all these sections L, =3. The outer boun-

ary is a,— nd . The fixed oint in each section is a geodesiclike trajectory shown inary is that of the I,=0 surface of section of the same g an p. e ixe poin
Fig. 8. Note the similarity of these sections with Fig. 5(a).
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variant curves which encircle a fixed point. This should
be compared to Fig. 5(a) for the cavity where the fixed
point corresponds to a geodesic of the ellipsoid. It is a re-
markable result that the topology of Fig. 7 describes the
same organization of the phase space. Indeed Fig. 8

represents in coordinates p and z two trajectories of the
diffuse potential. One sees that the geodesic of the ellip-
soid has an equivalent in the diffuse potential. This tra-
jectory is the "skeleton" of the phase space for L, =3, and
all the other trajectories have in addition an oscillatory
motion in the variable e. There is no evidence at all, at
least numerically, and for this resolution, that there is an
appreciable change of structure of phase space for L, =3
at this energy.

The effect of changing L, for a fixed energy and defor-
mation is shown in Fig. 9. There is no difference but a
scale effect between L, = 3 and 5; the topology of the
phase space is the same as in Fig. 1. On the other hand,
the topology is entirely different for L, =0 which corre-
sponds well to a generic nonintegrable case. Chaotic tra-
jectories are present as well as quasiperiodic ones. For
L, =1 the system looks nearer from an integrable case
with the geodesiclike trajectory at the fixed point of the
mapping. This drawing contains an important effect.
When we consider high values of L„ the trajectories are
confined near the equatorial plane, i.e., in regions where
the radius of curvature of the potential is slowly varying.
On the other hand the trajectories with low L, visit the
totality of the potential. One can understand in this way
why the nonlinearities play a more important role in the
latter case.

Figure 10 shows the change with p, of the Poincare sec-
tions for L, =0. It provides the illustration of the transi-
tion toward chaos of a system which is integrable for
p=1. The cases with p=1. 1 and 1.2 present the two to-
pologies found in the elliptical box and considered in Ref.
3. The fixed points of the mapping correspond to a tra-
jectory homeomorphic to an ellipsis. According to a ter-
minology first defined by Lord Rayleigh' which was used
more recently in Ref. 17, this trajectory is the skeleton of
the "whispering gallery" modes in an elliptical box. It is
known that there are also the "bouncing ball" modes. The
boundary of the surface of section of Fig. 9 which is a
linear trajectory along the small axis of the ellipsoid be-

longs to this last category. This trajectory is stable in the
Bp potential for a broad interval of parameters. On the
contrary there is another linear trajectory along the long
axis, represented by the origin of coordinates, which is un-

stable. This instability produces the chaotic trajectories
which are clearly visible already from p=1.2 on. Chaos
originates from the separatrix between the two modes. It
invades mainly the part of phase space where the whisper-
ing gallery trajectories were supposed to lie. Since the
bouncing ball trajectories stand mostly in regions where
the potential is smooth, they correspond to a part of phase
space in which the tori are preserved much longer. Indeed
even for p=2, tori are still found in this bouncing ball
part. Islands have also been created; as usual in nonin-
tegrable mappings, some of them are visible for p = 1.7.

In Fig. 11 two larger values of g have been chosen:
g=0.8558 which corresponds to the energy where the

A-208 P - 1 . 200
$.-0. 625 L = 3

P-0. 780
0

A=208 P = 1.200
/=0625 L =3

-0 &00

A-208 P - 1 200
Q =f1. 625 I ~-3
P -0. 600
0

A 208 P = 1.200
-0. 625 I =3

P W. 500
O

FICx. 8. Typical trajectories for a prolate BP potential with a
R, /R& ——1.2 deformation. The representation is the same as in

Fig. 2. The upper-left trajectory is the geodesiclike. The value

given for po is the initial condition in the plane z=O.

2. Oblate case

Figures 12, 13, and 14 have been drawn in this case and
can be compared, respectively, to Figs. 7, 9, and 10. In

quantum 2g level is found for p =1 and q =0.9231 which
corresponds to the energy of a 1j level. It is there clearly
seen that chaos and nonintegrability are not a special
property of L, =0 only. Indeed the surface of section for
L, =1 shows a considerable change of structure. Very
many islands have been created and their "interaction"
can produce a visible macroscopic chaos. However for
L, =3 the structure of phase space is still the same as in
Fig. 7. It is therefore a very important finding that the
structure of phase space could change also very rapidly
with L, . The higher values of L, correspond to a system
closer to an integrable one.
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FIG. 9. Poincare surfaces of section of a aa particle in a deformed prolate BP potential with =0.625 and
L, =0,2%, 3%,5R. Macroscopic chaos occurs only for L =0. Th I

an p = 1.5 and
e externa boundary of each section is that for L =0.z

0.6250 q-0. 6250 YI 0 6250

Pp Pp

I
p ~

J
~I

I ~

~ ~

~ ~

I
~ (

~ .~

0

h- 208 p 1. 10 L~- 0

0 -0.6250
p h 208 P 1 20 Lz 0

q-0. 6250
P

I

A- 208 P, - 1. 30 I -0
g-0. 6250

P

'',
~ ~,'. lj:

h 208
I I

p 1.50 L~-0 P
' h- 208 P 1. '70 L. 0 P h 208 p 2. 00 LI- 0

I

FIG. 10. Same as Fi . 7. Thg. . e BP potential is also prolate but L, =0 (plane trajectories) and 1 &p & 2.
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q-0. 9231 g -0.9231 0.9231
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I
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FIG. 11. Poincare surfaces of section for a prolate BP potential for L, =O, 1, and 3 and two energies: g=0.8558 (the 1g level of
Pb and g =0.9321 (the 1j level). p = 1.5 everywhere.
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FIG 12. Same as Fig 7 The BP potential is now oblate and L =3 Its deformation measured by p=R /R& is kept in a smaller
interval as in Fig. 7 however. The first three sections are topologically equivalent to those of an oblate cavity [Figs. 5(b) and 5(c)].
Macroscopic chaos occurs now for L, =3 at large deformation.
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FIG. 13. Same as Fig. 9 but for an oblate BP potential. Note that we have here R, /R& ——0.67=1/1.5.
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FIG. 14. Same as Fig. 10 but for an oblate BP potential.
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the first three sections of Fig. 11 the phase-space structure
for L, =3 is topologically similar to that of the ellipsoidal
oblate cavity. For small deformations the phase space is
organized around a geodesiclike trajectory. When the de-
formation increases, a new part is created in phase space
corresponding to a topology centered around the string
binding a drumlike trajectory. This part of phase space
becomes more important and is very stable. On the con-
trary, the former part decreases in size and becomes rapid-
ly chaotic. This occurrence is similar to the situation of
the L, =0 trajectories in the prolate symmetry: Chaos in-
vades first the region corresponding to the trajectories
which visit most often the surface of the potential.

The difference between the values of L, is less impor-
tant than it was in the prolate case. In Fig. 13 we can see
that the Poincare section of L, =O, 1, and 3 are qualita-
tively very similar. The linear trajectories along the small
axis of the ellipsoid (the center of the section of L, =0) is
very stable and is surrounded by a large region occupied
by invariant tori. On the contrary the whispering gallery
modes are unstable and chaotic. It is seen that the L, =5
curves still present some important stability around the
geodesiclike trajectory.

The case with L, =0 is studied in particular in Fig. 14
which should be compared to Fig. 10. It is interesting to
notice that these figures represent the same topology (i.e.,
plane trajectories in a potential with equal values of
R &/R &) but in the prolate case the Poincare section is
defined by the intersections with the small axis of the po-
tential and in the oblate case by the interactions with the
long axis. This is why the stability which occurs around
the external part of the surface of section in Fig. 10 is
transferred in Fig. 14 to the internal part. Notice that the
potentials are nevertheless not exactly equivalent since the
value of u associated with a given point by (83) depends
on the symmetry of the potential oblate or prolate for the
same value of R & /R & . Figure 15 completes the discus-
sion about the stable bouncing ball-like trajectories and
the unstable and chaotic trajectories around the boundary.

It is a remarkable result that the gross structure of the
topology of the trajectories of the BP potential is still very
similar to that of the cavity in spite of the disparity of the
constants of motion. The increase of L, weakens the non-
linear effects at the surface of the BP potential. This ef-
fect is more spectacular in the prolate case that in the ob-
late. In the latter case we have indeed the argument oppo-
site to that given at the end of Sec. IVB 1. For high L,
the trajectories near the equatorial plane visit the surface
at places where the radius of curvature is more rapidly
varying. Hence chaos is created more easily for oblate
shape than for prolate shape.

The analogy between the oblate BP potential and the
cavity is underlined even more if one compares the trajec-
tories of Fig. 16 to those of Fig. 14.

3. Fine structure of the phase space

The numerical exploration of the phase space which has
been performed for the cavity provides, as is well known
for other nonintegrable systems, a coarse description
which can be refined by enlarging the scale of the surfaces

A 208 fl- 0. 500
TI 0. 625 L -3
P-0 ~00
0

A-208 P - 0 . 500
Q-0 625 L -3
P-0 800
0

FICy. 15. Two trajectories are shown in an oblate BP poten-
tial with R, /R& ——0.5 and L, =3. The upper one is quasiperiod-
ic; it is organized like the "string binding a drum" trajectory;
the lower is chaotic. Both can be found in the bottom-right sur-
face of section of Fig. 12.

of section and by calculating a larger number of trajec-
tories. In this procedure the pictures of the phase space
change and become highly complex. This event differen-
tiates the phase space of a nonintegrable system from that
of an integrable one. The preceding discussion may lead
the reader to the conclusion that the BP potential is in-
tegrable in a large region of deformation, energies, and
values of L, . This conclusion is totally wrong as shown
in the example presented below.

In Fig. 17 we have drawn a surface of section for a pro-
late BP potential for L, =3, q=0.63, and for an inter-
mediate value of the deformation parameter @=1.54. We
have also plotted, on each side, two periodic trajectories,
with opposite curvature, which correspond to specific ini-
tial conditions. It is seen that a crescent-like structure
occurs in the surface of section. At the center of the cres-
cent is found the stable periodic trajectory found on the
right on Fig. 17. At the opposite side with respect to the
center of the Poincare section is found the other (left-side)
periodic trajectory which is seen to be unstable. The oc-
currence of such islands or resonances is of course well
known. It is a remarkable fact that we have found this
structure by using the method of adiabatic switching
developed in Refs. 19 and 20 and applied more recently by
several authors. ' ' Figure 17 shows such new topology,
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which has no connection with the cavity for the more ap-
propriate values of the parameters. The history of this to-
pology, i.e., the place in energy where it is created, the
other place eventually where it will bifurcate, or be des-
troyed, can be traced by using general methods about
fixed points of mappings. These methods are, for exam-
ple, described in Ref. 7. In our case one of us has per-
formed a detailed study of these islands for the L, =0 tra-

jectories. Indeed as we can see from Figs. 10 and 14 this
is the place where the nonlinearities occur most easily.
This work has not been repeated for the nonplanar trajec-
tories discussed mainly in this paper.

The main reasons are the following. Such a work can
be done by studying the properties of the Poincare map-
pings, i.e., those of the isolated points of the mappings,
their stability, or their bifurcations. For the planar trajec-

A 208 P 0. 833
0. 825 L~ 3

P-0 865

A 208 P - 0. 833
0 6W5 Lz=

-0 . 75(

A-208 P - 0. 833
Q =0. 625 L.~= 3

P-I . 000

A-208 P 0. 833
0. 625 Lz 3

P 1 0200

A-208 P - 0. 833
0. 625 L~- 3

P W. 301

A-208 P - 0. 833
0 625 Lz 3

P W. 600

A-208 P - 0 . 833
$.-0. 625 La- 3

QW. 500

A-208 P, 0. 833
f)-0. 625 L~-3
P-0. 400

A-208 P - 0.833
Q -0. 625 L~-3
QW. 430

FIG. 16. Typical trajectories in an oblate BP potential with an oblate deformation of R, /R& ——0.833. Here L, =3 everywhere.
The representation is the same as in Figs. 2, 4, and 8. The upper-left trajectory is the geodesiclike, the bottom-right, the "string bind-
ing a drum"-like.



2406 R. ARVIEU, F. BRUT, J. CARBONELL, AND J. TOUCHARD 35

A 206 P 1.540
'rl -0. 630 1

P K.435
Pp

-0.6300 A 206 lt 1.540
0630 I 3X

p -o. 5+5
O

A= 208
I

P = 1 . 54 L~=3 P

FIQ. 17. A more careful drawing of Poincare surfaces of section of a prolate BP potential for p=1.54, q=0.63, and L, =3. A
crescentlike structure occurs, which is not visible in Fig. 7. At the center of this structure one finds the curved trajectory shown on
the right. This structure is stable. In a region where there is a higher density of points in the surface of section, one finds the unsta-
ble trajectory shown on the left part.

tories such trajectories are easily found. They are the
linear motion along the small axis or the long axis of the
potential. From this study, important and visible effects
are seen. On the contrary, for the mapping associated
with the nonplanar trajectories the necessity to find out
numerically the relevant periodic trajectories is a first dif-
ficulty. A second lies in the property that the nonlineari-
ties of the mappings there are not so strong as for L, =O
since the centrifugal barrier seems to smooth them out.
Therefore most of the bifurcations produce a structure too
small to be visible. As a matter of illustration we remind
the reader that we have not been able to produce macro-
scopic chaotic trajectories for prolate shapes with L, =3
and for values of p as large as 4.

C. Quantum calculations

We have calculated the quantum single-particle energies
for the BP deformed potential by diagonalization in a
truncated deformed oscillator basis which includes 11 os-
cillator shells. A few deformed multiplets are drawn in
Fig. 18 for comparison with their partners in the cavity.
It is remarkable that the structure of the splittings is the
same for both systems. For prolate deformation the ener-

gy levels are split as in perturbation theory: Even and odd
L,, states are alternatively found with increasing energy.
On the contrary, with the oblate symmetry the L, states
are grouped into two components: the even and the odd.
The ordering of one family with respect to the other on

3 ~ 1
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States 1h
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5

States 2g

1,5

-10

1,5

1,5

—30
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2

States ld
-30
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1,5 1,51, 52 1 &5 2 2 1

FIG. 18. Example of splittings of single-particle orbits of a deformed BP potential with a prolate (right) or oblate (left) deforma-
tion calculated in quantum mechanics. Some anticrossings are exhibited for the 3d case (they are not shown for other levels). Some
Poincare surfaces of section of the classical motion and some trajectories are shown in Figs. 7 to 17 for the unperturbed value

g =0.625 of the 1h level. To be compared to Fig. 6.
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the one hand and the ordering inside each component on
the other hand are qualitatively identical with that ex-
plained in the case of the cavity. The only difference with
the cavity lies in the crossings which occur in Fig. 18 and
not in Fig. 6.

We can therefore estimate that the Schrodinger equa-
tion for a deformed BP potential can be separated in a
reasonably good approximation in spheroidal coordinates
and that the effective potential curves represented above
form again the basis of the discussion of the spectrum.
This remark as well as that given above for the crossings
illustrates a discussion that has been given by Berry and
Tabor and by Berry. ' On the scale of h the indivi-
dual levels can be located by a quantization condition. If
the spectrum is observed with a finer scale, deviations
occur like the noncrossing of the energy levels which are
out of the range of a semiclassical description.

V. CONCLUSIONS

The aim of the preceding papers' and of the present
one was first to obtain a description of the classical phase
space corresponding to the motion of an independent nu-
cleon, a neutron since Coulomb effects were not con-
sidered, in the average field of the nuclei. The different
potentials that we have considered were either simply con-
stant potentials "avity, spherical, or deformed —all of
them being integrable, and also diffuse spherical or de-
formed BP potentials. The spherical version of the latter
is also integrable but the deformed one is nonintegrable.
It is a current practice to teach nuclear physics and also to
understand many physical effects by approximating the
average field by an harmonic oscillator or an infinite box.
The comparison is generally performed in a somewhat
vague sense. We think that we have shown in our papers
that a deeper connection can be found if one compares
indeed the topology of the phase spaces of the simpler in-
tegrable potentials with those of the nonintegrable ones up
to a certain resolution. Within that resolution the topolo-
gies are indeed identical. In the present paper we have
emphasized that the properties of the ellipsoidal cavity ex-
plain those of the deformed BP potential, including the
oblate-prolate difference, for a radius corresponding to
heavy nucleus. In earlier papers ' it was found in a simi-
lar fashion that for a radius corresponding to a light nu-
cleus the phase space of a BP potential was topologically
identical with that of an harmonic oscillator.

It is important to underline that the energy levels of
these systems can nevertheless be different quantitatively.
For example, those of the light nuclei can present some
anharmonicities which can be understood properly in
terms of the EBK approximation. ' The semiclassical
quantization method is a very powerful tool for separable
systems like the cavity. In Ref. 3 we have indeed obtained
extremely good spectra for the L, =0 spectrum of a cavity
using the uniform approximation. Such a method would
probably provide results of the same quality for L,+0 as
well. We have obtained a significant example in Table I

in this direction. However, this method requires a consid-
erable amount of time for a nonintegrable potential as we
found' for the BP deformed potential with L, =0.
Another difficulty arises for the oblate case where the ex-
istence of a separatrix for the BP potential needs in addi-
tion to use a uniform approximation. Work in that direc-
tion using the adiabatic switching method' ' ' is in
progress. At the present time we feel that the comparison
between the integrable cavity and the nonintegrable BP
potential stands only on the qualitative side.

In the present paper we feel that we have presented an
interesting and new difference between prolate and oblate
cavities that has a geometric origin in spite of our demon-
stration which used classical dynamics. It is very gratify-
ing to observe that, starting from these explanations, one
is able to trace also differences between the quantum-
mechanical spectra not only of the cavity itself but also of
the BP deformed potential.

We have also shown how the combination of deforma-
tion and surface diffuseness that is done in the BP poten-
tial is able to produce a classical macroscopic chaos. We
reiterate here our conclusions regarding this production.
Chaos is produced most easily in the phase space with low
L, ; it requires oblate rather than prolate shapes and a
rather small binding energy. Each of these conditions is
one of the criteria upon which the nonlinearities are max-
imized. It is a rather surprising result that the phase
space with high values of L, correspond to lower non-
linearities. However it should be stressed that the preced-
ing conditions are nevertheless not rare in nuclear physics.
One knows indeed single-particle states of low binding en-

ergy with low L, in largely deformed nuclei which can
possibly correspond to a classical chaotic motion. These
results give some additional support to the attempts to
discover manifestation of quantum chaos in nuclear spec-
tra.

We note that a great deal of effort has been provided in
that field in the last recent years. In particular Abdul
Magd and Weidenmuller have analyzed data on low-
lying levels in nuclei ranging from Na to Am. They
found indications for regularity in rotational-like states in
even-even nuclei and also some evidence that natural pari-
ty states in odd-odd nuclei are not completely chaotic. On
the other hand, the other states seem to have statistical
distributions which are consistent with complete chaotici-
ty. Obviously our results cannot be used directly to dis-
cuss these conclusions since we have been concerned only
with the central part of the average potential. We feel
that it would be an interesting work to find out how chaos
and regular motion would appear in the coupling between
the single particle and the collective degrees of freedom.
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