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Bounds for kinetic and exchange energies of fermion systems
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We show that the physical quantities of an 3-fermion system expressed by means of integrals of
powers of the single-particle density p(r) are bounded by any kth moment around the origin (r") of
p and 3 in a simple manner. As applications, the kinetic and semiclassical exchange energies of a
neutral atom (A =Z) turn out to be bounded from below by 0.2184Z (r ') and from above by
0.3046Z ~ (r ), respectively. Comparison of these bounds with the microscopic values of the corre-
sponding quantities is made. Similar bounds for the same quantities in nuclei are also given and
analyzed.

I. INTRODUCTION

Single-particle density is a physical observable which
plays a basic role in the quantum description of many fer-
mion systems. There are many physical properties of
atomic, molecular, and nuclear systems which can be in-
terpreted in terms of the fermion density of the system.
For instance, in the case of an atom at the ground state,
the electron density fully characterizes' the system: All
properties are functionals of the density.

It is also known that the functionals of various
physical quantities of fermionic systems (such as, e.g., the
kinetic, Coulomb, and exchange energies) are, at least to
the leading order, integrals of powers of the fermion den-
sity p. Or, using a rigorous statistical language, there ex-
ist some physical quantities which are frequency mo-
ments of integer or fractional order of the density p. The
aim of this work is to obtain bounds for any physical
quantity of this type in terms of the total fermion number
and an arbitrary moment around the origin of positive or
negative order of the density p of the system. It will be
argued that the moments of negative (positive) order give
the best bounds for electronic (nucleonic) systems.

The paper is structured as follows. Section II contains
the method to obtain the general expressions for the lower
bounds of an arbitrary frequency moment of p. These ex-
pressions are used in Sec. III to find lower bounds for the
Thomas-Fermi kinetic energy of atoms and nuclei. Here
the Thomas-Fermi kinetic energy means the energy ob-
tained via substituting an approximate Hartree-Fock
charge density into the Thomas-Fermi appropriate func-
tional. Emphasis will be put on atoms since a paper on
the nuclear bounds has already been published. In Sec.
IV, the Dirac exchange energy of atoms and nuclei is
bounded from above and not from below due to its global
negative sign. Comparison with the exact or some ap-
proximate values obtained for these quantities by various
authors is also done in Secs. III and IV.

II. METHOD AND GENERAL RESULTS

In Ref. 8, the authors have shown that for an
particle system the frequency moment of order n (not
necessarily integer but greater than or equal to 1) of the
single-particle density p(r), i.e.,

w„= f [p(r)]"dr,

is bounded from below as
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for k =1,2, . . . and provided that

k ((3n —3)/n .

To prove the inequality (4) we will consider an arbitrary
density function p(r) and denote by w„ its nth frequency
moment defined by (1). Now, let us search for a function
f(r) such that (a) its norm and moment around the origin
(r ") are equal to the corresponding norm and moment
of p(r), and (b) its frequency moment w„minimizes the
corresponding moment w„of p(r). To do that, we mini-
mize the quantity f [f(r)]"dr subject to the conditions

A = f f(r)dr, (6)

for k = 1,2, 3, . . . . Here the 8 symbol denotes the P
function defined by

8( y)= r(")r(y) 't- (1 t) d-t—
I (x +y)

and (r") is the (positive) kth moment around the origin
of the normalized p(r), i.e.,

(r")=A ' f r"p(r)dr . (3)

Here we want to show that the frequency moment w„
given by Eq. (1) can also be bounded from below in terms
of the negative moments (r ") of the density p. It is
found that
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(r ")=A ' f r "f(r)dr,
i.e., we take variations in the form

5 f [f(r)]"dr—A, f r f(r)dr p—f,f(r)dr =0,

gy TzF. A straightforward use of Eq. (2) for n = —', leads
to the following set of lower bounds for Tr„:

TgF &CqGk k 2/k
k:1 2 (12a)

where A, and p are Lagrange's multipliers. Then one ob-
tains

f(r) =[(Ar "+p)/n]'/'"

with

C, = —,', (6~')'"q-'"
and

(12b)

provided that f(r)=f(r) and r &0. Assuming p, nega-
tive, then A. )0. So the support interval of the density
f(r) is [0,( —A, /p)' "]. This expression transforms with
an appropriate change of scale onto

C(r " b")' '—" " if 0&r &1/b,
0 otherwise .

The C factor can be calculated from the normalization
condition (6). One easily obtains
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Also Eqs. (4) and (5) produce an additional lower bound
2/3
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provided that k is less than 3n —3. Similarly, the mo-
ment around the origin (r ) and the frequency moment
w„' of the function f (r) given by (9) are
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respectively. The bound (15) can also be readily found
from a well-known relationship'

Z2
T& (r ')',—4[ e[

For atoms (q=2), the bounds (12) and (13) take on the
values

n(3 —k) —3 3 1 n
4m.B

k n —1'n —1
where eo is the (exactly known) leading term of the Z
perturbation series, whose asymptotic expansion is"

provided that k & (3n —3)/n and n & 1. It only remains
to show that w„* is a lower bound of the frequency mo-
ment w„of p(r). This can be easily done operating in a
fully analogous and parallel way as we do in Ref. 8 to
prove the inequality (2).

III. LOWER BOUNDS FOR KINETIC ENERGY

Recently Lieb and Thirring have proved that the kinet-
ic energy T of a system of A fermions with q spin states
available to each particle (q=2 for electrons) is bounded
as

T~ 1.643Kq p r dr (10)

with K =3(3m./2) /10. Moreover, Lieb has conjec-
tured that the Thomas-Fermi kinetic value TzF is a
lower bound for the exact A-fermion kinetic energy, i.e.,

T&TzF (4n. ) /Kq / f [p(r)] /——dr a.u.

(11)
where the notation (1) has been used. Atomic units will
be used throughout the paper. One sees that the
Thomas-Fermi kinetic energy is, apart from a constant,
the frequency momentum of order —', of the fermion den-
sity of the system.

Here we want to find lower bounds to the kinetic ener-

—e (A)=(3A/2)'/ [1——,(3A/2) ' +O(A )] .

Notice that the inequality (15) can be accordingly im-
proved for /I =Z as

(2/3) /3ZS/3( —1)2[1+ (3Z /2) —1/3+

It can be shown that the bound (15) is much more accu-
rate that those given by inequality (14). The bound (15)
gives the exact kinetic energy in the original Thomas-
Fermi model of a neutral atom ( A =Z) which considers a
pure Coulomb potential, —Z/r, the reason being that the
electronic density is of the form (1/r —c) which coin-
cides with Eq. (9) for k= 1. In this case the inequality
(14) gives a bound which for k= 1, 2, and 3 is such that
the relative error with respect to the exact kinetic energy
is 0.526, 0.603, and 0.649, respectively; for k & 3, the error
is bigger. Moreover, taking the values (1/r) and (r) of
a phenomenological realistic electronic density such as'
p(r) oc [4mr (a +r) ] ', a =(9/2Z)', into the inequalities
(14) and (15), one easily finds two lower bounds with rela-
tive errors of 0.865 and 0.099, respectively. The same
remains true for theoretically well-founded realistic elec-
tronic densities of atoms. Then, henceforth we will refer
only to the lower bound (15) in our discussion on the
atomic kinetic energy.

The goodness of the bound (11}—(15) is numerically
analyzed in Tables I and II for various neutral atoms.
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Lower bound TTF

TABLE I. Comparison between the lower bound given by
(15) and the Thomas-Fermi kinetic energy for various neutral
atoms as explained in text. Atomic units are used everywhere.

TABLE II. Comparison between the lower bound (15) using
nonrelativistic values for (1/r) and the total kinetic energy
quoted in Ref. 15 for various neutral atoms. Atomic units are
used.

3
4
5
6
7
8

9
10

1.91
2.099
2.275
2.447
2.619
2.783
2.947
3.113

4.97
9.70

16.53
25.91
38.37
54.13
73.86
98.24

6.70
13.13
21.97
33.61
48.63
67.22
90.07

117.77

0.258
0.261
0.248
0.229
0.211
0.195
0.180
0.166

6
12
18
28
48

74
82

2.5
3.34
3.87
4.59
5.65
6.27
6.77
6.91

Lower bound

25.97
153.24
404.39

1187.98
4485.97
8792.0

13056.2
16 151.6

37.66
199.62
526.82

1506.82
5465.13

10820. 1

15 287.4
19 524.0

0.310
0.232
0.232
0.212
0.179
0.187
0.146
0.173

Table I shows the comparison between the lower bound
calculated with the values (1/r) obtained by means of
the atomic wave functions of Clementi and Roetti, ' and
the (Thomas-Fermi) leading term of the kinetic energy ob-
tained' with the same atomic wave functions. One ob-
serves that the relative error of the bound is at most 0.26,
which occurs for Z=4, and then it rapidly decreases for
bigger atomic numbers.

In Table II the lower bound (15) obtained with the
(1/r) values given by Desclaux' is compared with the
total kinetic energy. Both values have been taken from
the nonrelativistic calculations quoted in Ref. 15. One ob-
serves that for intermediate and heavy atoms the relative
error of the bound is always smaller than 0.18.

Finally it is interesting to point out that the combina-
tion of the expression'

(1/r) ) 1.3956Z'~ [I—O(Z '~ )], (16)

based on the virial theorem, and the inequality (15) allows
us to write that

TgF & 0.4254Z

This lower bound is exceedingly simple and already has
the well-known Z dependence of the atomic kinetic en-

ergy, but it is not very accurate because the minimal es-
tirnation for ( 1/r ) given by (16) has been used.

In nuclear systems, the bounds (12) are, for positive k
values, much better than (13). Essentially this is because a

f function of the form f ( r) ~ (r a) ~ is m—uch closer to

the phenomenological nucleonic densities with positive k
values than with k = —1. Besides, it has been shown'
that the use of the values for the moments (r"), k&0,
and ( 1/r ) obtained from phenomenological single-
particle densities (Fermi, modified Gaussian) in the ine-
qualities (12) and (13) also leads to the same conclusion.

To study the goodness of the bounds (12), let us calcu-
late them within a nuclear model where the kinetic energy
can be determined exactly. For example, in the simple
harmonic-oscillator shell model where the single-particle
wave functions are pure harmonic-oscillator functions, the
kinetic energy per particle is given by' T =C/(r ) MeV,
where C is a constant which depends on the nucleus under
consideration (e.g., 104.8 for ' 0 and 565.2 for Pb).
For k=2, the bounds (12) give the values 95.8/(r ) and
529.6/(r ) MeV for ' 0 and Pb, respectively. The cor-
responding relative error is of 0.09 for oxygen and 0.06
for lead.

In Hartree-Fock and nonrenormalized Brueckner-
Hartree-Fock theories, it is also possible to know the exact
value of the average kinetic energy per particle, (T),
from the binding energy per particle B!A and the single-
particle energies Fg via the sum rule'

The comparison between the values of (T) obtained
within these models and the bound (12) for k=2 is shown
in Table III for two nuclei. One observes that the relative

TABLE III. Comparison between the lower bound given by Eq. (12) with k=2 and the kinetic ener-

gy obtained in several self-consistent calculations for the nuclei ' 0 and Pb.

Nuclei

208Pb

'Reference 27.
Reference 28.

'Reference 29.

Type of
calculation

HF'
BHF
HF'
BHFb

(r2)1/2
(fm)

2.54
2.46
5.32
4.60

T
(MeV)

16.88
17.39
20.01
25.99

Lower bound
(MeV)

14.84
15.8
18.71
25.02

0.12
0.09
0.07
0.04
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TABLE IV. Values in atomic units of the exchange energy for several atoms. The upper bound
given by Eq. (19) is compared with the exchange energy obtained by means of the Schwinger s sem-
iempirical value, E (Sch}, and using the Clementi-Roetti wave functions, E,„,as explained in text.

z
6

12
18
28
48
82

1.198
1.019
0.889
0.778
0.694
0.614

Upper bound

—2.772
—8.212

—16.163
—33.288
—76.564

—176.731

E,„(Sch)

—4.375
—13.888
—27.297
—57.007

—139.981
—341.735

—4.603
—14.811
—28.233
—59.290

—142.962

0.366
0.409
0.408
0.416
0.453
0.483

error of the bound is, as before, around 0.1 with respect to
the exact value. Further details and more complete dis-
cussion of these and other comparisons for these nuclei
are given in Refs. 8 and 17.

IV. UPPER BOUNDS FOR EXCHANGE ENERGY

g 4/3
Eex + CeEk k i(k ) k = 1~2~. . .

r

where

(18a)

4k
4k +3

1/3
k [3/(4k +3)]""

4mB 4, —3'k
(18b)

The Dirac or semiclassical exchange energy of a fer-
mionic system is given by

E,„=—C, J [p(r)] dr—= —C, t40/3 (17)

where C, =3(3/n. )'~ /4. In writing the second equality,
we have used the definition (1). Then the exchange energy
E,„ is related to the frequency moment of order —', of the
fermionic density (electronic if atoms, protonic if nuclei)
of the system.

The inequalities (2), (4) and (5) give no lower but upper
bounds to E,„because of the negative sign in Eq. (17).
Moreover, the restriction (5) is not fulfilled for n =—', so
that the exchange energy cannot be bounded in terms of
the quantities (r "). However, the expressions (2) and
(17) allow us to obtain upper bounds to the exchange ener-

gy of an A-fermion system in terms of the moments of
positive order, (r ), of the single-fermion density. These
bounds are

z 4/3
= —0.469 16, MeV . (20)

For neutral atoms ( A =Z) one can easily see, as in Sec.
III, that the best bound is given' for k= 1, that is, by
means of the centroid of the single-particle density, (r ).
This is

12 15 Z Z
' 1/3

Eex + Ce
( )

= —0.3046
( )

a.u.

(19)

Taking into account that ( r ) is proportional' to
Z ', one observes from this bound that the exchange
energy is itself proportional to Z ~ as one would ex-
pect. ' On the other hand, an idea of the goodness of this
bound can be obtained by comparing it with the values of
the exchange energy given by the Schwinger s semiempiri-
cal expression (Ref. 20) E,„(Sch)= —0.2208Z ~ a.u. and
the relation (Ref. 21) E,'„=—C,4(3' )

' (p )
= —0.3183(p) a.u. , where the expectation value of the
single-particle momentum was calculated by using the
Clementi-Roetti wave functions. ' This comparison is
shown in Table IV, where the first and second columns
give the (r ) values' and the bound (19), respectively.
The third and fourth columns contain the magnitudes
E,„(Sch) and E,'„, respectively, and the last one collects
the relative error of the bound with respect to E,„(Sch).
One observes that the bound (19) is certainly not good
since the relative error oscillates between -0.37 and
-0.48.

For nuclei and with k=2, the inequality (18a) gives the
following upper bound for the exchange energy:

' 1/2 ' 1/3

E + 2 3 315 z
11 11 n. („z)in

TABLE V. Values in MeV of the Coulomb exchange energy for various nuclei. The upper bound
given by (20) is compared with two different microscopic values obtained by Titin-Schneider and Quen-
tin (Ref. 23), E,'„, and Rosati and Schiavilla (Ref. 24}, E,"„.

Nuclei

16O

Ne
Mg

28Si
32S

Ca
208Pb

( r2) 1/2

(fm)

2.71
3.00
3.08
3.10
3.263
3.48
5.52

Upper bound
(MeV)

—2.77
—3.33
—4.19
—5.11
—5.80
—7.28

—30.28

E,'„
(MeV)

—2.87
—3.64
—4.44
—5.24
—6.0
—7.52

(MeV)

—2.4

—6.8
—33.8

0.035
0.074
0.058
0.025
0.034
0.027
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In Table V this bound (see column 2) is compared with
the exchange energy given by the two following models:
(i) exact Hartree-Fock calculations of Eq. (17) using the
Skyrme III forces, E,'„, and (ii) exact microscopic calcu-
lations in terms of the two-proton distribution function
calculated in the local-density approximation by solving
the FHNC/0 (Fermi hypernetted chain calculations)
equations for infinite, nonsymmetric, nuclear rnatter
with the nucleons interacting via the so-called OMY po-

tential, E,"„. From this comparison, one realizes that the
relative error of the bound (20) with respect to the micro-
scopic values, E,'„, of the exchange energy is always less
than 0.1.
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