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The effect of colloidal interactions on the structure of aggregates formed by irreversible
diffusion-controlled aggregation is studied by Brownian dynamics simulation. Three-dimensional
systems of spherical particles with Derjaguin-Landau-Verwey-Overbeek (DLVO) pair potentials

are simulated at various volume fractions.

We find that the form of DLVO potential affects

short-range structure as measured by the particle-particle correlation function, but not long-range

structure as measured by the fractal dimension.

It is now established "2 that the short-range liquidlike
structure in a stable colloidal dispersion is dependent on
the nature of the interactions between the particles. It
seems plausible, therefore, to speculate that the short-
range structure in an aggregate formed by irreversible
diffusion-controlled coagulation might be sensitive to the
nature of the interactions (attractive and repulsive) which
were acting between the particles immediately prior to
their sticking together.

Computer simulation®* and experiments with silica and
gold colloids>® have shown that the stringy aggregates
produced by Brownian coagulation are fractal in structure
when examined on length scales much larger than the sizes
of individual particles. General fractal scaling behavior is
relatively insensitive to the chemistry of the colloidal sys-
tem, or to details of the simulation model.” On a length
scale of a few particle radii, however, we do not expect
such universality. Indeed, recent small-angle x-ray scat-
tering measurements have demonstrated®® that aggregate
structure is nonfractal on such a short-length scale. At
large values of the pair separation r, the particle-particle
correlation function g(r) scales as r?~3, where D is the
fractal dimension. But, at short separations, we might ex-
pect to see more detailed features in g(r): (i) geometrical
packing constraints due to particle impenetrability (repul-
sive forces), and (ii) nonbonded particle clustering associ-
ated with reversible flocculation (attractive forces). From
experience of g(r) in stable colloids,"* one might expect
short-range structure in aggregates to become more
enhanced with increasing particle volume fraction.

The two pair potentials of mean force U(r) chosen for
study here are shown in Fig. 1. Both potentials are strong-
ly attractive at close surface-to-surface separations (r
— 2a, where a is the particle radius), thereby implying ir-
reversible aggregation on contact. Both potentials are
weakly attractive at moderately large surface-to-surface
separations (r~3a), thereby implying a tendency to ag-
gregate even in the absence of Brownian motion. Curve 4
differs from curve B, however, in having a repulsive region
at intermediate separations (2.15<r/a <2.3). The turn-
ing points of maximum and minimum potential energy U
in curve A are usually called the primary maximum and
secondary minimum, respectively. The effect of the secon-
dary minimum is to cause pairs of particles to associate
loosely at separations r == 2.3a, before thermal motion ei-
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ther induces dissociation or causes irreversible aggregation
into the primary minimum (r— 2a) after jumping over
the primary maximum.

Physically, potentials of the types 4 or B in Fig. 1 are
found! in some electrostatically stabilized colloidal disper-
sions to which a controlled amount of salt has been added.
The algebraic forms of these Derjaguin-Landau-Verwey-
Overbeek (DLVO) potentials!® are given by

Ur)=Ur(r)+U4(r) , ¢))

where Ug (r) is a screened Coulombic repulsion and U4 (r)
is the van der Waals attraction. Under conditions where
additivity of DLVO potentials is a valid concept (xa> 1),
Ug (r) has the form'©

Ugr(r) =2ne,e0aydInll +exp(—xs)] , ¢))

where s =r —2a is the surface-to-surface separation, &, is
the relative dielectric constant of the medium, gy is the
permittivity of free space, yp is the particle surface poten-
tial, and x is the inverse Debye length defined for a 1:1
electrolyte by

k2=2¢2CN 4/¢,60ksT , 3)

where e is the electronic charge, N4 is Avogadro’s number,
kg is Boltzmann’s constant, T is the absolute temperature,
and C is the electrolyte concentration. The unretarded van

FIG. 1. The DLVO potentials 4 and B. Energy U is plotted
against center-to-center separation r.
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der Waals interaction has the form!!
Uqs(r)=—(4/12){[4a%/(r*—4a?®)1+ (2a/r)?
+2Inl1 — Qa/r)?1} , 4)

where A is the effective Hamaker constant. Parameter
values are set as follows: @ =0.25 um, ¢, =80, 7 =300 K,
wo=20 mV, 4=194x10"" J, C(4)=0.3 molm 73,
C(B)=0.6 molm 3,

To represent short-range structure realistically in a sys-
tem of spherical particles requires the use of a nonlattice
simulation model. Our model consists here of 512 DLVO
particles executing three-dimensional Brownian motion in
a cubic cell with periodic boundary conditions. Transla-
tional diffusive motion of particles and aggregates is simu-
lated using a Brownian dynamics algorithm!?-* based on
the Langevin equation; inertial terms are neglected, but in-
terparticle direct forces and hydrodynamic interactions are
incorporated. The simulation time step was set in the
range 2.5-20 us. The scalar diffusion coefficient Dy of an
N-particle aggregate is assumed to be given by

Dy=(kgT/67na)N? , )

where 7 is the viscosity of the medium (water at 300 K),
and 7 is a hydrodynamic scaling coefficient with a value of
—0.54 for fractal aggregates produced by cluster-cluster
simulation. '’ Strictly speaking, the use of Eq. (5) involves
an a priori assumption about the fractal character of the
aggregates to be formed during the simulation (since Dy
properly scales as N ~!/2) !¢ and indeed the aggregates
formed turn out to be rather more compact than implied
by y=—0.54. Although it does have a slight effect on the
coagulation kinetics, especially in the later stages, we do
not believe, however, that the exact choice of y in Eq. (5)
has any significant effect on the structural conclusions
drawn below. (It has been shown elsewhere? that, so long
as Dy is a decreasing function of /V, then it matters little to
the final aggregate structure what actual value the dif-
fusion coefficient takes.) So, Eq. (5) is a simple but realis-
tic way of allowing for intra-aggregate hydrodynamic
effects; inter-aggregate hydrodynamic effects are neglect-
ed here.

At the start of a simulation run, particles are positioned
at random subject to the condition r > 2.4a for all pairs.
Each simulation proceeds until all the particles have
coagulated into a single 512-particle cluster. For poten-
tials 4 and B, five separate runs were performed at each of
the volume fractions ¢ =0.05, 0.1, 0.15, 0.2, 0.25, and 0.3.
Effective fractal dimensions D were calculated from plots
of InN against InR,g, where R, is the radius of gyration
(R, ~N1P).

The simulated aggregates are stringy on a long-length
scale, but more compact on a short-length scale. Figure 2
shows one of the 512-particle clusters simulated with po-
tential 4 at ¢ =0.1; it has a fractal dimension D =2.2, and
a g(r) function as shown in Fig. 3(a). As ¢ increases, the
aggregates become more space filling (D— 3), and notice-
ably more structured at short range. An extrapolation to
¢ =0 gives D =2.0 £ 0.1 for potential 4 and D=1.9 0.1
for potential B; these fractal dimensions are similar to
those obtained for reaction-limited aggregation and
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FIG. 2. A 512-particle cluster (potential A, ¢=0.1).

diffusion-limited aggregation at high dilution®* (D =2.05
and D =1.8, respectively), and, within the statistical un-
certainty, both values are close to that found experimental-
ly with colloidal silica.>®

One complication in discussing fractal-type structure in
nondilute systems is the formation of a gel state when ag-
gregates get bigger than a certain average critical size.
Using an analysis based on percolation theory,!” we have
estimated that gelation sets in at ¢ 0.15 for the 512-
particle aggregates simulated here, which means that the
final gel structures generated at the higher volume frac-
tions, while heterogeneous and fractal on the short-to-

4 (a)
g
244
°2 a 6 8
r/a
4_
g (b)
2_
02 : : 8
r/a
4._
<] (©
2_
03 ; 6 8
r/a

FIG. 3. Normalized g(r) for final aggregates generated with
potential 4 at (a) ¢ =0.1, (b) $=0.2, and (c) ¢$=0.3.
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TABLE 1. Effective fractal dimension D (3 0.05) of aggre-
gates as a function of particle volume fraction ¢ and colloidal po-
tential (4 or B).

¢ D(4) D(B)
0.05 2.12 2.07
0.10 2.21 2.19
0.15 2.39 2.36
0.20 2.46 2.38
0.25 2.53 2.43
0.30 2.56 2.56

medium scale, are homogeneous on the macroscopic scale.
Based on sets of just five runs at each volume fraction, the
statistical data are not good enough, however, to discern
any nonlinearity in the plots of In/V against InR, at high
volume fraction which might be consistent with a crossover
from pregelation to post gelation behavior. For consisten-
cy sake, therefore, particularly with respect to comparing
résults from the two potentials, we have calculated all
values of D in Table I from analyses of clusters up to
N =512, though it should be recognized that the smaller
aggregates have more statistical weight as there are more
of them. We stress that the fractal structure described
here refers not to the large-/V limit but only to a restricted
range of radius: up to 20a for ¢ =0.05, and only up to 12a
for ¢ =0.3.

In the g(r) plots in Fig. 3, the sharp peak at r/a=2
(really a & function) corresponds to pairs of particles in
direct contact in the primary minimum. The fairly sharp
peak at r/a = 2.3 corresponds to nonbonded pairs in the
secondary minimum of potential 4. The soft peak at
r/a=4 corresponds to the “second shell” of liquidlike
structure familiar in Monte Carlo simulations of stable
DLVO-type systems.? The features at r/a=2.3 and
r/a = 4 become stronger as ¢ increases, and at $=0.3 a
“third shell” of liquidlike structure is clearly evident [Fig.
3(c)]. As particle concentration increases, the short-range
structure of the aggregated colloid becomes more like that
of the equivalent stable colloid (i.e., the system immediate-
ly prior to aggregation). Similar qualitative structural
features in g(r) to those in Fig. 3 have also been found '®
in colloidal sediments simulated by single-particle de-
position.

Figure 4 shows g(r) for aggregates formed with poten-
tial B at ¢ =0.15. In this case, apart from the sharp peak
at r/a =2, there is little short-range structure. Compar-
ison with Fig. 3 indicates that the colloidal aggregate
structure at short range is indeed sensitive to the interac-
tions acting between the particles before they stick per-
manently, in agreement with results from a preliminary

RAPID COMMUNICATIONS

2351

r/a

FIG. 4. Normalized g(r) for final aggregates generated with
potential B at ¢ =0.15.

two-dimensional study.'® Such differences in short-range
structure could have important implications for the
mechanical properties of these aggregates (and gels
formed therefrom), even though the longer-range struc-
ture, as measured by the effective fractal dimension (see
Table 1), is essentially the same for potentials 4 and B.

It would appear that the short-range structural features
found with potential A4 are attributable to particles floccu-
lating in the secondary minimum prior to irreversible ag-
gregation. This allows clusters to “anneal’” somewhat be-
fore the final configuration becomes “frozen in.” Al-
though the calculations reported here have been performed
for large colloidal particles in which the secondary
minimum of a few kgT arises from DLVO forces, we ex-
pect the same general behavior for any particles interact-
ing with potentials of qualitatively similar form. With sys-
tems of small particles (e.g., the silica colloids of Schaefer
and co-workers®>®) where we would not expect a DLVO
secondary minimum, it is possible that short-range struc-
ture like that indicated in Fig. 3 could arise through clus-
ter rearrangement due to dissociation out of the primary
minimum (peptization) on short time scales. This limited
reversible aggregation could be limited on the longer time
scale by excluded volume constraints or direct chemical
bond formation between particle surfaces. Where the par-
ticles have some time to adopt an “equilibrium” structure
before coagulation, we can say that the resulting aggregate
structure is to some extent thermodynamically determined;
otherwise, as here with potential B, it is kinetically deter-
mined. (The limiting form of thermodynamically deter-
mined behavior is the slow process of aggregation into a
crystalline structure having long-range as well as short-
range order.?’) These arguments are consistent with the
recently reported x-ray results® for aggregated gold col-
loids showing that the short-range structure as measured
by g(r) is dependent on whether coagulation occurs fast or
slow. Light-scattering measurements of the initial coagu-
lation behavior of polystyrene latex particles?! also lead to
similar conclusions.
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