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A new time-dependent atomic model is presented. In the model, called the hybrid-atom model

{HAM), the energy-functional form of the population probability obtained from the average-ion
model is used to estimate the level population of ions having charge different from the average ion.
In medium-Z plasmas HAM gives results similar to the collisional-radiative {CR) model. The re-

quired computation time is comparable to the average-ion model even for high-Z plasmas. In these

plasmas the CR model becomes impracticable. Though the model partly uses the average-ion
model, the x-ray emission calculated is significantly different.

I. INTRODUCTION

Experiments have shown that there are high rates of x-
ray emission from hot and dense high-Z plasmas pro-
duced by laser interaction. Therefore, an accurate calcula-
tion of the emission rate from laser-produced high-Z plas-
mas is indispensable. The ranges of electron density from
10' to 10 cm and temperature from 100 eV to a few
keV in these plasmas are such that neither local-
thermodynamical-equilibrium (LTE) nor coronal-
equilibrium (CE) can be used over the entire domain. In
such non-LTE cases, the population N, „ofeach ion
charge state z in the nth level is generally required to cal-
culate x-ray emission from the plasma. ' For a high-Z
plasma, the equation for this population is rarely solved.
Consequently, in analyzing radiation from a laser-
irradiated high-Z target, the average-ion model has
been widely used. This is mainly because the model re-
quires fewer rates to be calculated thereby consuming less
computation time and hence can be coupled into any hy-
drodynamic code. In the average-ion model, N,

„

is aver-
aged over z and it is sufficient to solve only the equations
for the level populations of an average atom. As an alter-
native approach, if a suitable assumption for the popula-
tion of the excited-level populations can be made, the
equations required to be solved are those for %, only; X,
being the abundance of the ion z. In this direction,
Salzmann and Krumbein proposed a form of the
excited-level population such as N,

„
/N, =No A

exp( E, n/kT) for exc—ited levels and N, „/N,= No for a
ground level where A is so chosen that the population be-
comes close to the value calculated by a detailed rate

equation. Here, No is determined from g„N,„/N,=l
and E,

„

is the level energy. However, this is not always
possible for high-Z plasmas, since we have no method to
determine the adjustable parameter A. Busquet' pro-
posed a mixed model where only relatively lower excited
levels are calculated by the rate equation whereas highly
excited levels are assumed to be of the Boltzmann type.
However, he needed a further approximation in the coron-
al limit.

In this paper, we report that the excited-level popula-
tions for ions in different charge states have a common
characteristic and propose to use the average-ion model to
characterize this common behavior. This enables us to
calculate both the level populations and the charge-state
distribution even for high-Z materials with computation
time comparable to the average-ion model. Since this
model uses a combination of the collisional-radiative
model and the average-ion model, we refer to it as the
"hybrid-atom model" (hereafter, HAM).

In Sec. II, the average-ion model used is briefly re-
viewed and then we describe the detailed procedure and
the concept of HAM in Sec. III. The atomic processes
and the corresponding formulas for rate coefficients are
discussed in Sec. IV. In Sec. V, we show some examples
which clarify the essential advantages of HAM over the
average-ion model by analyzing the x-ray emission from
hIgh-Z plasmas.

II. THE AVERAGE-ION MODEL

In general, the rate equation for the population N, „of
an ion in charge state z with an excited electron in the nth
level is

dNz n/dt = glz, n;z+1 mNz nNe QRz n z t kNz nNe+QIz ) m z nNz ) m Ne+QRz+) k z«Nz+) k Ne.
QEz n. z, tNz, «N» Q—Dz „„Nz,n+QE—zz.z «Nz. ,N»+QDz t z «Nz t,
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where z=0, 1,2, . . . , zo (zo is the nuclear charge) and n=1,2, . . . , n,„.Here I, R, E, and D are the rate coefficients
for ionization, recombination, excitation, and deexcitation, respectively. The subscripts indicate the charge state and the
level number of initial and final states.

In the average-ion model, Eq.(l) is statistically treated and modified into the equation for an average ion with z=z'.
According to the procedure described in Appendix B, Eq. (1) is modified to be

d(NP„)/dt=R„N,NQ„I„N,—NP„+N g A„~P~Q„—g A „P„Q~+ g C„N,NP Q„
m &n m'~n m &n

C „N,NP„Q + g C„N,NP Q„—g C „N,NP„Q ~, Q„=1 P„/g„—
m'&n m'&n

where Q„is the fractional vacancy, N and N, are the ion
number density and free-electron number density, respec-
tively, and g„is the statistical weight of the electron in
the nth level. It should be noted that P„is the fractional
number of electrons in the nth level and is not a probabili-
ty to find an electron (Q„P„&l)in the nth level. Here

R„,I„,3„,C„,and C„arethe rate coefficients for
recombination into the nth level, ionization from the nth
level, Einstein s 3 coefficient, collisional deexcitation
(from m to n), and collisional excitation (from m to n),
respectively. The recombination rate R„consists of the
radiative, three-body, and dielectronic recombinations.
The free-electron number density N, is related to an aver-
age ion charge z as

tribution to the emission from the plasma are in a charge
state close to the average ion, it is sufficient to determine
the electron population for ions having z close to z'
without accurately calculating the electron population for
every ion. For z=z', the electron population in each level
is expected to have a similar characteristic to that of the
average ion.

If the level populations of the excited states are known,
Eq. (1) can be reduced to

dN, /dt = I,N, N, —R,N, N, +—I, ,N, )N,

+R,+)N, +)N, ,

N, =Nz'=N zo —gP„ (3)

The energy of bound electrons E„is given by

IE„j= 13 6q„/n .Eb„(e V)— (4)

III. HYBRID ATOM MODEL

It is very difficult to determine the electron population
in each level of every ion, particularly for high-Z materi-
als such as Au. Since some ions that give the major con-

where q„is the effective nuclear charge, e.g., the net nu-
clear charge as seen by an electron in the nth level, which
is calculated with Mayer's screening constants o.„as
q„=zo—g cr„~P . ' '" The subscript z on E, „willbe
omitted hereafter for the average ion z=z without intro-
ducing any ambiguity. hE expresses a potential lowering
by perturbers such as free electrons and neighboring ions.
The pressure ionization effect is added to the calculation
by forcing the degeneracy of the nth bound-electron shell
to decrease to zero at a high-density limit: the electron
populations around the valence shell (r„=RO)are numeri-
cally modified so that ihe solution is close to the
Thomas-Fermi description in the high-density region.
Here rn and Ro are the electron-orbital radius and ion-
sphere radius, respectively.

where I, and R, are the respective rate coefficients
summed over all excited states, and are defined in Sec. IV.

Then, how are we to determine the level population of
the excited states? We propose to employ the average-ion
model. The basic principle of our approximation comes
from the fact that transitions between bound states
proceed faster than those between free and bound states.
Hence, the level populations of the excited levels can be
approximately estimated by quasisteady equations of
bound-bound transitions for an ion of charge z:

N, ,„/N,, =(A„+C„N,)/(C „N,)
=(g„/g )P(E,E„,N, ),

The last expression of E is easily seen from Eqs. (16), (17),
and (18) in Sec. IV. Equation (6) shows that the normal-
ized population X,„/g„canbe estimated if only the level
energy E„is known. Although there exist transition pro-
cesses other than those used in Eq. (6), Eq. (6) motivates
us to use an energy-functional form of the normalized
population Nz n/gn if Nz n/gn is only a function of level
energies and does not depend explicitly on z, the normal-
ized populations constructed from the average ion can be
rescaled and used for other ions in a different charge state
z.

In order to clarify the idea further in detail, let us ex-
amine the level dynamics of various ions by solving the
full rate equation (1) for an aluminum plasma. Here we
used the. collisional-radiative model similar to that of
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FIG. 1. The reduced population probability vs the excitation energy for T, =po e& and (i) n; = ]O~o cm 3 and ~ii) n; =10' cm
(a) The reduced ion population probabihty vs the excitation energy with CR model for different charge states of sons. {b)The reduced
electron population probability versus the excitation energy with the average-ion model.
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FIG. 2. The dependence of aluminum abundance in various
charge states on electron temperature for an ion density of 10
cm . The solid and dashed lines are the results from the
hybrid-atom model and the collisional-radiative model, respec-
tively.

Colombant et al. ' In Fig. 1(a), the reduced population
probability W, „/g„(=N,„/g„N,Q„W,„=1)is plotted
versus the excitation energy, which means the level energy
measured from the ground-state level. For X;= 10
cm, the probability is close to the Boltzmann type
W, „-g„exp(E„/kT,).—Although for N; =10' cm it
is also close to the Boltzmann type, the temperature of the
bound electrons is much lower than the free electron tem-
perature T, In each case, the reduced probability for vari-
ous ions of + 3 to + 10 can be well characterized univer-
sally by one curve, although this curve depends on the
physical parameters as shown by the two curves in Fig.
1(a).

If this characteristic is taken into account, the common
behavior appearing in Fig. 1(a) can be satisfactorily
described by the average-ion model. Actually, the reduced
electron population probability defined later shows the
same characteristics as shown in Fig. 1(b). Accordingly,
once the electron population P„ofthe average ion is ob-
tained by Eq. (2), the function Y, (E) (the reduced
electron-population probability) is constructed from P„as
follows; at some discrete points

Y,(E„')=P„/g„+P„'(n=1,2, . . . , n,„) (7)

and in other regions Y', (E) is exponentially interpolated
from Eq. (7): this exponential interpolation is justified by
the characteristics appearing in Fig. 1, In Eq. (7) E„'is
the excitation energy of the average ion and the summa-
tion is taken over the ionizing shells, This energy-
functional form can be used to generate the population
probability even for the ion in a charge state z different
from z' of the average ion:

W, „=Y(E)g„.
It should be noticed that the physical meaning of 8"

„

in
Eq. (8) differs from W,

„

in Fig. 1(a): the former is de-
rived from the electron population but the latter from the
ion population N,„.However, both characteristics are
similar as seen from Figs. 1(a) and 1(b). This can be justi-

fied by remembering the nature of the average ion model
and CR model. In the CR model, only one electron is ex-
cited in some level. Accordingly, if ions in various charge
states are collected together into a fictitious ion, the elec-
tron population I'„in the nth level of this ion will be
similar to the ion population of the original "real" ions
Xz g with an electron in the nth level.

In the next step, the ionization and recombination rate
coefficients are summed up with respect to n using N,
and W, „=W,„.Then Eq. (5) for N, is solved. With
this model, all regions including LTE, corona, and those
intermediate to them can be described without any adjust-
able parameter.

In addition to the characteristics shown in Fig. 1, the
average-ion model has many advantages in constructing
the energy-functional form [Eq.(7)]. These are (1) if N,
peaks at z =z', it is enough for the common characteris-
tics as in Fig. 1 to be valid only for z close to z', (2) even
if z' changes in time, the average ion can follow this z'
and hence the charge state of primary interest can be sa-
tisfactorily traced, and (3) the number of equations to be
solved is zo+n,

„

instead of zon,
„

in the full rate equa-
tions.

Since Eq. (5) has a tridiagonal form, the numerical pro-
cedure to solve it is quite easy. In the present model the
main computation time becomes the time to solve only
Eq. (2) and is computationally as fast as the average-ion
model. If the ionic charge becomes large, then the validi-
ty of the present model is much improved because the
range of z that satisfies e= ~z —z

~

/z'&&1 becomes
wider and the fractional energy change (bE/E) for these
ions is on the order of e; this small change of energy justi-
fies the interpolation in constructing the energy function
FQ ~

In order to justify the model, let us give an example.
Figure 2 shows the relative abundance of the charge state
of aluminum at a steady state for N; =10 cm and
various electron temperatures. Here, the rate equation
[Eq. (5)] for N, includes radiative, three-body, and dielect-
ronic recombinations, and collisional ionization. In addi-
tion, collisional excitations and deexcitations, and radia-
tive deexcitations, are also included in the average-ion
model [Eq. (2)]. The results predicted by the hybrid-atom
model [Eqs. (2) and (5)] (solid line) agree quite well with
those given by Duston et al. (CR model shown by the
dashed line) for z) 10. In Ref.2 only levels for z) 10
were calculated by the rate equation, whereas for z & 10
ions only the ground-state levels were taken into account.
The small difference (about 40% at most) between the CR
model and our hybrid-atom model is within differences
caused by the different rate coefficients.

IV. ATOMIC PROCESSES

The collisional and radiative processes which are in-
cluded in the present model are given in this section.

A. Collisional ionization

In hot plasmas there are two major ionizing processes,
namely, collisional ionization by electron impact and pho-
toionization by the radiation field. %'e can neglect the
latter, for an optically thin plasma. For an optically thick
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Author

TABLE I. Values of C, g, and F(u) from various authors.

C (cm /eV sec) r(u)
Lhndshoff-Perez
Lotz
Seaton
McWhirter

1.24 &&
10-'

3 ~10-'
2.15~ 10
2.34&& 10-'

0.915(1+0.64/u ) +0.42(1+0.5/u )

Ei( u)exp( u)
1

1

plasma, the radiation field must be treated together with
the atomic processes as will be discussed in the next sec-
tion and in Appendix A.

Although there is still no universally accepted expres-
sion for the collisional-ionization rate coefficient, one can
find several formulas in the literature. These are due to
Landshoff and Perez, ' Lotz, ' Seaton, ' and McWhirt-
er. ' All these formulas have the same following form:

I, „=CT / [exp( —u)/u~]F(u),

u =E,„/T,
where C is a numerical coefficient, T is the electron tem-
perature in eV, and F(u) is a function peculiar to the vari-
ous formulas. In Table I, we list C, g, and F(u) corre-
sponding to the various approximations. E,

„

is the level
energy including the lowering of the ionization potential.

This formula is used both in Eqs. (2) and (5). When Eq.
(9) is substituted into Eq. (S), the ionization rate coeffi-
cient must be summed up with respect to n using 8;„:

where g„is the number of electrons in the ionizing shell.

B. Three-body recombination

This becomes a dominant process as the density increases,
resulting in thermodynamic equilibrium.

C. Radiative recombination

For hydrogenic ions the rate of radiative recombination
is given by'

R,"„=5.20)&10 '
q, „u3/ exp(u)E;(u) cm sec (12)

Three-body recombination is the inverse process to col-
lisional ionization. From a detailed balancing considera-
tion one obtains

R,'„=1.66X10 T '/ N, g, „exp(u)

&(I, ~ „cmsec

i, =gr, „w,„g„, (10) where q, „

is the effective nuclear charge and E; is the
first exponential integral and can be approximated as

exp(x)( —ln(x) —O. S77215 66+x) for x & 10

exp(x) [—ln(x) —0.577 215 66+ 0.999991 93x —0.249 91055x

+0.055 19968x —0.009 760 04x ~+0.001 078 57x 5] for 10 4 &x & 1

x +2.334 733+0.250 621/x for+x ) 1 .
x +3.330657x +1.681 S34

D. Dielectronic recombination

The rate of dielectronic recombination introduced by
Burgess' is in the forms

R,"„=2.40X 10 a(q, „)D(q,„,T)T

&& g f~„A(y)exp( E„/T)cm sec —', (l3)

where

Z(q) q 1/2(q + 1)5/2(q2+ 13 4)—I/2

E „=(E,—E,„)/a,
a =1+0.015q /(q+1)

y =(q+1)(n —m ),

3b r d
&z, n =&z,n+&z, n+&z, n- (14)

Further, in order to use it in Eq. (5), it must be summed
over 5:

R, = QR, „Qg„, (15)

where the Q, „

is the fractional vacancy in the atomic
shell.

3 (y) =0.5y'/ /(1+0.210y+0.030y ),
D(q, T)=0.0015[(q+1)n, ] /I 1+0.0015[(q+1)n,] ],
and

= 1.508 & 1017q 6T/2/X

From the above three expressions, the total recombination
rate is
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E. Collisional excitation

In excitation as well as in ionization, there are two ma-
jor processes: Collisional and radiative processes. The
photoexcitation will be discussed in detail in the next sec-
tion and in Appendix A. The collisional excitation rate
can be written in the form'

tion (n & m), E
„

is the excitation energy in eV and G
„

is the Gaunt factor.

F. Collisional deexcitation
/

The rate of collisional deexcitation is obtained from a
detailed balance of the collisional excitation rate:

C „=1.58&&10 f~„T ' E „exp( E~„—/T)G~„ C„=(g„/g)exp(E „/T)C„. (17)

cm sec
G. Radiative decay

where f „

is the oscillator strength for the n ~m transi-
The rate of radiative decay (m~n) is determined by

the Einstein coefficient for spontaneous emission:

A„=4.315)&10 (g„/g )f „(E„)sec (18)
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T
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X 1+ 1 — X
„

2
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H. Oscillator strength and gaunt factor

In the case of the hydrogenlike ion, the oscillator
strength and the Gaunt factor are given, respectively, in
the forms'8'9

2
'I 0

l

&& exp(X „)E;(X„) (20)

—4+ IO
40
4fl

X~o
0. O 0. 5 'I. 0 'I. 5 2. 0

PHOTON ENERGY ( keV)
2. 5

where' „=E„/T.
The change in charge state of an ion [dN, /dt; Eq. (5)]

is calculated using the rate coefficients I, [Eq. (10)] and
R, [Eq. (15)]. The properties of average ions are calculat-
ed with Eq. (2) with coefficients I, „[Eq.(9)], R, „[Eq.
(14)], C „[Eq.(16)], C„[Eq.(17)],and A„[Eq.(18)).

V. APPLICATION TO LASER-PRODUCED
HIGH- Z PLASMAS

FIG. 3. The emitted x-ray intensity vs photon energy from a
typical laser-produced Au plasma in which for simplicity the
density and temperature are approximated by exponential func-
tions in space balancing pressure: the range from 16&&10

cm, 100 eV to 1)& 10 crn, 1600 eV, the scale length being
10 pm. (a) The results with the average-ion model. The solid
lines are the results in which the energy space was divided into
groups of 5 eV width: the lower curve is the direct data and the
other is further averaged over 50 eV only in the final result, the
former is drawn being reduced in its magnitude by a factor of
10. The dashed line is the result with the groups of 50 eV width
broadened 'artificially during the ray trace calculation. (b) The
results with the hybrid-atom model. The lower line indicates
those calculated by the energy space divided into groups of 5 eV
width, and another line indicates those further averaged over 50
eV only in the final result after the ray trace calculation.

In the previous sections, we proposed a new atomic
model, HAM, which solves Eq. (5) by constructing the
level population N, „=8,„N,from the electron popula-
tion given by the average-ion model, Eq. (2). In this sec-
tion, we apply HAM to laser-produced Au plasmas.

As a simple example of such plasmas, we use exponen-
tial profiles for the density and temperature in space mak-
ing the pressure uniform: the density and temperature
ranges from 16~102 to 1&(10 cm and 100 to 1600
eV. The scale length of these plasmas is 10 pm. Figures
3(a) and 3(b) are obtained from the average-ion model and
the hybrid-atom model, respectively. In addition to the
atomic processes given in the Secs. II—IV, photoexcita-
tions and radiation transport are included here. The for-
malism of the latter two processes is given in the Appen-
dix A. In Fig. 3, the solid lines are the results in which
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the energy space was divided into groups of 5 eV width
and line broadenings by various processes are neglected
for simplicity: one line is the direct data and another is
further averaged over 50 eV for an illustrative purpose.
In Fig. 3(a), in addition to the above lines, we draw the
dashed line that is the result using the groups of 50 eV
width broadened artificially. The comparison between the
solid lines in Figs. 3(a) and 3(b) shows that the emission
intensities and hence the opacities with the hybrid-atom
model are larger than those with the average-ion model.
The difference is concluded to arise from the charge-state
distribution.

In Fig. 4, this effect is schematically shown. Let us
consider x-ray emission at some spatial point x& and ab-
sorption at x2. In the average-ion model, only one ficti-
tious ion having z' exists at each space point, so that the
level energy and hence the x-ray spectral energy changes
from space point to space point depending on the average
charge z' which follows physical parameters, the density
and the temperature. Consequently, the line radiation em-
itted in one region can not be absorbed by the same spec-
tral line in another region as shown in Fig. 4(a). In actual
plasmas, however, there exists an ion having the same
charge z in all regions although the abundance X, may
change from space point to space point. This means that
a spectral line emitted in one region is always absorbed by
the same line in any other region of space as shown in

FIG. 4. It is schematically shown that the average-ion model
is unsuitable for line transport. Let us imagine that the line ra-
diation is emitted at some spatial point x~ and absorbed at x~.

, (a) In the average-ion model, there is only one fictitious ion at
each space. The level energy of the ion changes from space to
space depending on the average charge z' which follows physi-
cal parameters. Consequently, the level eriergy shift between x

&

and xq, which does not occur in actual plasmas, exists and the
line radiation emitted at x& is no more absorbed by the same
spectral line at x&. (b) In HAM, there exists an ion having the
same charge z in all regions although the abundance N, changes
from space to space. This means that a spectral line emitted at
one region can always be absorbed by the same line in whole
space. However, with varying amount.

Fig, 4(b). The hybrid-atom model can describe this pro-
cess.

Figure 5 shows the fractional abundance of N, for gold
in the same regions as in Fig. 3: (a) the density 16X10
cm, the temperature 100 eV, (b) 8 X 10 cm, 200 eV,
(c) 4X10 cm, 400 eV, (d) 2X10 cm, 800 eV, (e)
1&(10 cm, 1600 eV. This distribution suggests that
the line spectra is spread over a few hundred eV in spec-
tral range because the energy difference between z and
z+ 1 ions is about 2IHz/n and hence is about 50 eV for
z =30 and n =4, IH being 13.6 eV. If we examine the
curves (d) and (e) in Fig. 5, the difference of charges at
peak abundance [average ions of (d) and (e)] is 5 and this
causes an energy difference of 300—400 eV (n =4) in the
spectral lines. However, the spectral lines emitted by the
ions from + 40 to +42, for example, in the region (d)
are surely absorbed by the same lines of ions from + 40
to + 42 in region (e).

It is interesting to see that the emitted spectra are close
to those of the hybrid atom model as shown by the dashed
line in Fig. 3(a), if the line opacity is averaged and
smoothed over the energy group of 50 eV width during
the ray trace calculation. This artificial broadening prob-
ably takes account of the spread of lines owing to the ion
charge distribution.

It is worthwhile to note that the line integration in the
radiative transfer equation, Eq. (Al), played an essential
role in the obtained spectra in Fig. 3, and the contribution
from the population change due to photoexcitation in
Eq.(A8) was negligibly small in this particular example.
We found, however, that this is not the case in the exam-
ple given by Duston et aI.

VI. CONCLUSION

In summary, we propose a new atomic model, the
hybrid-atom model, which takes advantage of the com-
mon characteristics in the level dynamics of excited states;
these characteristics are justified by the full rate equation.
Fortunately, this common nature was shown to be well
characterized by the average-ion model. This information
on the level population greatly simplifies the rate equa-
tion. In medium-Z plasmas, our model agrees well with
the CR model. Even in high-Z plasmas, the model can

10

&0
(D

D 10
63

&0
63

CL
10

0 20. 0 40. 0 60. 9
I on Char ge

FIG. 5. The relative abundance of ions in various charge
states calculated by the hybrid-atom model for (a) the density
16&10 cm, the temperature 100 eV, (b) 8)&102 cm, 200
eV, (c) 4&10 cm, 400 eV, (d) 2&10 cm, 800 eV, (e)
1&10 cm, 1600 eV.



M. ITOH, T. YABE, AND S. KIYOKAWA 35

calculate the level dynamics of ions as well as the charge-
state distribution with a computation time only a few
times longer than that for the average-ion model calcula-
tion.

The present model was also applied to x-ray emission
from a laser-produced Au plasma. The existence of ions
in the various charge states makes the line transport cal-
culation more realistic. The comparison between the
present model and the average-ion model shows that the
latter underestimates the line opacity. The width of the
ion charge distribution hZ-+3 obtained by the present
model agrees with recent experimental implications.

To conclude we point out subjects yet to be solved. One
is the radiation transport: since a number of lines exist in
high-Z plasmas, a simplified treatment of line transport
will be a problem of the first priority. The second is the
treatment of metastable states: forbidden transitions be-
come important in high-Z plasmas. ' These scale as
z —z' . The extension of the HAM to treat tuse process-
es is not straightforward. Some methods to separately in-
corporate forbidden transitions in the HAM may be
necessary.

Here, we discuss photoexcitation processes and radia-
tion transport in order to extend HAM to optically thick
plasmas. The specific spectral intensity I„is calculated
by the transfer equation

dI
ds

=jv ~Ax ~ (Al}

where j is the emission coefficient, a„' the absorption rate
including induced emission, v the frequency, and s
denotes the propagation distance of the radiation. For
bound-bound transitions, j is expressed as

hvj„= A„mPN,
4m

where h is Planck's constant, P the spectral line shape
satisfying Ifdv=1, and An the Einstein coefficient de-

fined by

(A3)
m~C gm

Here, I, and e are the mass and the charge of electrons,
c is the speed of light, g the statistical weight, and f „

the
absorption oscillator strength.

By detailed balance, sc is given by

&e f „QN,n,
Pl~ C

(A4)
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APPENDIX A

and

gn N;m
Kv Kv

gm Nzn
(A4')

An electron in the bound level m is excited up to the level
n by this photoabsorption process. In Eq. (1), this effect
is explicitly written in the form

dN,
„ —g X, k„N,„+g X, „mN,

n&k m &n

where

4m.
X,„N, = ~gdv .

(A5)

(A6)

Here, the integration is done over the spectral shape f of
the line.

In the HAM, this photoexcitation should be incorporat-
ed with the average-ion model —Eq. (2). It is clear from
the discussion in the Sec. V that photoexcitation only of
the average ion is not enough and that various ions should
be taken into account. For this purpose, we propose to
use a z-averaged photoexcitation X „,defined to be

Nz
Xmn = g Xz, nm

N;
(A7)

in Eq. (2} as follows:

d(NPn)
dt

=.. . —g Xk„P„Qk+g X„mPmQ„. (AS)
n&k m &n

APPENDIX B

dN,
„$ gk;z, n $ Iz, n;z+1, mkk;z, nNz, nNe

n dt n

+ g I, ,+i„gk,+g„N, .
I

z) m, n

+(R,E,D) . (B1)

To simplify, only ionization terms are written explicitly.
Other terms of Eq. (1) have a similar form and are
represented symbolically by (R,E,D).

The electron population is defined as

The average ion model treats multiply charged ions as a
groups of "ions" having an average charge z. To obtain
the properties of average ions the number of electrons in

~ different atomic levels is needed. This is determined by
averaging the number of electrons in a particular level of
all the ions grouped to the average ion. In Eq. (1) N,

„

is
the number of ions with charge z and one electron excited
to the nth level, other electrons being in ground-state lev-
els. Let the number of electrons in the kth level of a "real
ion" (N, „)be denoted by gk.,„.Since it is assumed that
only one electron is excited in the nth level, gk.,„=1for
k =n, further gk. ,„&0for k representing levels of
ground state (denoted in the following as g), and gk.,„——0
for other values of k.

Multiplying Eq. (1) with gk.,„and summing over dif-
ferent charge state z and levels n, we obtain
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PaN ='$—4;z,nNz, n

z, n

(82)

Now the rate equation for the population in a level k can
be distinguished in two different cases: (1) k is not a
ground-state level and (2) k is a ground-state level.

(1) k&g. In this case ga.,„——1 for k =n and ga, „——0
for k&n E.quation (81) for this case can be written as

dPklV'
Iz, a;z+. t, m N.,aN.

Z, Nl

dPJ, X = —Q lz a z+ ) g.N, aN, + (R,E,D) .
Z

(83')

It should be noted that in the term I, a ,+&. in Eq. (83)
m should be a ground-state level if the kth electron is ion-
ized, while m should be equal to k if the other electron is
ionized. Therefore, it is evident that m= k= n or m =g,
and m'= k= n and Eq. (83) leads to

+g Iz, m';z~t, aNzm N, +(R,E,D) .
Z, Nl

(83)
(2) k =g. In this case m=n or g and n =m' or g.

Equation (Bl) now reads

dPJ, N $ Iz, n;z+1, knaz, Nnz, Nne $ Iz, n;z+ I,gka;z, nNz, nNe+ glzm', z,+l, mrna;z+1, Nmz, m'Ne
z, n Z, Nl

+ g I.,m;z+i, g4;z+i, gN;m Ne+(»E») .
z, m'~g

(84)

dPkX = —Q I,„,+) „N,„N., +(R,E,D),
Z, ll

(84')

where ga z„—g'a. .z+, „——1 is used.
Since I, k.,+&g and I,„.,+& „

implicitly include the
number of electrons in the ionizing shell, ' which is ga
( =pa., a or ga.,„),it is appropriate to introduce [see Eq.
(9)] I,a—:l,, a;z+~,g/ga;z, a and I,„.z+q n/ga. ,„.Accord-

In this case, ga.,„=pa.,+, g for n &g because the number
of electrons in the ground level is zo —z —1 in both terms;
it is zo —z —1 (1 is due to the excited electron) for ga., „

and zo —(z + 1) for ga.z+ & g. In contrast,
ga.z+q g

——1 for n =g. Therefore, the second and the
fourth terms cancel each other and Eq. (84) reduces to,

ingly, both Eqs.(83') and (84') lead to

dPkX
dt

= —QIz „gaN,„N,+(R,E,D),
z, n

(85)

for all k; note that for k&g [Eq. (83')] only the term
k = n in Eq. (85) remains because Pa.,„——0 for k&n.

If the distribution of z sharply peaks at z=z' and I, a
for the neighboring ions can be approximated by I,a„
Eq. (85) reduces to

de, hf I, aPaNN, —+(R,E,D),dt
(86)

by use of Eq. (82). This is the equation for the average
ion.
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