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Convergence of the first-order logarithmic perturbation iteration method
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The ground-state wave function for a system with nonsingular potentials is free from zero except
at the boundaries and hence its logarithm is regular. We show that the first-order perturbation
iteration method, when applied to the logarithm of the wave function in ground-state problems, pro-
vides a systematic method in arriving at improved trial wave functions resulting in a decreasing se-

quence for the variational energy. In situations where the ground state truly exists, this sequence is
bounded from below by the true energy and hence the decreasing sequence would converge to the
true energy with the corresponding trial wave function (the logarithm of which is regular) converg-

ing to the correct wave function.

Logarithmic perturbation theory was introduced many
years ago' and has since been rediscovered or discussed by
a number of authors. ' In problems reducible to one di-
mension, it is well known that successive perturbation
corrections are obtainable in quadrature in a hierarchical
form. ' When the first-order logarithmic perturbation
method is used iteratively, it has been shown to lead to ac-
celerated convergence. " Henceforth, we shall denote the
"first-order logarithmic-perturbation-iteration method" as
FOLPIM. What has not been widely publicized is that
FOLPIM is a convergent perturbative-variational method
for problems where a normalizable ground state exists.
Even though we have utilized this property in our previ-
ous treatment of the one-dimensional anharmonic oscilla-
tor, ' we had neither stated nor proved this theorem expli-
citly. The purpose of the present Brief Report is to pro-
vide a simple proof of this theorem for the multidimen-
sional case. '

Let us consider a unit-mass Schrodinger particle in a
N-dimensional system acted on by a local potential V(x).
The Schrodinger equation in this case is

[——,
'

V + V(x)]Q=EQ,

It is to be emphasized that one can merely invent the reg-
ular function Go, set Eo to be equal to zero and then solve
for Vo algebraically according to Eq. (4). Normally, in
perturbative problems, there exists a solution Po to the
Schrodinger equation (1) for a certain potential Vo with
eigenvalue Eo. For this case, one may choose
Go ———1nt)'jo and Eo=Eo. Then automatically Vo= Vo
according to Eqs. (1) and (3). But such a choice is neither
necessary nor always desirable. Quite often it is more
convenient to choose a Go that corresponds to a Vo that
in turn approaches V in the asymptotic region. Let us
denote the kinetic energy of the particle by K and so the
original Hamiltonian is

H—:K+V.
The wave function corresponding to Go is
go=—exp( —Go). Furthermore, we shall assume that the0 0

difference potential V& defined by Eq. (5) is of order A, .
There is an added advantage if A, is less than unity but this
is not a necessary requirement for the convergence of this
procedure. It is then trivial to verify that Eo is the expec-
tation value of

where E and 1b are the eigenvalue and the eigenfunction,
respectively, V =V.V, and V is the N-dimensional gra-
dient operator. For a normalizable ground state, the wave
function does not have any zero except at the boundary
and so its logarithm is regular. We define

G—:—1ng .

In terms of G, the Schrodinger equation (1) becomes

Ho =K+ Vo,

for the state po by using Eqs. (1) and (4)

Eo=&fo
I
Ho

I fo& .

Next we define the following:

(7)

VG.VG —(V' G)=2(V E) . — (3)

This is a nonlinear eigenvalue equation in the Ricatti
form. To restrict ourselves to ground-state solutions, G
has to be regular except at the boundaries. Let Go be a
regular function that satisfies the equation

2VG, .VGo —V G, =2( V, E, ) . —(10)

Bearing in mind that Go, V&, and E
&

are either defined or
known, we next seek the regular solution G& to the fol-
lowing inhomogeneous linear differential equation:

VGo VGo —V Go =2( Vo —Eo ),
such that Eo is a constant that minimizes the difference

(4) This can be regarded as a first-order differential equation
in the vector function VG& and hence in one-dimensional
systems can be solved in quadrature. We shall assume
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that it is possible to solve for G i given Go, Vi, and E i in
Eq. (10). Furthermore, if V, is of order X, then E, is also
of order A, according to Eq. (9) and hence 6 i is necessari-
ly of order A.. We now begin our iteration routine and de-
fine )E )EI II (24)

and hence is equal to the variational energy corresponding
to the trial wave function fo and is therefore bounded
from below by E„„,. Moreover, because Vi is negative
definite, Ei is negative definite too and hence

and

Go —=Go + G i
=——lnir4

It is now quite evident that the iteration process can con-
tinue for having defined Go and Eo, we can define Vo by

EO=EO+E1 .

From Eqs. (5)—(9), it is easy to see that

Eo = &qo
I

H
I yo&

(12)

(13)

VGo VGo —V Go =—2(Vo Eo —) .II II 2 II II II

In turn, this implies that fo' is an eigenfunction of

Ho —=K+ Vo

(25)

(26)
and hence is the variational energy of the system corre-
sponding to the trial wave function go and by the well-
known theorem on variational calculations, it is bounded
from below by the true energy Et~, V1 —= V —Vo = Vo+ V1 —Vo

II II I I II (27)

with eigenvalue Eo'. The effective perturbation after the
second iteration is

I
EO )Etrue

Knowing 60 and Eo, we define a function Vo by

(14) and using Eqs. (20), (25), and (15), we can show that

V1' ————VG1.V61 (28)

VGt. VGo —V Go=2(Vo Eo) . —

Physically, Vo is a potential for the Hamiltonian

HO=K+ Vo, (16)

and since 61 is of order k, V1' is of order A, . It is now
possible to generalize our procedure. At the end of the
Kth iteration, one obtains the effective perturbation

1 VGK —1 VGK —1

that admits go as its eigenfunction with eigenvalue Eo
Then the effective perturbation after the first iteration is which is of order A. . From this, one calculates

Vi =—V —Vo = Vo+ Vi —Vo ~ (17) (30)

It is straightforward to show, using Eqs. (4), (10), and
(15), that

where

—info —= G =G '+Gi (31)

V1 ————,V'61 V61, (18)

(19)

and since 61 is of order A, , V1 is of order A, . More im-
portantly, we notice that V1 is negative definite. Hence,
irrespective of the nature of the initial perturbation Vi (of
order A.), we have succeeded in transforming the problem
into one with a negative definite perturbation and of order

We next define

2VGi VGo —V' G =2(V E)—
Having obtained G1 one defines

1nyK + I G K + i G K +G K

(32)

is known from the previous iteration. One then solves an
inhomopeneous differential equation for the regular solu-
tion G1

2VGi VGo —V Gi ——2(Vi E', ), —(20)

which is the first iterated analog of Eq. (9), and then seek
the regular solution G1 to the first iterated analog of Eq.
(10):

(34)

The corresponding effective potential VO
+ ' at the

(K+1)th iteration to the wave function go
+' is defined

by the algebraic equation
bearing in mind that GO, V1, and E1 have all been defined
or known. Having obtained 61, we can define the analogs
of Eqs. (11) and (12) to be used in the second iteration step

P'GK+'. P'G +' P&GK+ =2(VK+' E +')
0 0 0 = 0 0

The effective perturbation at this stage is given by

(35)

Go =Go+Gi = —lnitro
II (21)

VK+1 V VK+1
1 = 0 (36)

and

Eo =Eo+E1 . (22)

which can be shown to be equal to

VK+1 & VGK VGK

Because of the negative definiteness of E1 we have

(37)

Again, it is easy to see that from Eqs. (15)—(19)

(23)

EK+1 EKo & o .

Because of the variational native of Eo +', we have

(38)
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%+1Eo + Etrue

On combining Eqs. (38) and (39), we have

Eo) ' ' )E )Eo+

(39)

(40)

and thus we see that our procedure leads to a decreasing
sequence of upper bounds on the true energy and hence
this sequence would approach the true energy in its limit
provided this limit is finite, i.e., the ground state truly ex-
ists. Bearing in mind that we limit ourselves to regular
solutions for G, we see that our sequence of wave func-
tions are free from zeros except at the boundaries, and
hence should converge to the correct ground-state wave
function. Thus we see that FOLPIM provides a systemat-
ic combination of perturbative and variational calcula-
tions for the ground-state problem in a local potential.

Furthermore, we have never required that the wave func-
tion or the eigenvalue (eigenenergy) be expandable as a
power series in some coupling constant. Indeed we have
previously solved the one dimensional anharmonic oscilla-
tor problem with this procedure, ' where it is well known
that both the wave function and its corresponding energy
are not analytic in the coupling constant in the anharmon-
ic term. ' This should be regarded as an added advantage
of the present procedure.
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