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Invariants for quantal or classical Hamiltonians are derived via the information-theory form of
the statistical operator p which satisfy the maximum-entropy principle. The invariants can be con-
structed even for nonlinear time-dependent Hamiltonians, and recourse to the statistical operator al-
lows for the possibility of ascribing a thermodynamical meaning to our invariants.

I. INTRODUCTION

More than twenty years have elapsed since Jaynes!
pioneered the information-theoretic approach to statistical
mechanics. Up to now many authors>~* have worked on
several applications of these ideas. Recent studies®~’ al-
low for a connection between the maximum-entropy prin-
ciple and quantum theory, giving rise to a suggestive com-
bination of macroscopic and microscopic concepts. As
examples we can cite the connection found between infor-
mation theory and Ehrenfest’s theorem’ and the possibili-
ty of expressing usual thermodynamical relationships in
terms of the expectation values of quantal operators.® In
particular, the Onsager coefficients can be easily rederived
from the Hamiltonian of the system.® Of course, the en-
tropy is a broadly used quantity in thermodynamics, al-
though to regard it using it as a quantum dynamical
quantity is not often seen in the literature. '~

It is thewaim of this paper to exploit the results obtained
by Lewis and Leach (Ref. 9) in order to generate dynami-
cal invariants for any given Hamiltonian H, of which the
entropy S is just a special case. The existence of constants
of motion (or invariants for shorting) is a point of central
importance in the study of dynamical systems. 0!

If a sufficient number of invariants can be given, the
motion can be described without a direct integration of
the equations of motion. In this sense, previous
works!'®~1® (and the references therein show) a great
variety of ingenious methods to deal with time-dependent,
nonlinear or integrable (or even mixtures of these different
types) Hamiltonians. The method that we present here
was not devised as an alternative route for dealing with
integrable Hamiltonians. Our aim is that of understand-
ing the meaning of our invariants in connection with sta-
tistical or thermodynamical properties of systems. The
present approach can be applied both to classical or to
quantal Hamiltonians

H= h,({4,).,04,

with h,({A4,),,t) any function of ¢ and of the mean
values (A4, ), (where the subindex ¢, indicates the tem-
poral dependence of (A4, )). We introduce explicitly these
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mean values to indicate possible nonlinearities of the
Hamiltonian.

In Sec. II we present an extension of the usual IT for-
malism especially suited for our present purposes and
several examples are discussed in Sec. III and some con-
clusions are drawn in Sec. IV.

II. AN EXTENDED INFORMATION-THEORY
FORMALISM

It is well known that the main tool is given by a density
matrix operator defined as>>’
—Ao— 2 A

p=exp (2.1)

where O are the M “relevant” operators (in the sense of
Ref. 15) that include 00 ]1__1dent1ty operator and the
Lagrange multipliers A; are determined as usual 457 The
operators p(¢) and ln,(’)\(t obey, respectively,’ the equations
of motion

-ap— [H(2),p(0)] (2.22)
and
m%l:ﬂz[ﬁl(t),lnﬁm] , (2.2b)

making it easy to verify>’ that the relevant operators are
those that close a partial Lie algebra under commutation

with the Hamiltonian H

M A
(im)~'[H(1),0;]= 3 g;0; , (2.3)
i=0
where the g;; are the structure constants of a partial lie
algebra. Additionally the temporal equation for the A’s is
given by

d
A= gk,
7

which is easily obtained using Egs. (2.2), (2.5), and (2.7).
The temporal evolution of the (O/p) as function of
the initial conditions, are given by’ (in matrix form)

(2.4)
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(0/p),=F(0/p), 2.5)

where F denotes the transpose of a square matrix F de-
fined by

~OF _ryg 2.6
and
O(1)=FO(1y) . 2.7
Besides the Lagrange multipliers obey
AM)=GAl(ty) (2.8)
with
G~ '=F. (2.9)

In Egs. (2.5), (2.6), and (2.8), (O /p),, O(t), A1), and
A(ty) represent (one) column matrices. The formalism is
valid for classical Hamiltonian if conmutation relations
are replaced by Poisson brackets. The formalism is also
valid for nonlinear time-dependent Hamiltonians, as we
shall demonstrate below.

Using the fact that any function of p is an invariant [in
particular, (Inp)"] we deduce without any difficulty the
additional invariants

I =((Inp)"/p) —({Inp/p) )"

=I" Iy, (2.10)

with
It=((Inp/p)") , (2.11)
I3 =({Inp/p))" (2.12)

For the particular case n =2, (2,10) takes the interest-

ing form
M
=3 ALK, (2.13)
1,j=0

where K,] 1s the so-called “centered” correlation coeffi-
cient® ((+ [A,,A 10— (4, )(A )). We can also use, in
some cases, noncentered coefﬁ01ents Ky =(54,,4; ]+)

The correlation coefficients are evaluated using a p den-
sity matrix constructed with the {6,} operator set and
with their expectation values, which are usually the mea-
sured information at our disposal. Then it is possible to
obtain the temporal evolution of the K’s from the
knowledge of the evolution of the A’s and (O, )’s, by
recourse to the relationship

I(t)=1I"(ty) (2.14)

as was done in Ref. 7 with the entropy S. This procedure
requires only that we solve a set of N coupled equations
for the A’s.®7 More generally, we may assert that the
time evolution of any function of O which accepts a
series expansion can be obtained in terms of the K(™'s
The invariants constitute a generalization of those ob-
tained by’ ~'? and in Sec. III we shall give some illustra-
tive examples.

In the following sections we shall restrict ourselves to
n =2 invariants that have been widely used before.!0—13
We begin by introducing a matricial notation for the in-
variants. It is obvious that Eq. (2.13) involves bilinear
products of Lagrange multipliers and operators, which
can be conveniently expressed by introducing the

Kronecker direct product!?
P=r®A7, (2.15)
K?»=080 (2.16)

(where both A and O are column matrices). The temporal
evolution of A? and K ? is given by [using Egs. (2.7)
and (2.8)]

AP()=[GXGIAP(t5)=[G,AP(ty) 2.17)
and

R P(t)=[Fx FIK P(ty)=[F1,K ®(t,) , (2.18)
so that
R @)(£)Al Q’[F]Z[G]ZA‘Z’_ (Z)A (2.19)

where the subscript O corresponds to 7,. We see that KA
is a secular invariant. To obtain Eq. (2.19) we have used
vectors. However, the same result can be obtained using
square matrices, with additional advantages that we shall
discuss below. Then

AP ={A,70, (2.20)

K?={10,0;1,}, 2.21)
with

KP=410,,0;1,—(0,)(0;) (2.22)
and

K53 =7[0,,0;1,—(0,)0,—(0,)0; , (2.23)

where Eqs. (2.22) and (2.23) represent different p0551ble
“realizations”'* of the correlation operator defined previ-
ously. Now, the temporal evolution is given by

AP()=GAPG (2.24)

and

R @(t)=FK Y(t)F (2.25)

Equations (2.24) and (2.25) can be easily verified in terms
of Egs. (2.7) and (2.8). Combining Egs. (2.24) and (2.25)
we obtain

2)(t)K (2) GA(Z)K (Z)F GA(2 E)Z)G_l . (226)

Equation (2.26) represents a similarity transformation.
This means that the matrix AK can be diagonalized and
the coefficients of the secular equation are invariants.
Then, Tr(AK), the corresponding determinant and its
complementary minors are, all of them, invariant quanti-
ties. In particular,

I?Y=Tr(AK) . (2.27)
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However, only one eigenvalue of A is different from
zero, so that the determinant and its minors carry no in-
formation whatsoever. Only the trace [Eq. (2.27)] remains
as a nontrivial invariant, as was previously shown. As a
general comment, it is interesting to remember that the A
and K spaces are generated by the carrier spaces'* of the
A’s and the O’s, and that the properties of the former are
determined by those of the latter.

As pointed out before, the operators entering in the def-
inition of K? are those which fulfill Eq. (2.3). This
means that they are the relevant operators related to the
Hamiltonian of the system. For any of them we can use
Ehrenfest’s theorem

A0 i iiier A <§Q
2L —(im)N(1,01) +( 9 > : (2.28)
and, using the definition (2.23), we are led to
[H,K,;1=i# |3 g,(K—(0,)0;)
1
. (2.29)

+ zgzj(l?lr*<61 )0,)
1

At first sight, the K’s defined by Eq. (2.27) do not close
an algebra with H. This is not a consequence of the
structure of the K’s, but a result of working with centered
operators. Now, in using Eq. (2.28) for the K’s and apply-

ing again Ehrenfest’s theorem for the (O ;) we obtain [cf.
Eq. (2.29)]
a A

(K,;)= E(glr(l?lj>+glj(1?lr)) .

— 2.30
o 7 i (230

This result is valid for any definition of the K operators.
Equation (2.15) and (2.16) lead to

3 A
— A=
ot 7 ot

= E(gjl}\'r)\'l"'grl)\'j}w) s (2.31)
1
while Eq. (2.30) and (2.31) can be written in matrix form
as
—K=gR+R¢, (2.32)

where g is the transpose of the g matrix defined in Eq.
(2.3) and, further,
A=g-A+Ag. (2.33)

Equations (2.32) and (2.33) are the temporal equations for
the K’s and the A’s in terms of the “old” g matrix. They
are equivalent to Eq. (2.28), and give the dynamics of A
and of K as a function of the old g matrix, obtained from
Eq. (2.3).

Further properties of the vectorial spaces A, and O can
be obtained by defining the scalar product'®

0eO = invariant R (2.34)

where e is the metric of the vectorial space defined by the
O vector. The e matrix is determined by Eq. (2.34) and it
follows that

FeF=e . (2.35)

In Eq. (2.35) the F matrix is such that the e matrix is
nontrivial, so that the closure relation is fulfilled. It is
possible to derive Eq. (2.35) (¢ =0) obtaining

FeF= —-FeF~.

(2.36)
or using Eq. (2.6)
ge =—eg (2.37)

although for time-dependent Hamiltonians it should be
kept in mind that ¢ =0, so as to fulfill Eq. (2.34).

The e matrix obtained from Eq. (2.35) contains all the
invariants that can be constructed with the 5,- with
respect to the given H , as all the Hamiltonian dynamics is
contained in the g (or in either F, or G) matrix.

Let us now construct the matrix!’
KeK =¥ =K'K, . (2.38)

The temporal evolution of %" is given by [using Eq.
(2.25)]
KK, =eK(1)eK (t)=eFK (ty)FeFK (ty)F
=eFK(ty)eK(to)F
=F~1eK(ty)eK (ty)F . (2.39)

Then J%°(¢) relates to %7(¢y) through a similarity transfor-
mation. As before, Tr %, det %", and its complementary
are dynamical invariants, then

(2.40a)
(2.40b)

Tr%¥ = invariant=K,K",
det¥% = invariant=(det K)? ,

where the upper (lower) label ¢ implies a covariant (con-
travariant) tensorial character. !’

This is a typical quantal result, and derives from the
uncertainty relation. This kind of invariants have not
been derived before, although for some Hamiltonians the
determinant was found to be an invariant of motion!® (but
not the trace). In Sec. III we shall give some examples on
this procedure.

ITII. EXAMPLES OF TIME-DEPENDENT
INVARIANTS

We present in this section several examples that exhibit
the usefulness of the extended IT formalism just intro-
duced. Some elementary problems are summarized in
Table I (free particle, harmonic oscillator, and the Larmor
precession), besides which we develop the following non-
trivial examples.

A. The time-dependent harmonic oscillator

As an example we review here some results referred to
Ref. 17, which assumes the existence for a time-dependent
harmonic oscillator, of the invariant I(z) given below.
The Hamiltonian is

S U P TR TROS
H= 2M[p +w*(1)g ] (3.1)
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TABLE 1. Some examples and application of the extended IT formalism.

t

H O, g e 0,0
0 0 0 en
__L PPN A A a2
m q,p [—l/m 0 —en  exn e[§,pl+exnp
0 m? 0 en
L2 m.o 55 PPN
2m + 27 4.p l—l/m 0 —eypz 0 e12[§,p1]
0 _ ;eB . .
—eB mc 11 12 2w
msz Sx)Sy eB 0 —eq ey ell[Sx:Sy]+e\l(sx +Sy)
2mc
and I (t) reads interesting choice for b and ¢ could be to equate them to
~ . ~a the time-dependent temporal evolution of any of the
1= {a0g +B0p  + 74,51, ] (3.2) P P y

where [ ], is the anticommutator of p and §. In applying
our formalism we can close the algebra (with H) with the
following operators sets: {0Oo,d,p}, {60,ﬁ2,"2f }, or
{60,62,;’7‘ 2,@,ﬁ,f}. Thus, our invariants are

L) =A" 2004+ A0 (p), (3.3)
L(O=AF+AP4G?), + AP (0P ?),
+A2(e( L), , (3.4)
I () =AS + AP (0(), +A5 ()P ),
+APO P, +AD (G2 +AUL),, (3.5)
where L =[4,p], =p +54.
In particular, Eq. (3.4) is equivalent to (3.2). Both

A1) and a(r), Ay(¢) and B(2), and A$>(¢) and ¥(2) follow
the same equations of motion [(2.4)]. This fact can be
easily checked by a simple comparison of Eq. (2.4) with
those appearing in Ref. 18.

B. Simple time-dependent Hamiltonians
Other Hamiltonians (see Ref. 10) such as
H=a(t)p?+b(g,t)p+c(g,t) (3.6)

can be also solved provided the terms b(§,t)p and c(§,t)
close an algebra with H in the sense of Eq. (2.3). Another

operators involved in the closure relation. For example,

H=a()p2+(g),p+(L), . 3.7)

The Hamiltonian of Eq. (3.6) closes an algebra with the
sets S, ={00,4,§%p*} and S,={00,4,9,§%p%L}.

The corresponding g matrices are characterized by the
following nonvanishing elements:

g =—(d), gW=—2a(1) (3.8)
and

g =—(@), g¥=-2(3),,

g =—2a(1), g¥=-2(3),, 3.9)

gd=—4an), gf=—2a),

respectively. With these g matrices, the temporal evolu-
tion of the A’s can be evaluated via Eq. (2.4) and (Inp)"
can thus be constructed.

Notice that due to the nonlinearity of the Hamiltonian,
the integration of the A’s should be made numerically.

C. A boson Hamiltonian
Let us now consider the time-independent Hamiltonian

H=ca'a+eb'd +vab+bla), (3.10)

TABLE II. Elements of the e matrix obtained via the use of Eq. (2.37).

en €12 (ern—eys) 0 €1s
€—€
€1—6€
e €22 €23 €2 Ty en+epn—2ey
€1—€
(e —es;) €3 €4+ (e23—es3) €2 e tes3—ey;
€1—€; €1—€ 2V
0 €—€
— €2 €24 € €
2V
€;—€ €1—€y
esy €y —2eqy— [55) es3 — e Ty (es3+esxn)+exn
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where af
tors ([a,a'1=1, [b,6"1=1, [a,b]=[a", b]=[a, bT]
=[a’,671=0).

Applying Eq. (2.3) the operator set is {60,A !

a'a;

a:
Nyp=a'b+b'a;Tp=ila’b—b'a), Ny=b"b}=4,, i =0

to 4. The g matrix has the nonvanishing elements

,a are the creation and annihilation opera-

~ A A V A
0,0, =e,,0¢+ (e +e31) [Na+ P Ngp | +(ejs+esp)
1—€
€1—€ [ A V A A ~
—ey3 Na+_—_Nabl (Nb”‘ Nab
€1—€ €1—€
€—6 [ vV A ~ o~
—eyp——r Nb——Nab]<Na+Nb>—e53
€1—€

+e44[“2(ﬁaﬁb +ﬁbﬁa)+ﬁabﬁab +fabfab] .

As the e;’s are independent all the coefficients between
brackets or parentheses are themselves invariants. There
exists also the possibility to make alternative assumptions
for the e’s, so as to obtain different linear combinations of
the invariants appearing in Eq. (3.12).

D. Lewis’s Hamiltonian

Another Hamiltonian that we can study is'?

N b(2)
H=L/\2 ~__
2 +a(t)q

i

A2
s 3.13
2a 9 ( )

with a(¢) and b(z) arbitrary functions. Applying Eq.
(2.3) we obtain for the set of relevant quantal operators
{60,@,;’)‘}, the following nonvanishing elements for the g
matrix:

g21=—1)
b(1)

V) a0’ (3.14)
_aa)

gn= a(t)

Ny—

+ea

gu3=—2V=—g4, gn=(€1—€),
(3.11)
g=—V=—gu, gn=(6—¢).

Using Eq. (2.37) the e matrix can be obtained. (It is
shown in Table II.) Then, enacting Eq. (2.34), we obtain

ﬁab ‘+€22(ﬁa +ﬁb)2
€1—€
€1—€ A ~ N
: 2[ Na_Nb+ 2V Nab‘
€1—€

2
€1—€ | A V -
Ny — N,

%4 { b €1—6 ab‘

(3.12)

A 2 a aa A2 A2Aa A2A2 A2A3 A2A4
(a) OO,X,Px’yPy:py’P yPxsP yP xsP yP x>P yP x> - « - »

aAan

(b) Oo,f,ﬁﬁx’fﬁi’fﬁi» e ’j’\ﬁz’ﬁy!ﬁyﬁxrﬁyﬁi’ e

»PyP x -

Inserting this into Eq. (2.34) or (2.35) we obtain
6,96,=e“60+e332ﬁ+e32[ﬁ,@‘] . (3.15)

As the Hamiltonian is time dependent e3; should be equal
to zero. We obtain

0,e0,=¢,,{0y) —ei#i{Oy) . (3.16)
E. Hietarinta’s Hamiltonian
Let us now considering the quantal Hamiltonian
H=13p}+3h;+29Puby —% (3.17)

similar to the classical one presented by Hietarinta!’ and
also analyzed by Hall. !

In this case, the closure relation (2.7) cannot be ful-
filled, and the number of operators tends to infinity.
However, it is possible to find a recurrence form for the
invariants, as we shall see below.

The relevant operator sets are

(3.18)

(3.19)

The e matrix is then an infinite one, but it is possible, with a little algebra, and using only the first file of the e matrix, to

arrive at

AA -~ A AN A o~ F~ < (25
0,0 t=e“00+912 2x_4,VPny—P§+ e +P§ 2

n=1

16 5255

+(el4 +eq )(j)\ﬁy —ﬁ_\zzﬁx

n!

—%ﬁjzzﬁi_ spypx+ )+(e15+651)(ﬁ§+2pypx+2pypx+ ) .

A2a2 A2ad

(3.20)
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The invariant coefficient of e;, and (e s+es;) could be
expressed also as

(3.21)
(3.22)

e12[—2ﬁ1+ﬁ§exp(2"§)]= invariant ,
(eys +e51)ﬁ§exp(2ﬁ,2,)= invariant .

These invariants have been previously founded by Hall, '¢
and have been regained here in order to show how our
method works when Eq. (2.3) gives an infinite number of
operators.

IV. CONCLUSIONS

Most problems of physical interest are too complicated
to be tackled ‘“‘exactly.” The impossibility of finding ex-
act solutions for the problem of many interacting particles
has fostered the development of approximate and qualita-
tive methods. Unfortunately, questions concerning the
validity of these approximations are very difficult to
answer and one is often referred to exactly solvable
models.

A broadly employed approach to evaluate the dynami-
cal properties of a given system is to determine its invari-
ants. The main result of this paper can be summed up by
saying that we present a method that enables one to con-
struct the most general dynamical invariants for a given
system, with the advantage of relating them to well-known
statistical operators.

The general dynamical invariants we have presented in
Sec. IT have been constructed exploiting the particular na-
ture of the information-theory statistical operator, p,
which, due to Eq. (2.3) contains, within the present con-
text, all the available information about the system of in-
terest.

For n =2 the general invariants of Eq. (2.10) can be ex-
pressed in terms of the usual quantal correlation coeffi-
cients. This case deserves special care, as these correla-
tions describe essential features of the corresponding sys-
tem.

In Sec. I, we pay special attention to the second-order
invariants, due to their peculiar structure. We demon-
strate that the {A} and {6] constitute “carrier spaces” of
the A [see Eq. (2.15)] and K,;, respectively [Eq. (2.16)].
Further, introducing a metric matrix e, and using the

dynamical properties of the F matrix [defined in Eq. (2.6)]
we can find the invariance properties of the Kot [see
Eq. (2.36)] matrices. Then, for the second-order case, we
find two different classes of invariants: I‘?=Tr(AK)
and those directly related with the K matrix as detK,
Tr(%"); if the e matrix has another form [satisfying Eq.
(2.34)], other invariants (in fact, different relations be-
tween the elements of the K matrix) can be obtained. Of
course, they do not contain new information, but this pro-
cedure constitutes the most general way of constructing
invariants of motion. Summarizing we can say that the
main results of our work are the following.

(a) Due to the IT context, the invariants we study here
can be related to usual quantal correlations (in a general
case to higher-order correlations). This fact allows us to
relate our expressions to similar ones coming from ther-
modynamics (see, for example, Ref. 8).

(b) The formalism we present here is valid for time-
dependent Hamiltonians.

(c) For the second-order case, we introduce the metric
matrix which allows us to relate the {A} and {6} spaces
to the A and K spaces.

Notice also that we are prescribing the way to construct
invariants according to a well-defined procedure. No pro-
cess of inference is employed, as done in some previous and
pioneer work.

As a final word, let us emphazise that we are not using
IT here in the usual (Jaynes’s) sense of working (in the
best possible way) with incomplete information, but from
a different perspective: that of employing the relevant in-
formation (for a given Hamiltonian) in order to deal with
some aspects of the exact dynamics. Opposite to Jaynes
philosophy, ours is that of finding the best way of dis-
carding “irrelevant” information, rather than making do
with the incomplete one.
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