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Dynamical aspects of the entropy are discussed within the information-theory context.

General

invariants of the motion are formulated and related both to the entropy and to the number of acces-

sible states.

Examples on finite systems (Schottky anomaly, echo spins) are presented. The entropy

evolution through nonequilibrium states is also discussed.

I. INTRODUCTION

The concept of entropy is, undoubtedly, one of the most
important concepts in the whole of physics. It plays a
central role both in thermodynamics and in statistical
mechanics and has been the subject of an enormous
amount of fascinating work. We will here cite just three
recent review articles.! ~ Entropy may also play a signifi-
cant dynamical role, although work in this respect is
scarce (at least in comparison with its thermodynamical
aspects). In this “new” sense, an illuminating alternative
is to be found in the pioneer work of Jaynes* in connec-
tion with information theory (IT) and the maximum-
entropy principle (MEP). Extensions of Ref. 4 to
quantum-mechanical systems have been made recently’—*
that explicitly exploit the dynamical relevance of the en-
tropy S. These developments are based on the fact that if
p stands for the statistical operator, then (Boltzmann’s
constant equal to unity)

S = —Tr(pInp) (1.1
is a constant of motion if p verifies
B _rfins
i#i Y =[H(1),p] (1.2)

even if the Hamiltonian H is explicitly time dependent.

The aim of the present effort is that of exploiting the
IT form of p (Refs. 5—9) in order to shed some additional
light onto the dynamical aspects of S. In particular, we
wish to dwell upon the relationship between the number
M of accessible states' ™3 of the system (a well-defined
quantum-mechanical quantity'®) and several dynamical
quantities. To this end a brief resume of basic IT con-
cepts is given in Sec. II. A set of novel invariants of the
motion is derived in Sec. III and their relationship with
the number of states established in Sec. IV. Section V is
devoted to second law, accessibles states and completeness
of the Hilbert space; examples of finite systems are
presented in Sec. VI. Finally, in Sec. VII some con-
clusions are drawn.

II. BRIEF REVIEW OF BASIC IT CONCEPTS

Within the IT context (following the work of Jaynes®),

the statistical operator p is constructed according to a
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well-defined  prescription.*~8  Starting from the

knowledge of the expectation values of, say, N + 1 opera-

tors O; (including Oy = 1 =identity operator)
(0;/p)=Tr[p()0;1=

where the subindex O refers to the normalization condition
Trp=1, the IT version of p reads

0;, j=0,1,...,N, (2.1

N
—)‘O_ 2 lj(t)Oj

j=1

N
Inp(1) = —Ag— 3 A;(10

j=1

plt)=exp

(2.2)

and is thus seen to be given in terms of N +1 Lagrange
multipliers A;, determined so as to fulfill the requirements
(2.1). This statistical operator is guaranteed to maximize
the entropy S (we take the Boltzmann constant equal to
unity)
N AN
j=1

subject, of course, to the constraints (2.1). The temporal
evolution of p, and that of any analytical function f of p,
is governed by’

i af;(t L1871, (2.4)
so that it becomes mandatory to ask under what condi-
tions is the entropy (2.3) a constant of the motion. This is
tantamount to finding the set of those (relevant) operators
O entering (2.2) so as to ensure that p complies with (2.4).
It'is easy to verify>~’ that the relevant operators are those
that close a partial Lie algebra under commutation with

the Hamiltonian H
[A,0;] 2 (2.5)

where the g;; are the elements (¢ numbers) of g X g matrix
G (which may depend upon the time if H is time depen-
dent). Consequently, in order to build p(¢) we need q ob-
servables 5,~. When (as usual) N <g, matters are to be
dealt as discussed in Ref. 5. For our present purposes, it
suffices to restrict our attention to the case N =gq.
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The importance of the closure condition (2.5) lies in the
fact that the time-dependent Schrodinger equation [or,
equivalently, Eq. (2.4)] can be replaced by a set of coupled
equations for the A;’s (Refs. 5—7)

g
= z gil}\'l . (26)
1=0

III. GENERAL INVARIANTS

We shall now employ the results previously reviewed in
order to find invariants of the motion, the idea underlying
such an approach being, of course, that of having a com-
pact way of encompassing the whole Hamiltonian dynam-
ics (examples of the usefulness of such a treatment, within

an IT context, are to be found in Refs. 7 and 9). To this
end we notice that a special case of (2.4) reads
iﬁ%(lnﬁ)":[ﬁ(t),(lnﬁ)"] : 3.1)

that holds for any integer n. From (3.1) the following in-
variant of the motion can be deduced without any diffi-
culty

I™=((Inp)"/p) —((Inp/p) )" =1 -1} . (3.2)

A more detailed expression can be obtained by inserting
(2.2) into (3.2)
)

g i A\|"
I(n)=< -3 1,0, <_ > Aj0j> ] . (3.3)
j=0 j=0

For the particular (and very important) case n =2, (3.3)
adopts the interesting form

I'%= 2 AAGK,; (3.4)
rnj=1
in terms of the so-called ‘“centered” correlation coeffi-
cients!!
K,j=+([0,,0,1,)—(0,)(0;) . (3.5)

In some cases, it is also possible to employ noncentered
correlation coefficients

Kp=+([0,,0;1;) . (3.6)

Equation (3.4) can be generalized for n > 2, leading to a
more involved type of correlation coefficient, namely,

I'"=33 - 2/1,1(: 0,), G2

iy B

A (DO, -

where = is a sum of terms T,1
mutations of the operators 0x entering expressions of the

form

Til...,‘m=<0i 6 ”./O\im)

-i,» over all possible per-

—<0i1><0i2> T (01 )
(3.8)

Equation (3.8) provides us with a very general type of
correlation coefficient that arises as a result of the quantal
nature of the system under consideration.

IV. ENTROPY, INVARIANTS,
AND NUMBER OF STATES

We are now in a position to establish an interesting re-
lationship between the invariants of Sec. III, the entropy
S, and the number of possible states, M, in which our sys-
tem can be fgund. We start by rewriting the identity
operator Oy=1 in the form

1=pexp(—Inp) , 4.1)

and assume that the number of possible eigenstates of the
statistical operator is M. Thus

M:Tri:Tr[ﬁexp( —Inp)]
= (exp(—Inp)/p) . (4.2)

Equation (4.2) allows one to regard M as a “constant of
the motion” which expresses our ‘“zero-order” knowledge
about the system. This is a trivial statement. A nontrivi-
al consequence, however, is to be found in the fact that p
is constructed out of the measured expectation values
(2.1), which allows one to assert that the measurement
process places a bound on the possible values of M (see,
for example, Refs. 12 and 13 for a related, enlightening
discussion).

If we now expand the exponential in (4.2) we obtain

1)

M=Trp 1+§‘, ———(Inp)"
n=1
(=1 A
=145+ 3 ~—((np)")
n=2 *
-1 (—~1 (n)
= +2 —1I (4.3)

n=1

which establishes a relationship between the number of

states, M, and the noncentered invariants I{". If we in-
sert centered operators I'™ into (4.3) we find
M= 2 I(")+exp(S) (4.4
n=2
or
2 '1) — I, (4.5)

which is the relationship we had anticipated, that relates
S, invariants of the motion 7", and the number of states,
M. The last result can also be put into the form

)

S=In|M— 2 —J" (4.6)

It is of interest to study the properties of the infinite
sum that appears in (4.5). For this purpose we introduce a
normalized operator £ by means of

A A

f=_plwo 4.7)
Tr(pInp)
and employ the well-known inequality®

—Tr(pInp) < —Tr(E1np) , (4.8)
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in order to obtain
(n+1)
S"< T
=7 (n)

I;

, 4.9)

which for n =1 yields

s2<1? . (4.10)
As $2>0 we can write
0<S2<1? (4.11)
or, equivalently,
O<I(12) SZ 1(2) (22) =I(2) , 4.12)
so that!*
q
IP=3 ALK, >0. (4.13)
r’j
Returning to (4.9) and taking now n =2 we have
I<‘3>
S < — —I(T) N (4.14)
1
which leads to
1¥<0. (4.15)

Following a similar procedure for higher values of n we
easily obtain

I(Zn) >0,

(4.16)
1(2"+”§0 ,

which guarantees that the sum on the right-hand side
(rhs) of (4.5) is positive definite, thus entitling us to write

M —eS>0, 4.17)
or

S<InM , (4.18)

which modifies the well-known Boltzmann’s equation
(S =InM), in the presence of quantal correlations [cf. Eq.
(4.6)].

V. ACCESSIBLE STATES AND TIME EVOLUTION

A. The second law

Let us now consider an isolated system, whose Hamil-
tonian is (¢ <0) H _(t). Relevant properties of the system
are described by a set of operators {6,} that close a par-
tial Lie algebra with H < (#) according to Eq. (2.5). The
usual canonical distribution belongs to the special case
r =1, with

0,=H_(1). (5.1)

Let us call {B;}] the set of operators that do not close
algebra with H _(¢). The set {ﬁi] belongs to an irrelevant
subspace decoupled from the set of relevant operators
{O,}.1® We shall ignore {B;} as long as ¢ <0.

A subindex G (Gibbs formalism) will be used to denote

the density matrix built according Eqgs. (2.1) and (2.2) and
maximizing (2.3). Consequently, if Eq. (2.4) is fulfilled,
the entropy S will be a constant of motion.’~7 From now
on we assume that the time evolution of H < (¢) satisfies
the hypothesis of an adiabatic theorem.!®!” Basically,
A (1) is an analytic function of ¢ and the eigenstates are
not degenerated for ¢ <0. The eigenvectors can be written
as

|a,X(1)), (5.2)

where X(2) is a parameter which controls the evolution of
f_.
A complete set of constants of motion will be associat-
ed with these eigenvectors and their variation will follow
that of X (2).'¢

These constants of motion can be easily obtained start-
ing from bilinear products among the operators {O,}.!
These operators are the components of a normed vectorial
space.!” The changes in H _(t) are correlated with en-
largements of compressions in the norm. However, the
dimension of the vectorial space remains constant
throughout these changes. As the consequence, the (Hil-
bert) space dimension does not change. This continuity is
associated to the constant Sg.!* Thus, the relative proba-
bility for each eigenstate is completely determined at any
time ¢ <O.

Now we suppose that at t =0 two additional but un-

known interactions, ’I>(t) and ﬁ/(t) are turned on,

BWO=H_ ()4 V(Oh(t +AD+W(D[h () —h(t +AD],

(5.3)

where ﬁ t) changes adiabatically,'® A (z) is a Heav151de
function, H is the analytical continuation of H for
t>0, and V1), W (1) belong to an enlarged Hilbert space.
The set of eigenvalues of H is not in (unambiguous) one-
to-one correspondence with that of a <(t). The upper
bound S =InM will be greater than the previous one [see
Eq. (4.18)]. However, something can be said about the
time evolution of the entropy, even if the detailed struc-
ture of ¥(¢) and W(z) is not known. From a practical
point of view, we have only an approximate control over
the system. As we do not know V(1) and W(1) we are
forced to attempt to estimate the state of the system using
the old information gathered at ¢ <0. It is clear, however,
that the set of relevant operators will become larger, and
that some of the fi’,- will be included in it. The missing in-
formation will be represented formally by'®

g, =3 1,0, +3 A:B;, t>0. (5.4)
r i
In particular, the case (5.1) would now read

Inp, = —B{H ., ()+ AP ()h (¢t +A1)/B
+ AW [h()—h(t +AD]/B} —Aol ,
t>0. (5.9

A diagonalization of H(1t) will be general present unsur-
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mountable difficulties (for example) W(¢) could be not an-
alytic. Then the best approximation to S (¢ >0) will be

given by the “estimated” entropy,
SI=_—Tr(pginp.) , (5.6)

where the trace is taken over the Hilbert space of H _ ().
Recourse to a well-known relation®!® leads to

ST= —Tr(pInp, > —Tr(pglnpg)=Sg, t>0.
(5.7)

An extended discussion of (5.7) is relegated to the Appen-

dix. As S; is a constant of motion, we have
SK(t>0)>85(t <0) (5.8)

and, as we can impose over Inp, the boundary condition®

Inp, =Inpg, t=0 (5.9
which implies setting all A; =0, we see that

S6(0)=57(0)=s,(0) (5.10)
and, therefore,

SX(t>0)>5,(0) . (5.11)

These results are similar to some obtained previously in
Ref. 18. However, we have extended here the correspond-
ing formalism, using a generalization of the Gibbs entro-
py and an estimation of the experimental entropy. The
canonical distribution (to which Ref. 19 is restricted) is a
particular case, where the only relevant operator is H.
Relation (5.11) is in accordance with the second thermo-
dynamic principle.

B. Completeness and accessible states

Now we can extent the concepts of Ref. 19 related to
the intuitive meaning of the second law. Let us consider
that W(¢) is not well defined, but ¥(¢) can be diagonal-
ized and changes adiabatically, together with A () and
H . (t). A simple and illuminating example is the one-
dimensional ideal gas.

Our system consists of N noninteracting particles in
one dimension, confined within a segment of length L.
The single-particle eigenstates of energy are characterized
by values of the linear momentum, given by

p=nh/2L, n=1,2,3,... (5.12)

The wave functions (WF) possess a sinusoidal character
and vanish at the end points. We now consider an adia-
batic change in L, the one-dimensional volume to which
our ideal gas is confined. While L is changed adiabatical-
ly, the adiabatic theorem'®!” assures that the probabilities
P(nl,nz, e ,nN)

,nN)] (5.13)

(where n; is the eigenstates of the jth distinguishable par-
ticle) remain unchanged. The new energy value is'®

,ny)=(L/L')E(ny,n,, ...

P(ny,n,,...,ny)=exp[ —Ag—PBE(n;,n,, ...

E'(ny,n,, ... ),  (5.14)
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and the temperature is given by'®

B/B=T/T'=(L'/L)*. (5.15)

This example and the concomitant three-dimensional
problem are extensively treated in Ref. 16. We are in-
terested in studying how the ‘“‘accessibility” of the dif-
ferent states evolves. In Fig. 1(a) we show the behavior of
the eigenfunctions with n =0 and n =1, when the length
increases from L to 2L. Obviously, the parity does not
change with an adiabatic!® change in length.

Alternatively we can consider a ‘free expansion,” where
energy is conserved. In the absence of perturbations, the
evolution of the corresponding WF is depicted in Fig.
1(b), with

E,=[(n?+n3)/L*h*/8m

=[(ny+n3)/(2L)*1h?/8m =E, (5.16)

because n, =2n, and n,=2n,.

However, this is only a particular instance in which the
parity has not been conserved. If we would have con-
sidered all the possible eigenfunctions, the end result
would be the same. Note that the new accessible space is
not complete. The evolution is isoentropic but not adia-
batic. Any small interaction populates adjacent states
with different parity and ‘“completes” the accessible Hil-
bert space. [See Fig. 1(c).]

As long as small residual interactions cannot be includ-
ed in a Hamiltonian, the entropy will not be a constant of
the motion and as we need more states in order to repro-
duce the same value of the internal energy, the entropy
grows up.

Note that the same small perturbations that “enforces”
the second law, allows for an adiabatic change in a three-
dimensional ideal gas.'¢

Completeness is a mathematical assumption,?° but tran-
sitions from higher potential energies to lower ones follow
from a very general physical principle. In some sense and
with some abuse of language, one may perhaps assert that
the second law fulfills the physical principle in order to
insure accessibility to the complete set of states.

An essential point remains obscure, however, the length
of the time interval needed insure accessibility to the com-
plete new Hilbert space. If that time is long enough we
may perhaps detect a ‘“‘deterministic reversibility.” In
fact, there is a process of this type called spin echo:?1"?2 A
set of N identical noninteracting spins at low temperature,
where the interaction between the magnetic moment and a
slight inhomogeneous magnetic field is given by

H=—uB (5.17)

the magnetic moment being proportional to the spin,

pu=y#l . (5.18)
The energy-level splitting AE in a sample of spins is

AE(i)=AE(B(x))=AE(x) . (5.19)

(We use i to name each spin subsystem and x stands for
the coordinate.)
Working with good enough experimental conditions,
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FIG. 1. One-dimensional ideal gas in a box whose length L is changed to 2L. (a) Dynamical adiabatic movement of the wall.
Only eigenfunctions for n =0, 1 are shown as examples. (b) Free expansions without residual interactions. The system does not ac-
cess all the Hilbert space. The evolution is isoentropic but not dynamically adiabatic. Only eigenfunctions for n <3 are shown as ex-
amples. (c) Free expansion with residual interactions. The system acceeds to the complete Hilbert space. The evolution is not isoen-

tropic. Only eigenfunctions for n <3 are shown as examples.

the magnet field inhomogeneity is so small that each sub-
system can be considered with approximately the same
frequency. When the temperature is sufficiently low
(kT << AE) most of the spins will be found in the ground
state. A radio-frequency electromagnetic field of frequen-
cy w/2m,

w =vy#B, (5.20)
can induce transitions to an excited state when a given
“pulse”?!"?? is applied. Then, after a 7/2 pulse, these
spins will be pointing along a fixed line of longitude and
towards the equator. When the radio-frequency field is
turned off, the spins spread out along the equator because
their Larmor (precession) frequencies differ. A detector
that measures the total magnetization of the sample (the
components of each spin along a particular direction) will
record a progressively degraded, or randomized, signal.
Can the energy stored in the dephased moments be
recovered in any coherent fashion? At first glance it ap-
pears obvious that there can be no way to arrange
coherent emission from the dephased dipoles. The indivi-
dual dipole moments get out of phase with each other be-
cause they have slightly different oscillation frequencies.
As long as the frequencies differ in a continuous way,

we could expect to return to the original phased condition
only after an interval 8t— oo. However, there is another
way in which the original phase condition could be
recovered. Instead of waiting for an spontaneously re-
currence of the initial conditions, it might be possible to
interfere with the oscillations after a time ¢ to force the
reversal of their dephasing.?® It is easy to see that a rota-
tion of all vectors using a pulse produces a collection of
rephasing moments. This shows that not all decaying
processes need to be irreversible. The free induction decay
is easily reversed long after the free induction signal has
disappeared completely.

We can assert that the dephasing of the dipole moments
of resonant atoms is a deterministic process. The
recovery would have to be carried out in the interval be-
tween the lifetime due to homogeneous effects T'; and the
transverse inhomogeneous lifetime 7", (which contain in-
coherent interactions such as collisions, radiative decay,
etc.). The expression’

1/Ty=1/T,+1/T, (5.21)
defines the total transverse decay time 7.

Relation (5.21) defines the number of accessibles states
in each space
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Aw3=Aw2 +Aw1 . (522)

After a long time the incoherent interaction populates
the residual states over Aw; > Aw;. Then, the “equatori-
al” Hilbert space is completed and we can not invert the
process.

From these examples it is clear that a gas can not be
compressed in a free way because, in such a case, the resi-
dual interactions would have to select a particular set of
states in order to limit the accessibility. Systems where
these small interactions can be delayed could be treated as
reversible ones.?*

VI. EXAMPLES
A. Schottky anomaly

It is a well known fact that for system with a finite
number of accessible states the specific heat has a max-
imum. This effect is called the “Schottky anomaly.”?

We consider here that the system has N accessible
states with energies; eg,eq,...,e,_;. In this case, the
equilibrium density matrix will be

p=exp(—Ao—BH) (6.1)
with
N—1
Ao=In| > exp(—PB¢;) | . (6.2)
i=0
The mean energy, (H ), is
N—1
(H)=exp(—2Ay) >, e;exp(—Pe;) . (6.3)
i=0

Finally, the entropy is evaluated via Eq. (2.3),
N—1

>, exp(—Pe;)

i=0

S =In

N1
+B| 3 eexp(—pe;)

i=0

N—1
>, exp(—Pe;) .  (6.4)
i=0

It is easy to verify that the entropy takes its maximum
value for B=0:

S =InN (6.5)

in agreement with Eq. (4.18). The invariants generated in
Sec. III can be calculated in this example. For instance,
from (3.4) we evaluate 1%

I?Y=B2(H?Y—(H)*)=C/k (6.6)

with C, the specific heat, and k, the Boltzmann constant.
We now consider that the separation of the energy
states is K, upwards from the fundamental level e

e,=nK +ej, n=0,1,... ,N—1. (6.7)

In this case we have
exp(Ag)=exp(—Peg)[1 —exp(—BKN)]/[1—exp(—BK)],
(6.8)
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(H)=eq+K/[exp(BK)—1]+NK /[exp(BKN)—1] ,
(6.9)

and

C =kK*B*{exp(BK)/[exp(BK)—1]?

— N2exp(BKN) /[exp(BKN)— 173} . (6.10)

As shown in Fig. 2, the specific heat has a maximum
value. The temperature associated with it increases with
N. For high N, C converges to Einstein’s equation and
the maximum disappears.

If we know the number of accessible states and the
specific heat of the system we can use Eq. (4.6) to evaluate
the entropy. Applying Eq. (4.16) we can demonstrate that

A=In(N —I'?/2)—S >0. (6.11)
Figure 3 depicts both In(N —C/2k) and S versus T for
different N. In the limit of high temperature (K much

smaller than 1/N) we can give an analytic expression for
A:

A=(KB)*N /24 . (6.12)

As Fig. 2 shows, In(N —C/2k) is an upper bound to
the entropy. For high temperature A is negligible and the
knowledge of N and C suffices to ascertain the entropy
value. For a given temperature, the approximation be-
comes worse as NV increases: the higher correlations be-
come more and more important and all the terms of the
expansion (4.6) have to be considered.

. >
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FIG. 2. Dashed line: Schottky anomaly. Specific heat in
temperature parametrized with N =2,3,5,8. Solid line:
Einstein’s specific heat, N — oo.



2310

ENTROPY UNITS

1 1

4

2
TEMPERATURE /  (Hu/k)

J. ALTIAGA, D. OTERO, A. PLASTINO, AND A. N. PROTO 35

If the total angular momentum is j, then the number of
accessible states is

N=2j+1. (6.14)

In order to evaluate the mean value of the operators as-
sociated with any particular set of Lagrange multipliers
(A1,A;) we define

B=—i(Ax+Ay)=pFn (6.15)
with
B=(AT+A)'2.
Applying the normalization condition we obtain
Ao=In{tr[exp(—iB-J)]} =In[tr(Rg)] , (6.16)

where Rpg is a rotation (angle B). Rotation theory allows
to evaluate the elements of the matrix Rg for any value of
Jj provided that we know the elements of Rg for j=5. In
this case Rg is

FIG. 3. Entropy and In(N —I'¥/2) versus temperature [see Rg=1 cosh(#f3/2)—iogsinh(#/2) (6.17)
Egs. (4.6), (6.6), and (6.31)]. Dashed line for N =5, solid line ith
for N =2. wit
og=0n (6.18)
B. Zeeman effect and o, the Pauli matrices. Thus
We now return to the problem of a particle with angu- a y*
lar momentum J in a magnetic field B=Bz [see (5.17) Rg= o (6.19)
and (5.18)]. 4
Here we are interested in the particular case in which with
only (J,) and (J,) are known. Therefore {1,J,J,} are
the relevant operators that close a partial Lie algebra with a=cosh(#f/2)
H, and the density operator is = —sinh(#B/2) (A, +iAy) /B . (6.20)
p=exp( —Ao—kljx —Azjy) . (6.13) If j is different from %, the elements of Rg are
J
N; j+m||j—m ; ;
(jm'|Rg|jm)="F- 3 af Hmm (Y mm=Pye (6.21)
Njp e p q
prg=j+m’
I
with Nj, =[(j +m)(j —m)1] =172 Gy YW
The mean values of the operators can be calculated via T AN
Eq. (2.1)
) A — —hA, S m exp(mBh) ]/ [Bzexp(mﬁfz) :
(0;) =exp(—Atr(Rg0;) . (6.22) m m
(6.24a)
Elementary angular momentum theory allows us to R A
evaluate A, { J, Y= 0
oA,
Ao=In [ exp(m Bh) (6.23) = —hd, [3 m exp(mBh) ]/ [[3’2 exp(mpB#) | .
m m m
. L ~ (6.24b)
with  m the projections of J (m=—j,—j

+1,...,j—1,j). Thus the mean value of the relevant
operators can be evaluated, leading to

Applying Egs. (6.22), (6.23), and (6.24), we can evaluate
the invariants generated in Sec. III. From (3.4), we obtain
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the second-order invariant

IP=03((T2) (T +M(T ) — (T,

+2}»17Lz(([Jx,Jy]+)/2—(Jx)(Jy)) , (6.25)
and from Eq. (4.13) we can assure that
I1?>0. (6.26)

In this example, the relevant operators do not commute
with H, so that their mean values depend upon the time.
Ehrenfest’s theorem’ allows us to evaluate the temporal
evolution of the mean values

(T Y@ =(T, Yocos(wt)— (T, Yosin(wr) ,

(./I\y Y1) = (T, Yosin(wt) + (jy Yocos(wt) ,

with w =ugB /4.

Using the structure constants associated with the clo-
sure condition it is possible to evaluate the invariants of
the system.!” They are

(6.27)

(1L,72+72,07,,9,1,} - (6.28)

It is important to notice the difference between these in-
variants and those obtained in Eq. (3.3) [i.e., Eq. (6.25)].
The mean values of the observables given in (6.28) are
time independent because the observables commute with
H. On the other hand, the invariant given in Eq. (6.25) is
a particular combinations of mean values and Lagrange
multipliers, which are time dependent.

The entropy of the system

S =Ao+ A (T +2,(T,)

is an invariant of the second case (I.) and takes its max-
imum value when A;=A,=0 [Eq. (4.18)], namely,

(6.29)

S=In(2j+1). (6.30)
As in Sec. VI A, we can evaluate S via Eq. (4.6)
S=In(2j +1-1?/2) (6.31)

and this approximation would be a good one if
AiB<<(2j+1)"L

Finally, if the system has no correlated spin particles,
the time evolution of the mean values also will be given by
Eq. (6.27), although w might be different for each particle
if the magnetic field is inhomogeneous. Now, coming
back to the echo-spin example, it is possible to consider
(6.13) as a one-particle density matrix p;. If the particles
are uncorrelated we can obtain a total density matrix of
the form

n
:le ’

i=1

(6.32)

where n is the particle number and the product is per-
formed over the different state spaces of each particle.
The eigenvectors of (6.32) will be
n
=111

i=1

(6.33)

with eigenstates
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P=TIP; (6.34)

i=1

where the P;; (j=1,2,...,n) are the eigenstates of each
pi- We suppose that all the subspaces has the same di-

mension (»n) and, with
Trp=1 (6.35)
we find
sa=—Tripp1=—Te | [T |n [T o }
k
HP:}Z’nPk =-Tr|> |IIA (lnﬁk)]
kK | 7
=2 Tr(ﬁ,lnﬁ,)=2$, N (6.36)

where Sp (Boltzmann entropy) has not been maximized.
However, Eq. (6.36) is a good approximation to the exper-
imental entropy because there are no correlations. When
the correlations become important, the only thing that we
can assert is that relation (5.8) [or better, (A10)] holds.

From the very beginning, the absence of correlations in-
sures the reversibility of the process, although the dipoles
can smear out through dephasing. If the information
stored in the dephase moments can be recovered in a
coherent fashion before the incoherent interactions (col-
lisions, radioactive decays, spin exchanges) become impor-
tant, we observe the echo-spin phenomena. Otherwise, for
long times, the spread in frequencies covers all the new
space, the correlations become important and Eq. (5.8)
holds.

VII. CONCLUSIONS

Our main result is to be found in Eq. (4.6), where an
original expression for the entropy is given in terms of the
number of states, on one hand, and the (dynamical) invari-
ants of the motion, on the other. Moreover, Egs. (4.18)
and (4.6) clearly exhibit the fact that (quantal) correlations
[cf. Eq. (3.8)] destroy the equiprobability of (accessible)
states,'® so that the celebrated Boltzmann’s relation
(S =InM) ceases to hold in their presence.

A similar result was obtained some years ago by
Jaynes,'? although our relations appear as a generalization
of Jaynes’s previous equation. The connection of entropy
with the invariants of motion, stresses its dynamical char-
acter and fully justifies the success of the MEP in
prescribing the temporal evolution of expectation values,
via the entropy conservation principle.’

Also, it is interesting to point out, in a quite different
vein, that our invariants [cf. Eq. (4.13)] resemble entropy
production sources,'* although the former are written in
terms of the Lagrange multipliers A; and not (the usual
case) in terms of their fluctuations.!* Moreover, I?
possesses a dynamical character that the entropy produc-
tion, obviously, does not have.

As can be observed, in Sec. V a quite clear distinction is
made between the dynamical adiabatic evolution of the
system and the behavior of the related entropy. All along
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our work, the term “adiabatic” is used only in connection
with the adiabatic theorem prescription for Hamiltonian
temporal evolution.

This kind of evolution guarantees the conservation of
entropy and the number of states comprised, at ¢ =t, in
the Hilbert space of the system.

It is due to the residual interactions that the system can
access a broadened Hilbert space and then the growing of
entropy takes place. In fact, the second law of thermo-
dynamics could be also expressed taking into account not
only the thermal behavior of matter, but also the quantal
laws which govern the dynamics of every physical system
saying ‘““The macroscopic spontaneous evolutions liberate
the system to reach new states of its Hilbert space, and the
entropy increases.”

The free expansion of a one-dimensional gas and the
echo-spin phenomena exemplified the above considera-
tions.

In particular, the echo-spin process is a beautiful exam-
ple of a reversible isoentropic but non adiabatic system.

In Sec. VIA Eq. (4.6) is applied to the anomalous
Schottky effect leading to the interesting equation [(6.11)
and (6.12)] graphically shown in Fig. 3. It would be em-
phasized that Eq. (6.11) has a universal validity for all
systems with equally space levels.

In Sec. VIB and using the well-known Zeeman effect
the relation between uncontrolled correlations and irrever-
sibility is exemplified using the results of Secs. III and IV.
Besides, and as was mentioned Eq. (6.11) is also valid for
the Zeeman effect.

As a final remark we want to say that our approach
fulfills not only the requirements of quantum mechanics,
but also allow us to work with a statistical operator p, that
describes, in general, an off-equilibrium situation. Indeed,
p is expressed in terms of operators 5,- that do not neces-
sarily commute with the Hamiltonian. Consequently, our
results apply both to equilibrium and nonequilibrium situ-
ations.

APPENDIX

When 5°¢ and 5¢ do not commute we must be careful
with the inequality (5.7).2% Let us now consider the diago-
nal matrix elements p? and pj taken over eigenstates of

A

p¢. Defining
x;=pi/pi A1

with

2pi=1,

i

Spi=1,

i

and applying that x; —1>In(x;), the inequality (5.7) can
be obtained. It must be noted that p, may have off-
diagonal elements.

(A2)
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If we want to study the relation between the two corre-
sponding spaces, we can use the diagonal matrix elements
p,‘-;,p]e- taken over each Hilbert space. It is even possible to
define

x5 =p5/pf » (A3)
with
Sei=1, Ipf=1 (A4)
i i
so that
e , G e G
pj/p,- —lzlnp,—-lnp, . (A5)
Multiplying by p¢ and summing up over i,
Mp$—1>1np;+Sg . (A6)

Multiplying by p; and summing up over j we are led to

MTr[(p¢)P?]—1> —S.+Sg (A7)
or

S, +MTr[(p°)?]—1>S; . (A8)
As is well known, Tr[(5°)?] has an upper bound

Tr{(p°)?]> 1, (A9)
so that

Se+M—1>8¢ (A10)

is trivially satisfied because M > InM.

However, a lower bound of Tr[(5¢)?] can be obtained
applying (A3) over the same Hilbert space with different
diagonal matrix elements

Xjx=p;/Pk > (A11)

NTr(p*)—1>0, (A12)
and then

Tr(p%)>1/N . (A13)
Applying this lower bound in Eq. (A8) we obtain

S.+M/N —1>8; (A14)
and if M <N,

S.>Sg - (A15)

Relation (A 15) must be confronted with (5.8). Then the
result (5.11) can be extended to the exact entropy if p° is
distributed over all the new accessible states.
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