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The Hopfield model of a neural network is extended to allow for the storage and retrieval of
biased patterns, [g'";), where N 'g, g =a is arbitrary. Such patterns represent levels of activity

(i.e., percentage of firing neurons) equal to 2 (1+a), —1 &a & 1. If the coupling constants (synaptic

efficacies) are constructed as in the original Hopfield model, the system can retrieve at most a very
small number of patterns (p & 1+a ). This is due to the finite correlations (overlaps) between the
patterns. The model is modified by subtracting the bias a from each pattern as it enters into the
couplings. This modification restores the ability of the model to store a macroscopic number of pat-
terns. Yet spurious states are found to plague the dynamics. It is then argued that the dynamics of
the network should be consistent with the levels of activity of the stored patterns. This is imple-
mented by adding a global constraint, which restricts the configuration space to states whose mean
activity is in the neighborhood of ~ (1+a ). The consequences of the restricted dynamics are

analyzed in the replica symmetric mean-field theory. The global constraint suppresses spurious
states and leads to the unexpected result that the storage capacity is higher than that of the unbiased
network, up to very high values of the bias (

~

a
~

=0.99). However, the information content of such
networks is shown to be a monotonically decreasing function of a.

I. INTRODUCTION

A fair amount of analytical control over the Hopfield-
Little' model of a neural network has been achieved.
So much so that some of the underlying simplifications
initially introduced in the model have begun to be lifted.
In particular, the properties of the network as an associa-
tive memory have been shown to be robust under the in-
troduction of thermal noise and the dilution of synapses,
as well as under the clipping of synaptic efficacies. '

Here we address another restriction —that of 50% mean
neural activity. It has been a standing feature of the
model since Hopfield that the N-neuron network stores p
patterns g (@=1,. . . ,p; i = I, . . . , N), where +=+1
with equal probability. Hence, in each stored pattern
50% of the neurons are active (+ 1) and 50% are passive
( —1). Consequently, in the process of retrieval 50% of
the neurons are active, on the average. Moreover, the pat-
terns are uncorrelated; namely, in a large network

if p,~v.
This situation is unsatisfactory on several counts.
1. Neurophysiological evidence indicates that mean

firing rates are significantly lower than 50%%uo.

2. The Hopfield dynamics is symmetric with respect to
the interchange of firing by nonfiring (S;~—S; ). Hence,
with every stored pattern the network stores the reversed
pattern as well. Usually, this type of symmetry, when
undesired, is lifted by an external field (threshold). But
here, if the learned patterns are of the Hopfield random
type, then near the stored patterns (in configuration space)
the "magnetization" of the states vanishes. Therefore, it

is difficult to find a natural way of suppressing the dou-
bling of the stored patterns.

3. Pattern recognition usually deals with contexts in
which the background presents a much larger area than
the foreground. Hence, if the coding of such contexts on
a neural network maps larger areas on larger groups of ac-
tive (or passive) neurons, then the levels of activity must
be allowed to differ significantly from 50%.

4. Recent treatments of neural networks focused in
large part on totally uncorrelated patterns as described by
(1.1). More realistic networks have to confront the pres-
ence of correlated patterns in models of associative
memory. Several models which deal with correlated pat-
terns have been proposed. ' These models involve,
however, a much more complicated dependence of J;z on
the learned patterns. In order to learn and retrieve corre-
lated patterns, one has to introduce nonlocality, either in
the learning process or in the dynamics.

To deal with these aspects we have studied associative
memory of random patterns whose mean activities differ
from 50%. We refer to such patterns as biased patterns.
For instance, every component g in a learned pattern can
be chosen independently with probability P(g),

P(g) = —,
'

( &+a)5(g—1)+—,
' (1—a)5()+1) . (1.2)

The average of each g is a and the mean activity in each
of the stored patterns is

f d g P ( g) ,' (g+ 1)= (( —,(g+ 1) )) ='——,'
( I +a) . (1.3)

Since —1 & a & 1, one has an arbitrary level of activity, as
well as an arbitrary ratio of background to foreground.

With such a distribution of stored patterns, memories
are necessarily correlated, though in a rather simple way.
One has
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(1.4)

Thus, if for example one chooses to represent two-
dimensional figures directly on a two-dimensional ar-
rangement of the X neurons (see, e.g., Refs. 7 and 11), the
considerations of point 3 above imply that such correla-
tions have to be allowed.

Furthermore, in the language of magnetism, each stored
biased pattern has a net magnetization (equal to a per
spin) a uniform "external field"—neuronal threshold—
will break the symmetry between firing and nonfiring, in
a natural way, which is independent of the particular pat-
terns stored. If that field is large enough, it will eliminate
the reversed patterns mentioned in point 2, above, even as
metastable states.

The introduction of asymmetric, biased patterns raises
the following questions.

(1) Should the dynamics be modified?
(2) With plausible dynamics, what is the quality of re-

trieval?
(3) What is the effect on spurious states?
(4) How is the storage capacity modified'?
(5) What is the information content of the network'?
In Sec. II we show that a naive application of

Hopfield's dynamics is catastrophic in that even at small
values of the bias parameter a, the stored patterns become
unstable at very low storage levels. This is due to the fact
that the noise generated by the other patterns' ' in the
retrieval of each pattern does not average to zero.

In Sec. III we propose one modification, namely, the re-
placement of the synaptic efficacies

g gPgP
1

p

by

(1.5)

This modification has a number of attractive features.
Firstly, it removes the catastrophe by shifting the noise
back to have a zero mean. Considered from a biological
point of view, (1.5) can be interpreted as learning by modi-
fication of synaptic efficacies due to neural activity. If
the network persists in some activity state S;=g;, then

6Jj. =c (g—o)(gJ—a) .

Since

gg;=%a,

we have

(1.7)

which can be read as follows: The total modification of
synapses on a given neuron (i) is unchanged during learn
ing. This is, of course, also a property of the original
Hopfield description, ' if the patterns are uncorrelated.
This property fits in nicely with the hypothesis that the
modification of synapses takes place by a local redistribu-
tion of receptors, whose total number (per neuron) is con-

[neural activity —,X(1+a)], then the learned patterns are
stable, and spurious states, with macroscopic overlaps
with small numbers of patterns, do not appear. Moreover,
it is shown that such a network has a higher storage capa-
city a, than that of the unbiased network —a, (a) &a, (0)
for

~

a
~

&0.99. This, however, does not imply higher in-
formation content because the space of memorized pat-
terns has been restricted. This aspect is discussed in Sec.
VI.

A biological system is not expected to impose such a
global constraint rigidly. Hence Sec. V goes on to study
the functioning of a network whose dynamics is a Monte
Carlo walk with

H = ——, g J;~S;SJ.+ (M —Na)
2N

(1.8)

where Jz is given by (1.5), and g is a parameter measuring
the stiffness of the constraint.

What the quadratic term in (1.8) implies is that every

served. Equation (1.5) is an expression of the nonlocality
in our learning scheme. In getting modified each synapse
has to be aware of the mean, allowed activity rate of the
entire network.

The consequences of the traditional dynamics' with
the couplings (1.5) are studied in Sec. III for finite p and
are found to be unsatisfactory: As a increases, spurious
states start dominating the dynamics, even though the
stored patterns remain locally stable. The number of
spurious states is found to increase with a, and they be-
come the absolute minima of the energy as a increases.

In Sec. IV this system is studied near saturation-
p =aN —and the difficulties persist. Here, again, spuri-
ous states are found to dominate the energy landscape.
For example, already at rather low values of the bias a,
the critical storage level a, of the spurious states becomes
much higher than that of the stored patterns.

The results of Secs. III and IV indicate that to have a
network which can effectively store and retrieve biased
patterns, it does not suffice to modify the couplings. In
fact, from a biological perspective, there are rather com-
pelling reasons why the dynamical process should be
modified as well. The fact that the network has learned
patterns of mean bias a implies that the activity of the
network is constrained so that it wanders mostly among
states that have the preferred mean activity. In other
words, there must be some global control on the dynamics
of the network which prevents too high or too low activi-
ty. If neural activities are much lower than 50%, this
must be so whether or not the network is retrieving. The
control restricts the regions in state space in which a
healthy neural network can move. This is why it learns a
restricted class of patterns, and it is in these regions that it
should be trying to retrieve.

Section V is devoted to the study of neural networks in
which the dynamics is constrained to be consistent with
the bias in the patterns. First we show that if the dynam-
ics is restricted rigidly to states with a given value for the
"magnetization"

M—:gS; =%a
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neuron feels an extra uniform contribution to its threshold
(local field), proportional to the deviation of the level of
activity from the normal level. For very large values of g
one returns to the rigid constraint with reduced numbers
of spurious states, high a„and excellent retrieval quality.
The dependence of these properties on g is computed
analytically and is compared with simulations.

In Sec. VII we make some concluding remarks about
the class of constraints to which the conclusions of the
paper apply. Finally, in the Appendix it is shown that the
control of the mean activity can be imposed globally,
rather than locally, as in Eq. (1.2).

II. NAIUE HOPFIELD DYNAMICS

If one follows in the footsteps of Ref. 1, with the P's
chosen according to the asymmetric distribution (1.2),
then the dynamics of the network is governed by the
Hamiltonian

does not average to zero. In the state S;=P;,
P

h; = g J;1S~ =—g g g g'J"gj =g,
". ( 1+5; )

J
(j ~i) (j +i)

and the noise is

=«pp» g gg,"
|M, V

(p+v)

P, , V

(p+v)

which implies that (2.7) is the limit of stability.

(2.8)

(2.9)

H = ——, g Jij.S;SJ (2.1) III. DYNAMICS WITH MODIFIED HEBB RULE

with

PJ,— g gag@IJ N I J (2.2)

f= —,
' g (m") ——((ln2cosh(Pm g})),

m"= ((ptanh(pm g) ))

(2.3)

(2.4)

where p is the inverse temperature (synaptic noise) and

(2.5)

The inadequacy of such a network is already apparent
when the number of stored patterns, p, remains finite as
N~ ~. The free energy and the equations for the stable
configurations are derived precisely as in Ref. 3 (to be re-
ferred to as I). They are, respectively,

H = — g g(g a)(gf —a)S;S—J .
p

(3.1)

The consequences of this modification will be described
below.

A. Finite number of patterns

The order parameters are now the modified overlaps

(3.2)

which vary in the interval 0(m" &(1—a ). One finds
for the free energy and for the saddle-point equations

The first corrective option is to replace the acquired
synaptic efficacies JJ of (2.2) by J~J, Eq. (1.5). The sys-
tem will then fo11ow the dynamics of the Hamiltonian

The single angular brackets denote a thermal average and
the double ones stand for an average over the quenched
distribution of the g's.

At T=O Eq. (2.4}becomes

f= —,
' g(m") ——ln2cosh Pg m "(P—a}

p P

m"= "—a tanh m" "—a

(3.3)

(3.4)
m"=((Psgn(m g'))) . (2.6)

It is easily verified that (2.6) has no Mattis-type solutions,
in which only a single component of I is nonzero. The
reason is that if m'&0 while m'=0 for i ~ 1, then (2.6)
gives

Since

(&(P—.)(P—.) )) =0, (3.5)

it follows that there are always retrieval state solutions
'=((P g g'»=&(g'g')) ="~0,

which is the uniform correlation of two biased, random
patterns, mentioned in (1.4).

At sufficiently low p the original stored patterns—
S;=g;—are still stable. However, they become destabi-
lized above p which satisfies

(p —1)a =1 .

m" =m &"'

for which

m = —,
' (1—a )[tanhpm (1—a)+tanhpm (1+a}].

In the limit T~O

m =1—a 2

(3.6)

(3.7)

This is due to the fact that the local field acting on the
spins" has a contribution from the other patterns, which

which represents a perfect overlap with the vth stored pat-
tern, namely,
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-0.0

in this state.
One can show, following I, that all symmetric mixture

states are solutions of Eq. (3.4). These solutions are classi-
fied by the number of components of m, which are
nonzero and have equal magnitude.

The symmetric mixtures are

-0.1

-0.3

m =(m„, . . . , m„,0, . . . , 0)

with

(3.8)

-0.4

and

"—a sgn "—a
p=1 p=1

n n

nm„= "—a tanh m "—a
p=1 p=1

(3.9)

-05' i 1 i l i I i I s I

0.0 0.2 0.4 0.6 0.8 1.0
a

FIC». 1. The energies of the first five symmetric mixture
states at T=O, for a network with a finite number of stored pat-
terns, vs the bias. The network has modified Hebb synapses and
unconstrained dynamics.

n
m" +'= "+'—a tanh m„"—a

B. Finite temperature

tanh m„"—a =0 .
p=1

(3.10)

=myzpgi

p
(3.1 1)

Undesired features appear when the stability of the
mixture states is examined. In the unbiased case all these
saddle points appeared, but only the ones with an odd
number of mixed patterns turned out to be stable. The
even mixtures were found to be unstable. In fact, they
were found to be unstable not only at T=O, but for all T.

The instability of the even mixtures can be traced to the
appearance of many sites at which the local field

The spurious states in the unbiased network are con-
trolled by the synaptic noise (temperature). For
0.46 & T& 1 only the pure patterns are stable. Consider-
ing the biased network at finite temperature, one finds
that there is a critical temperature

T, (a) =1—a (3.13)

Slightly below T, (a) one finds, on expanding (3.9), that

(3.14)

and the eigenvalue measuring the stability against the
mixing of a second pattern is

vanishes. In fact, there are 2 —6a T —Tc

] +3a Tc
(3.15)

N/2

such sites. But when the patterns are biased, the local
field is

Thus the retrieval (Mattis) state becomes unstable near T,
for a & —,'. As the temperature is lowered, one first en-
counters stable spurious states. Only at lower temperature
do the stored patterns become stable, at which point the
spurious states (the even ones) are already lower in energy.

C. Higher storage levels —signal-to-noise considerations
h; =m„(z„;—na), (3.12)

When the number of stored patterns increases with N
which will vanish only for special values of a, and for
those only for special values of n.

Thus at T=O the number of stable symmetric spurious
states doubles. Moreover, as

~

a
~

increases the energies
of the states begin to cross, and as

~

a
~

becomes greater
than ~2 —1, mixture states become the global minima of
f. The beginnings of the sequence of crossings are shown
in Fig. 1, in which the energy of the first few states is
plotted against the value of the bias.

as

p =aN,
the embedded patterns in the unbiased network are no
longer stable. Nevertheless, for a &0.138 (in the replica
symmetric phase) the unbiased network retrieves with
high fidelity the individual stored patterns. Thus one is
tempted to ask what would be the consequences of ap-
proaching saturation in the biased network. As a first
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step we repeat the storage capacity estimate based on the
requirement of small noise-to-signal ratio in the stored
patterns —insuring their stability. " The local field at
neuron i in pattern 1 is

hence

R 1
=&p/N (3.19)

,,S, =—g g (g,. a)(g a)g!
J j p, =1

(j+i) (j~i)
r

(1—a )(1—g,'a)

(g —a )(gj"—a g",
J P)1

(j~i)

(3.16)

Thus, in contrast to the naive introduction of biased
patterns discussed in Sec. II, if p/N «(1—

~

a
~
), the

original patterns are stable at T=O. On the other hand,
we have here an indication, even on this simple level, that
the storage capacity decrease as a increases.

A more careful treatment of the probability distribution
of the noise term' would lead to the conclusion that pat-
terns will be retrieved with no errors if

a&a, =
2 1nX

=(1—
~

a
~

) a, (0) .

Since in the noise term j&i and @&1,its mean vanishes.
The mean of the square of the noise term is

R2= (N (p —1)
(1 a2)2 ~(1 a2)2

+2 —x (3.17)

So ——(1—a )(1—~a
~
), (3.18)

On the other hand, the signal S, the first term in the large
parentheses in (3.16), has a minimum at

IV. BIASED NETWORK NEAR SATURATION

A. The average free energy

When a=p/N is finite, the calculation follows in the
footsteps of Ref. 4 (to be referred to as II), and the
quenched averaging over the g's is performed using the re-
plica method. Thus the free energy is computed from the
average

((Z"))=((Tr exp g (r,' —a)Sr(g — )Sr —af&rpn(1 ——', a )4P+h "g(g—a)Sf)), '

&&J&P&P v t&p

(4 1)

where v (= 1, . . . , s) denotes the patterns which are candidates for condensation.
Linearizing the quadratic term in g, for the uncondensed patterns (p & s), by a Gaussian transformation and averaging

over the high g's, one finds

((Z"))=exp[ —,
'

Ppn (—1—a )]

Tr ~ dm p / 2m exp ——, mp + ln cosh /N m&S~+a sinh /N mpS~
p&p P&p 1&P, p p

)(exp ar/S/N g m "Sf—exppN —'—,' g (m") + g (mr+4") —g (P—a)S/'
))

. (4.2)
iPP V,P V,P
(p) s)

If mz ——O(1), for fM &s, one can expand the ln in (4.2) and keep only the quadratic terms. Then integrating over mz one
finds

((Z"))=exp —, Ppn(1 ——a )Tr ~exp ——,p Trln[1 —P(1 —a )Q]

dmp/ 2~ exp N ——,
'

mp + mp+A —;—a S~
V&P V&P V&P E

(4.3)

where, as in II,

Q,.=—+st's, , Q„=l . (4.4)
i

Introducing rz as Lagrange multipliers for the nondiagonal elements of Q, qz, one finds for the extensive part of the
free energy

I3f = —,aP+(a/2n)Trln[(1 —P) Pq]+(P/2n) g (m—") +(aP /2n) g r& q&
V,P p, cT

(~v)

—((/n)(((nTraexP —,'af)r g r SrS hf&g(m" +h")(P—a)Sr )),
p, cr V,P

(p&~)

(4.5)
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B. Replica symmetric theory

In the replica symmetric phase (4.5) becomes

13f = —,
' aP+ —,

' g (m ") + —,
' a ln(1 —P+Pq)— + —,aP r(1 —q)

1 —P(1 —q)

ln2 cosh arz+ m v+h —a
V

(4.6)

where in (4.6) the double angular brackets indicate a Gaussian average over z as well as an average over the discrete P,
with the Ps distributed according to (1.2).

The saddle-point equations for the order parameters m, q, and r are

m = "—0 tanh arz+ m "+h" "—a
V

(4.7a)

q = tanh arz+ m +h —a (4.7b)

(4.7c)

C. Solutions at T =0 "ritical storage level

We now choose h =0 and investigate the retrieval
states, m=(m, 0, . . . , 0) in the limit P~ oo. Since

and Eq. (4.7c) becomes

(1—a )

[1—(1—a )C]
(4.1 1)

+erf[m (1 a)/V 2ar ) I
—. (4.9)

The order parameter q~ 1, but

C—:P(1 —q) ~ v'2/~ar ((exp[ —m (g a) /2ar]))—
T~O

= &I /2mar I(1+a)exp[ m(1+—a) /2ar]

exp( ——,z )tanhP(v'arz+x) ~ erf(x/v'2ar ),dz
2n. p~ oc

(4.8)

Eq. (4.7a) becomes

m = —,(1—a ) Ierf[m (1+a)/v'2ar ]

Equations (4.9)—(4.11) are solved numerically. They
exhibit a sharp transition at a=a, (a). Below a, there ex-
ists a dynamically stable retrieval state, which is macros-
copically stable —with m & m, (a). Above a, (a) the only
macroscopically stable state is m =0—the spin-glass state.
In Fig. 2 we present a, for the retrieval state versus a.
For comparison we plot in this figure a, (0)(1—

~

a
~
),

which would have been suggested by the signal-to-noise
analysis of Sec. IIIC above. In Fig. 3 we present the
values of m, as a function of a. The dominance of the
spurious mixture states prevails at finite a as well. The
maximum value of a for which spurious states with sym-
metric mixtures of two and three patterns are stable [a, ,

+(1—a)exp[ —m (1—a) /2ar)]I (4.10) I.O

0.15

0.10
0.5—

0.05
0.0

0.0 0.2 0.4 0.6
a

0.8 1.0

0.00
0.0 0.2 0.4 0.6 0.8

I

1.0
a

FICx. 2. Critical storage ratio a, vs bias for retrieval states

and symmetric mixtures of two and three patterns. The un-

marked curve is a(0)(1—
~
a

~

)'.

FIG. 3. Overlap vs bias at a, (a j. Solid curves represent the
order parameter m [Eq. (3.2)], dashed curves represent the total

overlap m: a, constrained dynamics (with rigid constraint, see

Sec. V); b, unconstrained dynamics.
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(Refs. 2 and 3)] are plotted in Fig. 2. It should be pointed
out that for a&0.4 there is a range of a above a, in
which the mixture of two patterns remains stable, while
the memorized patterns can no longer be retrieved. Note
that the full overlap of the states with a pattern is m +a .
See Eq. (3.2).

D. The entropy and breaking of replica symmetry

One indication for the importance of the breaking of re-
plica symmetry (RSB) in the retrieval states is the magni-
tude of the negative entropy in these states at T=O rela-
tive to that of the spin-glass state, or in the symmetric re-
trieval states. We therefore calculate

1. The finite p-case

The free energy per spin is

f= —,
'
Q (m")

ln2cosh m" "—a +hp
1

The parameters m" and hp are determined by

1 N
m"= —y (S;)(g";—a)

(5.3)

S = — (T =0)= ——,
' a[In(1 —C)+Cl(1 —C)],aT

(4.12)

where
and

"—a tanh m" "—a +hp (5.4)

C=(l —a )lim C
T~p

and limC is given by the right-hand side (rhs) of Eq.
(4.10).

The value of S is clearly negative. Its value at a, de-
creases with increasing a. For example, at a =0,
S=—1.4&10, at a=0.3, S=—7.7&10, and at
a=0.8, S = —1.6&10 . We conclude that even though
the negative value of the entropy indicates that replica
symmetry must be broken in the retrieval states, the small
absolute value of the entropy implies that the effect can-
not be very significant (see, e.g. , II).

V. BIASED NETWORK
WITH CONSTRAINED DYNAMICS

—g (S;)= tanhp g m "(g'&—a)+ho ——a .N
P

(5.5)

Below T„p ordered states appear, characterized by
m =b""m,

At high temperature the thermodynamic state is un-
correlated with the patterns: m"=0 for all p, , and ho is
the field required to induce the magnetization

(S;)=tanhPho ——a .

A. Rigid constraint

r

m= "—a tanh m" "—a +hp (5.6)

We consider here a network whose phase space is re-
stricted to all the states j S; I which obey the constraint

—gS;=a . (5.1)

Thus the mean activity of the network is fixed during the
dynamic evolution and has the same value as the mean ac-
tivity of the embedded patterns. The Hamiltonian which
governs the dynamics is given by Eq. (3.1). The partition
function can be represented by

Z = f e '"Trgexp PH +Ph g S;—
(5.2)

Since the constraint is global, the integral over h is
dominated by the saddle-point value hp. This amounts to
adding an external field hp whose magnitude guarantees
the constraint equation (5.1).

The ensemble average free energy of Eq. (5.2) can be
studied by the same methods as in Secs. III and IV. We
first discuss the effect of the constraint in the finite-p
case.

As T decreases, the correlation m with the pattern in-
creases and the value of ho decreases. At T=O, ho van-
ishes and the state reduces to S;=P which automatically
guarantees the constraint (5.5). Note that the constraint
breaks the symmetry of the system under the global inver-
sion S;~—S;. En particular the reversed patterns
S;= —g are no longer stable (in fact, they are outside the
allowed phase space).

In addition to the suppression of the reversed states, ho
suppresses considerably the appearance of spurious meta-
stable mixture states, especially those which mix a small
number of patterns. For instance, it can be easily checked
that states which mix two or three patterns are not solu-
tions of the equations.

2. The finite alimit-
The mean-field theory of Secs. IVA —IVC is easily ex-

tended to incorporate the constraint. The only modifica-
tion is the inclusion of a field ho which guarantees that
Eq. (5.1) is obeyed. Equations (4.7) turn into
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S

m = "—a tanh raz+ m" "—a +hp (5.7a)

S

q = tanh raz+ m" 1"—a +Qp (5.7b)

r =q(1 —a ) /[1 —f3(1 —a )(1 —q)] (5.7c)

with the additional equation

S

a = tanh raz+ m" "—a +hp (5.8)

The retrieval state at T=O is determined by

m (1 —a)+hp m (1+a)—hp
m = —,

' (1 —a) erf +el f
2(x r 2ar

C= I /~r —1

1 —a

(5.9)

[m (1—a)+hp]= (2mar) '~
( 1+a)exp

2(xr

[m (1+a)—hp]+(1—a)exp
2(xr

(5.10)

m (1—a)+hp
a = —,

' (1+a) erf
&2ar

m (]+a)—hp——,(1—a)erf
&2ar

(5.1 1)

The largest value of a for which a solution with m&0 ex-
ists is plotted in Fig. 4. Note the remarkable increase in
a, (a) compared to its value when the constraint (5.1) is li-
fted (Fig. 2). The origin of this increase is simple: In the
unrestricted phase space the retrieval state is only a saddle
point for a greater than a, (a) of Fig. 2. However, the in-
stabilities are in directions which violate the constraint
(5.1). Thus, in the constrained phase space, the retrieval
state is stable until a becomes greater than a, (a) of Fig. 4.
The retrieval quality at a, is plotted, as a function of a, in
Fig. 3.

It is also interesting that a, (a) increases with a for al-
most all values a. It has a maximum value a, =0.18 at
a=0.925. This increase fits nicely with the finite p limit,

m =A (1—a), hp-b (1—a),
r =4(1—a), C~0,

where A =Qap/2 and b =+2ap. In this regime

(5.12)

where as a increases the number of spurious states de-
creases considerably, as discussed in Sec. V A 1 above. Of
course, ultimately, as a approaches unity, the value of m
which is restricted by definition to m &1—a [see Eqs.
(3.2) and (5.1)], decreases to zero, and a, ~O. This, how-
ever, occurs only very close to a=1. In fact, studying
Eqs. (5.9)—(5.11), in the a~i limit, we find that 1/a,
diverges only logarithmically at a = 1. Denoting
ap ——a

~

ln(1 —a)
~

the asymptotic behavior near a = 1 is

0.20—

0.15

a,*(a)=
~

ln(1 —a)
~

as a~1, with a' of O(1).
B. Soft constraint

(5.13)

0.10

0.05

0.0
0.0 0.5

a
1.0

FIG. 4. Curves of the critical a and the a for which the in-

formation content is maximal vs bias. I(a) is the actual infor-
mation content at saturation.

The rigid constraint (5.1) may be relaxed by imposing a
finite energy cost on fluctuations away from the optimal
activity. The simplest way of imposing such a soft con-
straint is to add to the energy function H a term

2N gS;—Xa (5.14)

where g is positive. Such a term represents a negative
background —g/N in the efficacy of all synapses, togeth-
er with a constant magnetic field (neuronal threshold)
which equals ag.

Modification of the mean-field equations due to the ad-
dition (5.14) is straightforward. The new equations for
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the replica symmetric saddle point are the same as Eqs.
(5.7). Equation (5.8) is replaced by

ho $

tzzhp ~rrzz ~ g mr(iz —al+hz
))P

(5.15)

which reduces to Eq. (5.8) in the limit g~ oo. Likewise,
in the T~O limit the lhs of Eq. (5.11) has to be replaced
by a —hp/g.

Note that when a=O, the solution of Eq. (5.11) is
hp ——0, and consequently the term (5.14) does not affect
the system. The reason for this is that in this case (a=O)
the stable states of the system have zero net magnetiza-
tion, even at g =0. Hence, as long as the initial states do
not have a finite magnetization, the system remains in the
region of phase space which has zero magnetization, and
will not be affected by a term of the type g ( g,. S; ) /N

Results for a, as a function of the strength of the con-
straint, g, are shown in Fig. 5 for different values of a.
The curves interpolate between the unconstrained results
(g=O) of Sec. IV and the rigid constraint (g = oo ). The
value of g at which ao reaches approximate saturation de-
pends on a. At a=0.5, a, (g) levels off around

g=10 .

At low and high values of a, a, (g) levels off already at
lower values of g.

VI. THE CONTENT OF INFORMATION
IN THE NETWORK

In previous studies it has been convenient to measure
the capacity of the network by the maximum number of
patterns p, =a,N that can be stored. It should be pointed
out that p, alone does not determine the maximum
amount of information that can be stored. The difference
between the two quantities is particularly pronounced in
the biased network. In Sec. V it has been shown that by

constraining the dynamics of the network, a, can be made
to increase with the bias a. On the other hand it is intui-
tively clear that the amount of information stored in pat-
terns which are alike is much less than in uncorrelated
patterns.

To quantify the information content of the network we
will adopt here the rigid constraint (5.1) in which case
both the stored and retrieved configurations lie in the
same restricted phase space. The measure of information
must take into account two factors: (1) the amount of the
information stored in the embedded pattern and (2) the
reduction of information due to errors in the retrieval of
the patterns. The amount of information stored in each
pattern depends on the size of its configuration space. In
our case this information is just the entropy associated
with the space ensemble of random patterns p subject to
the constraint that the total magnetization is Na. This
yields

S(a)= ——,
' (1+a)ln[ —,

' (1+a)]——,
' (1 —a)ln[ —,(1—a)]

(6.1)
for the information per spin stored in each pattern. Sup-
pose the retrieved pattern has an overlap per spin
m =((SP)) with the stored pattern P. The missing in

formation is the entropy associated with all possible con-
figurations which have total magnetization Na and an
overlap Nm with a given pattern. This entropy (per spin)
is

S(m, a) = —
4 (1+2a +m )ln(1+2a +m )

—
~ (1—2a +m )ln(1 —2a +m )

——,
' (1—m )ln(1 —m )+ —,(1+a)ln(1+a)

+ —,(1 —a)ln(1 —a)+ln2 . (6.2)
Combining the results (6.1) and (6.2) we obtain for the to-
tal information provided by the network

I(a,a) =pN [S(a)—S(m, a)]/ln2

aN S(a)
1

S(m, a)
ln2 S(a) (6 3)

a=0.9

0.15

0.10

0.05

Q. QQ I I I I I I I I I l I i I I I I I I I I

0 5 10 15 20

FIG. 5. Curves of the critical storage a vs strength of con-
straint, for several values of the bias. Note that for low and
high bias the constraint saturates at relatively low g.

Note that, I(a,a) has been normalized so that the inf«-
mation content of one binary bit is unity. For a random
retrieved state, m =a and

S(m, a) =S(a,a) =S(a),
yielding I=0 as expected.

Actually the value m is determined by the mean-field
theory as a function of a and a as discussed in Sec. IV.
The maximum capacity of information is achieved not by
maximizing a but rather by maximizing I(a,a). This
may lead to an optimal value of 0. which is slightly less
than a, . In fact, that is the case even in the unbiased net-
work, for which Eq. (6.3) reduces to

I(a, O) =aN [ —,(1+m )ln(1+m )+ —,(1—m )ln(1 —m )],
(6.4)

using for I the result of the replica symmetric mean-field
theory (MFT) leads to a maximum of Eq. (6.4) at
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a,„=0.134 whereas a, =0.138. We have calculated
I(a,a) for all a &a, and 0& a & 1, using the results of
Sec. V for m(a, a). The dashed line of Fig. 4 shows the
value of a which maximizes I (for a given a). It is slight-
ly below a, for all a. The maximum value of I is also
plotted in Fig. 4 as a function a. Even as a, (or a,„) is

increasing, the maximum information capacity is decreas-
ing with a, mainly due to the factor S (a) [see Eq. (6.3)].

VII. DISCUSSION

In this work we have modified Hopfield's model to in-

corporate storage and retrieval of patterns with fixed bias.
The motivation to consider such patterns comes from bio-
logical as well as practical considerations of pattern recog-
nition. Other models of neural networks have been con-
structed for the storage and retrieval of correlated pat-
terns. ' The main virtue of our model is that it retains
the simplicity of the learning rules. In particular, the
synaptic updatings due to the learning of new patterns are
still local, except for their dependence on the global bias.

Our simple model is suited to handle the minimal
correlations induced by their constant bias. It can be fur-
ther generalized to patterns with a distribution of levels of
activities,

N

X Pi=ay 8=1 . . pp'

where a„are distributed between a minimum value a0
and a maximum value of a &. The modified synaptic effi-
cacies would be in this case

J;, =—g (g"; —a„)(g,"—a„) .
p=1

One possible dynamical constraint would be to restrict the

the motion in phase space to states whose total magnetiza-
tion is bounded below and above by a0 and a &, respective-
ly. It would be interesting to see whether this approach
can be generalized to more structured sets of correlated
patterns (e.g. , hierarchical patterns).
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APPENDIX

In this appendix we show that the ensemble of patterns
which are random except for the global constraints

QP=Na, @=i, . . . ,p (A 1)
l

is equivalent to the ensemble of independent random vari-
ables g" with local bias [Eq. (1.2)]. This equivalence holds
only in the limit N~ oo.

The ensemble with the global constraints can be
represented by the following distribution:

=C + [ —,5(g"; —1)+—,'5(g'";+1)]+ —,'5 g g"; Na—
I,p p

(A2)

where C is a normalization constant. Let g [g] be an ar-
bitrary function of the patterns. The average of
exp(g[/] ) is given by

i oo dz"
((exp(g[(] ))) =C f + exp —Na gz" Trpxp gz" g g";+g[g]'"p 2 m p l

i oo dzP=C f + exp Na g z"+N g—lncoshz" +b.
p m p

(A3)

where

T.,(. . .
)
=2-"&

(g&=+ ] )

z" =tanh a = —ln
1+a

0 2
1 —a

(A5)

6= ln Trpxp g z"g g'";+g [ g ]
p l

(A4) This implies that the average of es over g, Eq. (A3), is ef-
fectively an average with the probability distribution
P[j]= Q,.„P(P),where

The integrals over z" are calculated by their saddle point.
If es is not of 0 (e t'), the saddle-point equation is not af-
fected by g and reduces simply to

P[/] =C' + [—,'5(g"; —1)exp(zg)
E,p

+ —,
' 5(g";+1)e p( —g)], (A6)



35 INFORMATION STORAGE IN NEURAL NETWORKS WITH LOW. . . 2303

which is equivalent to Eq. (1.2).
It remains to show that in our case eg is not of 0(e p).

This is certainly correct with regard to the averaging over
the finite number of macroscopically condensed patterns
I@I, v=1, .. ..,s. The free energy is self-averaging with
respect to them. Therefore, the averaging can be per-
formed on local terms separately, i.e., on f(g;, . . . , P;)
=0(1). The averaging over the rest Na —s patterns is

performed on

eg=exp v p/N gtrt& QSpp
p~p i

See Eq. (4.2). Since rnp is of 0(1/v N ), g is only of
0 (N) and not of 0 (N a) and Eq. (A6) is therefore valid.
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