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High-frequency power spectra for systems subject to noise
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We examine the falloff of power spectra at high frequencies as a possible means of distinguishing
systems exhibiting deterministic chaos from systems subject to noise. To this end, we derive the
asymptotic series describing the high-frequency falloff of the power spectrum for systems subject to
noise. Our analysis applies to systems with an arbitrary finite number of degrees of freedom and in-

cludes the cases of additive and multiplicative white noise and the case of continuous nonwhite noise

appearing with a general parametric dependence. In the case of colored noise, we show that the fre-

quency at which crossover to the asymptotic behavior occurs is the effective bandwidth of the noise,
i.e., the inverse of the correlation time. This result should be particularly useful in cases where the
noise is not directly observable.

I. INTRODUCTION

Until the 1970*s, erratic behavior in physical systems
was generally explained as an effect of noise, Brownian
motion being the paradigmatic example. However, the
work of Lorenz' in 1963 made it clear that erratic
behavior can occur intrinsically in deterministic systems
even if the number of degrees of freedom is small. Given
these two sources of erratic behavior, it is important to be
able to determine which is the cause in a given case. The
important physical issue is whether the observed random
behavior can be described by a small number of deter-
ministic equations or is more adequately modeled by a
stochastic process. In this paper we provide a partial
answer to this problem by deriving criteria for the ob-
served behavior to be essentially stochastic.

The identification of a known "route to chaos, " the cal-
culation of fractal Hausdorff dimension of attractors, and
the determination of positive Lyapunov exponents are
commonly taken as signatures of deterministic chaos.
The measurement of finite, nonzero metric entropy of
time series has also been suggested as an indicator of
deterministic chaos. All these methods, however, face
various well-known technical difficulties when applied to
time-series data of real physical systems. What is needed
is a tool that allows us to answer the basic question before
trying to calculate Lyapunov numbers, dimensions, and
entropies, namely, is the observed erratic behavior essen-
tially deterministic or stochastic? In this paper we will
show that the falloff of the power spectrum at high fre-
quencies can furnish such a tool. Intuitive arguments
have been advanced to indicate that systems that can be
described by deterministic equations with a few variables
should have power spectra that fall off faster than any in-
verse power of the frequency, e.g. , exponentially, while on
the other hand spectra for systems whose behavior is
essentially stochastic should decay via a power law. ' In
spite of these intuitive arguments, a general theoretical
solution to the problem of high-frequency behavior of
power spectra of deterministic or stochastic systems has

not been achieved up to now. Investigations are under
way on this problem for deterministic systems. In this
paper we solve the problem for stochastic systems and
derive the asymptotic form of the power spectrum for a
general system subject to noise. We prove that this form
always corresponds to power-law decay. This provides
half of the answer to the issue raised in the first para-
graph; we have a condition for the observed random
behavior to be essentially stochastic.

Experimentally, both exponential and power-law decay
of power spectra are seen. (Obviously at very high fre-
quency the signal will be drowned in the instrumental
noise which is white. Thus, as far as experimental appli-
cations are concerned, we consider the falloff of the power
spectrum before it flattens out into the instrumental noise
level. ) Exponential decay is typical of the Taylor-Couette
system in the turbulent regime (see Fig. l). Et is seen also
in model deterministic systems such as the Lorenz
model. On the other hand, power-law decays occur in
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FIG. 1. A semilogarithmic plot of a power spectrum from
the Taylor-Couette system showing exponential decay at high
frequencies. The flat region at very high frequencies represents
instrumental noise.
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the Rayleigh-Benard system. Both co and co decays
have been reported (see Fig. 2). '

These power-law decays, together with other features of
the transition to turbulence in the Rayleigh-Benard sys-
tem, have led Greenside et aI. , to propose a stochastic
model for the behavior of the system in the regime in-
volved. Clearly, it would be desirable to have a proof
that stochastic systems do, indeed, show power-law decays
together with criteria that show when co, co, or
higher-order decay is to be expected.

Various partial results have been reported. Brey et al.

have shown that, for a one-variable system subject to
white noise via a first-order Langevin equation, the spec-
trum decays as co . They state that the method they use
may be extended to show that a one-variable system sub-
ject to white noise via a second-order Langevin equation
exhibits an co decay. Caroli et al. ' have shown that an
¹ ariable system subject to additive white noise in a
first-order equation will exhibit an co decay, while a sys-
tem governed by a second-order equation exhibits co de-
cay. Neither study examines the effect of colored noise
nor considers situations that lead to higher-power-law de-
cays.

We have examined an ¹ ariable system subject to
multiplicative white noise and have derived the general
conditions under which the power spectrum decays as
co ", n an integer. Because the number of variables is ar-
bitrary, the analysis includes the case of second- and
higher-order Langevin equations and the case of a system
subject to genera1 parametric colored noise. This is ex-
plained in detail in Sec. III A.

In Sec. IV we show that in the case of a colored noise
we can estimate the correlation time of the noise from an
examination of the power spectrum of a variable or a
function of variables of the system itself without observ-
ing the noise directly.

In Sec. II we will outline the intuitive arguments that
lead us to expect faster than power-law decay for deter-
ministic systems and power-law decays for stochastic sys-
tems. In Sec. III we present the general system and prove
the results mentioned above. In Sec. IV we examine the
case of colored noise and show how the correlation time
may be estimated.

II. INTUITIVE ARGUMENT
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FIG. 2. Log-log plots of power spectra from the Rayleigh-
Benard system showing power-law decay at high frequencies
{see Ref. 4).

The following argument will show why high-frequency
power spectra are expected to distinguish between deter-
ministic and stochastic systems. Consider x(t), a func-
tion of time which may be one variable in a deterministic
dynamical system or a realization of a stochastic process.
We consider x (t) to have, in some sense, a Fourier
transform x (co). Then, if x (t) is differentiable with
respect to time, the Fourier transform of dx /dt is
icox(~) Thus, i.f dxldt exists, x(co) must fall off faster
than co

' as ~~Do so that the inverse Fourier transform
of icox(cu) will exist. Now, the power spectrum of x(t),
S„(co), is, roughly, the square of x(co). So, if x (t) is once
differentiable, S„(co)must fall off faster than co

Similarly, one may argue that if the nth derivative of
x(t) exists then S„(co) falls off faster than co ". If one
assumes that variables of a dynamical system are C
functions of time, which is clearly true for model systems
like the Lorenz model, then one will expect the power
spectra of variables of a dynamical system to fall off.fas-
ter than any power of cu

On the other hand, it is well known that realizations of
stochastic processes are not C functions of time.
Indeed, they are often not even once differentiable.
Therefore, we expect power spectra of stochastic processes
to fall off as some power of m

Clearly, this argument does not constitute a proof. We
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have not defined the sense in which the Fourier transform
of a variable of a general dynamical system or of a general
stochastic process exists nor have we proved that the stan-
dard manipulations may be performed. Sec. III will pro-
vide a rigorous version of the argument for the case of a
stochastic system.

III. ASYMPTOTIC FORM OF THE POWER
SPECTRUM FOR A GENERAL SYSTEM

A. Definition of the general system

X=f(X)+br(X)g,

where g=(g~, gz, . . . , g&) is a vector of independent
Gaussian white noises. Form (1) is preferred mathemati-
cally because neither the white noise g' nor, as a conse-

quence, the derivative X can be defined as an ordinary
stochastic process. Nevertheless, form (2) will prove use-
ful in interpreting our results intuitively. The fact that
the vector X has an arbitrary number of components al-
lows us to include a wide variety of cases in (1).

Clearly, we may include second order Langevin equa-
tions of the form

X=g(X,X)+m.(X,X)g (3)

by the common trick of substituting V for X and append-
ing the equation

X=V
to (3) to obtain

X=V,
V=g(X,V)+m(X, V)g .

If X is an X-dimensional vector, this is, of course, a
2N-dimensional version of (1). Note that in this case (1)
has a degenerate diffusion matrix since the X; are not
directly driven by white noise. Thus we may expect (4) to
exhibit behavior which is nongeneric for the general 2N-
dimensional version of (1). This technique can, of course,
be extended to higher-order Langevin equations.

We may include nonwhite noise in the system (1) if the
equations divide into two parts, a "system" which we will

The general system with which we will work
is an X-variable stationary stochastic process
X=(X&,&z, . . . , X~) satisfying the stochastic differential
equation

d X= f(X)dt +Lr(X)dW,

where W=( JY&, W'z, . . . , W~) is a vector of N indepen-
dent Wiener processes, f(X) is the drift vector for X, and
Lrr(X)Lr(X) is the diffusion matrix for X. We assume
that f and o are such as to admit a single stationary solu-
tion to (1). For mathematical convenience, we will inter-
pret (1) as an Ito equation. This is no restriction since any
Stratonovic equation can be transformed into an
equivalent Ito equation.

Equation (1) corresponds to the Langevin equation

again call X, and a "noise" Z which evolves independent-
lyof X,

X=g(X,Z),

Z=h(Z)+m(Z)g' .

(Sa)

Note again that this system, when regarded as a special
case of (1), has a degenerate diffusion matrix and, thus,
may exhibit nongeneric behavior.

Equation (5a) allows a general parametric dependence
on the noise Z so we are not restricted to additive or mul-
tiplicative (colored) noise. Moreover, (5b) is the equation
for a general (stationary) diffusion process. Thus, we may
consider any nonwhite noise which (1) has almost surely
continuous sample paths and (2) is part of an M-variable
Markov process for some M &0.

B. Statement of the theorem

=W Y dt + (Lr rV „Y).d W

or, in Langevin form,

Y=MY+(Lr V„Y).g'. (6)

Here
~
~o,j.

~ ~

=Lr and M is the Kolmogorov backward
operator for the process X,

1 8
' ax + ' ~ '" '" ax axl i,jrk J

M is the formal adjoint of the Fokker-Planck operator for
X.

If the quantity Lr V„Yoccurring in Eq. (6) is not identi-

cally zero than Y will have a white-noise part. In that
0

case, we will expect the power spectrum for Y, S., toY'

behave like the spectrum of white noise as co~ op. In oth-
er words, we expect

S (co)='C~O,

where = means asymptotic equivalence as co~ op.

As argued in Sec. II, integrating Y with respect to time
to get Y will bring down a power of co in the power
spectrum, giving

Sr(co)=Ceo

If the quantity LrrV„Y is identically zero, then MY(X)
is a function of X which may be regarded as the deriva-
tive of Y with respect to time. We may then look at the
stochastic differential of MY. If this has a contribution
from white noise ( cr V„WY is not identically zero) then

Returning to (1) in its general form, we are interested in
a general function Y(X) and its power spectrum Sr(co).
Let us discuss how we expect Sr(co) to behave as co~ en

based on the intuitive discussion in Sec. II.
We may write the Ito stochastic differential of Y(X) as

dY=MYdt+ g oi(X)d~jdY
„ax,
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so

S- ='Ceo
Y

Thus, our asymptotic series may be rewritten as'
oo

( I )n+1
Sr(co)= —g ( YW "+'Y) .2n+2n=0

SY——Cco

Clearly, this process may be continued indefinitely. We
are thus led to the following definition and theorem

Definition W. e say that Y(X) is once removed from
white noise if o. V Y is not identically zero. We say Yis
n times removed from white noise (n & 1) if

(i) o'TV„M~Y—:0 for all p & (n —1) and
(ii) o V„M" '1'is not identically zero.
Note that Y being n times removed from white noise is

rigorously equivalent to the sample paths of Y being al-
most surely n —1 times differentiable.

Theorem. If Y is n times removed from white noise
then Sr(co) ='Cco

C. Proof of the theorem

We now prove the theorem that concluded Sec. IIIB.
The power spectrum of Y is the Fourier transform of the
correlation function of Y,

oo

Sr(co) = dr e '"'Cy(r),
277

where

Cr(~)=(Y(t=0)Y(t=r)) .

The symmetry of C(~) allows us to write

oo

Sr(co) = Re — dr e '"'Cr(r)

Following Caroli et al. we apply the standard asymp-
totic expansion for a one-sided Fourier transform, '

1 ~ —i d'CY
S(co)= Re

—0 dT

2n+2 d2n+1C
=—g ( —I)"+1 n 1 1 Y

(8)
CO dPn+1n=0

where

d2n+1C
Y

dPn+ 1

is the limit of the (2n + 1)th derivative of Cr(r) as r ap-
proaches zero from above.

Clearly, the leading term in the asymptotic series will
be determined by the first nonzero odd derivative of
Cr(~) as tl0. The rest of the proof consists of finding the
conditions under which the (2n +1)th derivative is the
first nonzero odd derivative of CY as ~40.

To proceed we follow Caroli et al. and rewrite Cr(~) as

Cr(r)=(1'e 'Y) .

=gWg+gWg+(o Vg) (o Vg) .

Hence, it follows that

gMg=M(qg) jW—g (cr—TVg) (oV. g.) .

If we set g =g, we obtain

ring = —,M(ri ) ——,
~

o TV rt
~

(10)

Finally, note that since M is the adjoint of the Fokker-
Planck operator, in the stationary state, we have

(Mg) =0 (12)

for arbitrary g.
We now apply (10) to the expression YM "+ ' Y

= YM(M "Y) to obtain

YW "+'Y=M(YM "Y)—(MY)(M "Y)

—(Lr VY).(o. VM "Y) .

We may then apply (10) to the second term on the
right-hand side to obtain

(MY)(M "Y)=W[(MY)(W " 'Y)]—(M Y)(M " 'Y)

—(o VWY) (o."VW " 'Y) .

Repeating the procedure, we obtain

(~ Y)(M'"+' Y)

=W[(W~Y)(M " 'tY)] —(M~+'Y)(W " 'iY)

(o TV~qY). (o TV~~" &Y)

When we get to q =n, the term on the left-hand side is
(W"Y)M(M" Y) so we may apply (11) to obtain

(W"Y)M(W"Y)= —,
' W[(M"Y) ]——,

~
L7 V~"Y

~

Taking this all into account, we have
n —I

Y~2"+1Y—y ( 1)q~[(~eY)(~ " &Y)]
q=0

n —1—y ( —1) ( Vzl'tY) (o VW " ~Y)

+(—1)"—,
' ~[(~"Y)']

We now derive some properties of the operator M. If
g(X) and g(X) are arbitrary functions of X, then we have

~(nk) =n~k+0~n
a& ag a& ag

So, we find

d~CY

d7 ~~0
=(YW Y) .

—( —1)"—,
'

~

o'V~"Y I'.
The mean of the first and third terms on the right-hand
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side is zero because of (12). So we have

(Y~2 +1Y) ( ~( 1) +1~ TV~nY~2

n —1

+g ( —1)~+'(cr VM Y) (cr .VM" ~Y)).
q=0

(13)

Induction then yields that [( —1)"+'/w]( YM "+'Y) is

the first nonzero coefficient in the series if and only if
(i) o.rVW~Y=O for all q & n and
(ii) crrVM" Y is not identically zero.

This is the expected result.

IV. COLORED NOISE

We now apply our formula (9) to the example of
colored noise, i.e., (5). In this case the operator LTrV be-
comes ~ V, . We are interested in the power spectrum of
Y(X). The coefficient of cu in the asymptotic series for
Sr(co) is

(YMY)= ( ~vrrV, Y~ )=0.
2~

So, the spectrum must fa11 off as a higher power.
The coefficient of co is then log m

—(YW'Y) = ( ~~TV, WY ~') .
7T 2'

Thus, if the special condition

f
vrrV, WY

/

—=0

(14) FIG. 3. Power spectrum of system described by Eqs. (15)
showing co behavior at high frequencies and co behavior at
intermediate frequencies.

X= —yX+oZ,
Z= —PZ+/3g .

(15a)

(15b)

The stationary solution to (15b) is an Ornstein-Uhlenbeck
process with correlation time /3 '. The characteristic
time for X is y

' so, for y '«co«P ' we expect co

behavior for S~(co).

is not satisfied, a colored noise will produce an ~ fa11-
off.

However, if the time scale of the system ~z, and the
correlation time of the noise, rz, are well separated
(r~ &&rz) and we look at frequencies in an intermediate
range (rz «co«rz ) then the noise "looks" white. In
such an intermediate frequency range we therefore expect
an co behavior of the power spectrum of a function of
X.

Clearly, then, if we plot logS~(cu) versus logco, we will
observe the behavior shown in Fig. 3. For intermediate
frequencies, the plot will be a straight line with slope —2.
For high frequencies, the plot will be a straight line with
slope —4. The change will occur in a region around the
inverse correlation time of the noise.

This result will be particularly useful in experimental
situations when the noise is not directly observable. The
correlation time of the noise perturbing the system can be
estimated from the frequency at which crossover to the
asymptotic regime occurs in the power spectrum of the
system.

We may illustrate this by looking at the linear system

The power spectrum of X may be obtained exactly, '

Po 1Sx(~)=
( Y2+ 2)(P2+ 2)

Clearly, when co dominates y and /3 dominates co

~2
S~(co)=

2&

while, when co dominates both y and p,
Po. 1

S~(co)=
277 Q7

A simple calculation shows that the lines defined by

o. 1
logS& ——log

27' co2

and

~2PZ 1
1ogS& ——log 2' Q7

intersect at co =p, the correlation time of the noise.
It must be stressed that the cu behavior does not arise

from the series (9). Equation (9) is an asymptotic expan-
sion that breaks down for co sufficiently small. A stan-
dard test for the validity of an asymptotic expansion is to
find where the magnitude of the first neglected term is
equal to the magnitude of the truncated series. In this
case, the first neglected term is the co term. For the
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APPENDIX

In this appendix we demonstrate that, for the case of an
additive Ornstein-Uhlenbeck noise, the asymptotic ap-
proximation to S~(go) breaks down when co equals the in-
verse correlation time of the noise, provided the time
scales of the system and the noise are well separated. We
do this by showing that the first neglected term, the cu

term, is equal in magnitude to the co term when co

equals ~z
—1

The system we consider is

X= f(X)+ygZ,
Z= y'Z—+yk .

(16)

Here, Z is a vector of independent Ornstein-Uhlenbeck
noises with correlation time y and stationary probabili-
ty density

case of an additive Ornstein-Uhlenbeck noise in X dimen-
sions, we show in the Appendix that this term is equal in
magnitude to the go term when co equals P, the inverse
correlation time of the noise, provided the time scales of
the system and the noise are well separated. This con-
firms our observation that the co decay must break
down for frequencies less than the inverse correlation time
of the noise.

ps(Z)=(m) 'f exp( —Z
l

), (17)

independent of y. This independence is a consequence of
the y scaling of (16) which is the standard scaling for in-
vestigating nearly white noise. '

The coefficient of co in the asymptotic expansion for
Sz (co) is, according to (13),

&X M'X &= & —,'( —1)lcr V(WX )l

+(oTVMX ) (crT. VM X~)& .

In this case we have

M=(f+ygZ). V„—y Z V, + —,y V, ,

o.TV=@V, .

(18)

Plugging these formulas into the two terms on the
right-hand side of (18), we have

& —,
'

( —1)
l

v(~'x )
l

'&

4 2

= —y a 2X X g»kgf yg k ), —
k p p

and

((qq V ky» ) (qq V »qkq)) =y (y gg k — gyg kgpk f + gg kgpk(f V„) f + gg kgpk (f V,f )

a a z a a+y g g kgpj»Y ggqk
g

f + gykggpk Qgq X
g

f )
.

pj k p, k q, i q p

We now note that (BI(3X&)f is a local characteristic
frequency of the deterministic system

X= f(X)

and, so, is much less than y . Similarly,
(f V„)(BIBX~)f and (BIB X)(f V„f ) are local charac-
teristic quantities of dimension frequency squared which
must, thus, be much less than y . This allows us to write

8

&
—

2 la v(w'x ) '&= y g &g'„&,
2

and

&(crTVMX ) (crTVM'X ) &

=y'g &g'k &

k

The last result may be further simplified by realizing
that the second and third terms involve the expectation of
Zj multiplied by a function of X. In the limit of large y,
the stationary joint probability density p(X, Z) is of the
form"

p(X, Z)=po(X)p(Z)+ —pi(X, Z)+O(1/y ) .
r

Here p(Z) is the stationary density (17) of the Ornstein-
Uhlenbeck process Z. Since &Z&=0, the expectations in
the second and third terms are of order y '. Therefore,
these terms can be neglected with respect to the first term
for y sufficiently large and we may write

&(~ v~x ) (~ v~'x ) &=y'g &g k & .
k

5 a a+'Y X g kgp/Xj Xgqk „X f-)
p,j,k

5 a+y gg kg,keg„»; g» g» f-)
p, k q, i

(19)

Hence we have

8'
&x ~'x &= g&g'k& .

2W k

A quick calculation shows that the coefficient of co is
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So, the condition that the co and cu terms be equal in
magnitude is

QED .
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