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Asymmetry of Stark-broadened Lyman lines from laser-produced plasmas
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The asymmetries, as well as the widths, of spectral line profiles emitted by highly ionized high-Z
elements in a dense, laser-produced hot plasma may be of use in determining the density of these
plasmas. Three effects which introduce asymmetries into the line shape are the ion-quadrupole in-

teraction, quadratic Stark effect, and fine-structure splitting. In this paper a method is proposed for
including the ion-quadrupole interaction. This technique is then combined with procedures for in-

cluding the quadratic Stark effect and fine-structure splitting to obtain asymmetric Lyman x-ray
line profiles which include all three contributions.

INTRODUCTION AND FORMALISM ION QUADRUPOLE INTERACTION

The line-shape function, in the static-ion approxima-
tion, is given by'

I(co)= f P(e)J(co,e)de,

where P(F) is the static ion microfield probability and

J(co,e)= ——Im Tr„D[co—(H„/A' —coo)
1

fez /fi —M(co ) ]—

which is the electron-broadened line profile for a given ion
microfield e. Here we have chosen our z axis to be in the
direction of e. The electron-broadening effects are con-
tained in the operator M(co), ' Tr„represents a trace over
radiator states, H, is the free-radiator Hamiltonian, and
%coo is the radiator ground-state energy. The operator D
is given by d d, where the radiator dipole operator is re-
stricted to have nonzero matrix elements only between ini-
tial and final states of the Lyman line to be calculated.

This is the general formalism which will be modified in
subsequent sections to include asymmetries due to the
ion-quadrupole interaction, fine-structure splitting, and
the quadratic Stark effect.

Assuming that perturbing ions do not penetrate the ra-
diating ion, the energy of electrostatic interaction between
the ions and the radiator can be written as a multipole ex-
pansion,

BE;(0)
U=q@(0)—d E(0)——,

' $ Q;J ()x,

where q, d, and Q are the radiator total charge, dipole
moment, and quadrupole tensor, respectively, and N(0),
E(0), and BE;/Bx~ are the potential, electric field, and
electric field gradient at the radiator due to the perturbing
ions. This is basically an expansion in a smallness param-
eter defined as the ratio of the atomic radius and the aver-
age interion spacing, (n ao/z)R;o, where n is the principle
quantum number of the radiator, ao is the Bohr radius, Z
is the radiator nuclear charge, and R;0 is the average dis-
tance between ions. For an Ar Ly-a line at an electron
density of 10 cm (10 cm ), this smallness parame-
ter is 0.19 (0.41). In this work, we will terminate the ex-
pansion at the quadrupole term. The next-order term, the
octupole interaction, is not only 1 order higher in the
smallness parameter, but also has, to first order in pertur-
bation theory, a symmetric effect on the line shape, and,
hence, should not produce a significant effect on line
asymmetry.

The generalization of Eqs. (1) and (2) to include the in-
teraction of the radiator quadrupolar tensor with the elec-
tric field gradients of the perturbing ions is given by

I(co)=f de' f de'„ f des„ f de f de„~ f de„, f de~, P'(e, e, . . . )J(co,e, e „,. . .), (4)

where

BE;
EJ

Bx~

P (e,& „,eely, E, . . . ) is the joint probability density func-
tion for field strength e and field gradients E'«E'yy, . . . .
The prime on I' indicates that the coordinate frame used
is to be one with the z axis along e. J(co,e,E„,. . .) is the

I

line shape for given values of e,e„„,. . . , given by

J(co,e, e~, ... ) = —n. 'Im Tr,D

X co (H, /A coo) ee—z /fi— —
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The joint probability can be expressed in terms of the usu-
al microfield, P(E), by writing

P'(E,E, . . . ) =P(E)W(E
~
E„„,. . . ), (7)

We then make the following simplifying approximations:

W(E~ E,E~, . . . ) 5(E —(E )„E~ —(E»)„.. . ) .

where W(E
~
E~, . . .) is the conditional probability for

finding field gradients E,E», . . . given that the field has
magnitude e and is the z direction.

We define a constrained average ( E;1 ), by

f f P (E,E~,E», . . . )EjdE~ dE», . . . P(E—)(EJ )q .

IJ &J & JJ JJ

=Q [(E ——,'(E, +E»)),] . (10)

The microfield, P(E), is calculated for screened fields
derivable from a Debye-Huckel form for the potential.
To be consistent, the field gradients must also be derived
from this potential. The result is

Hence we expect the approach presented here to be valid
for argon Ly-a and -P lines for electron densities of up to
a few times 10 cm and for the Ly-y line up to a few
times 10

Using the tracelessness of the quadrupole tensor and the
symmetry of the x and y directions, we can write

That is, the field gradients are replaced by their con-
strained averages. In the nearest-neighbor limit, expres-
sion (9) is exact. We believe that the use of the nearest-
neighbor limit for this expression is equivalent to the
treatment of the quadrupole interaction given by d' Etat
et al. In the general case, expression (9) is exact to linear
order in (E;~ ),. Although second-order errors which are
proportional to ( E,J ),—( E;J )„are introduced, they
should be 3 orders higher in the smallness parameter.

I

where the sum is over perturber ions; r; and p; are the ra-
dial coordinate and the cosine of the angle between r; and
the z axis for the ith ion, respectively.

This constrained average is calculated in the indepen-
dent perturber model. ' Within this model the above ex-
pression becomes

(E— (E +E» )
' )

—8nZen;E f dk k e" ' j2(kE) f dr r g(r)F(rj)2(kE, (r))

dk ke ' sin ke
(12)

where

hi(k)=4m f dr r e ~ '"'[jo(kE&(r)) —1],
(njlj,

~
H„~ nljj, )

Z Z1+
2A n n j+—,

3

4n
(14)

e
—r/A,

F(r) =
r

r 1 r1+—+—
3 A,

3
(13)

e
—r /A.

E,(r)=

is the ion density, j2 is the second order spherical
Bessel function, and g(r) is the radial distribution func-
tion. This result is computed numerically. A Debye-
Huckel g(r) was used in our calculations. For compar-
ison, a Monte Carlo g (r) was used for a high density case
(Ar+ ' plasma, temperature equals 800 eV, n, = 10
cm ) with negligible difference in the resulting line
shape.

The fine-structure splitting and the quadratic Stark ef-
fect are calculated as in Woltz et al. " To include fine
structure, the Dirac equation is solved for H„ in Eq. (2).
The result is diagonal in the representation

~
njlj, ). It is

convenient to expand the exact solution to second order in
(aZ) with the result, '

FINE STRUCTURE AND QUADRATIC STARK EFFECT

where a is the fine-structure constant (a= », ). The first
term is the usual result when spin is neglected and the
second term is the fine-structure correction. The Dirac
theory does not contain radiative corrections, but these are
of order a in(a) smaller than the last term kept above. '

This result, Eq. (14), is then transformed to the basis

~

nlmm, ) or
~

nqmm, ) depending on whether a spherical
or parabolic representation is desired. The quantity
[co coo Eez/fi M(co)—] is c—alculate—d as in the case where
spin is neglected; the only difference is that it will have
twice as many rows and columns, with the elements being
equal to zero if m, &m,'.

We have done two different numerical calculations of
Lyman lines in which we have approximately included the
quadratic Stark effect. Although the two methods con-
tain quite different approximations they give results
which are in close agreement for the Ly-a and -P lines but
agree less well for the y lines. This suggests that while
both approximations work well for the a and P lines with
the plasma conditions considered here, there is some un-
certainty with regard to the Ly-y calculations.

When the resolvent in Eq. (2) is calculated only within
the subspace of initial radiator states (principal quantum
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TABLE I. Trends in ion-quadrupole interaction, quadratic
Stark effect, and fine-structure splitting.

APPLY APPLY
E LECTRIC F I ELD
FIE L D GRAD IE NT

Ion Quadrupole (Blue)
Quadratic Stark (Blue)
Fine Structure (Red)

Principal
Quantum
Number

Electron
Density

Radiator
Nuclear
Charge

FICz. l. Energy levels of the n =2 hydrogenic argon states in
the presence of an electric field and field gradient.

number equals n), the field-dependent radiator Hamiltoni-
an is diagonal in parabolic state representation and its ma-
trix elements give the linear Stark effect

E~~ =(nqm
i H, +eez

~

nqm )

me Z 3' enq
2zme+ (15)

q "q 16 z

(16)

The first method of approximately including the quad-
ratic Stark effect consists of calculating the resolvent only
within the subspace of initial radiator states, but replacing

Large electric fields, which are present in high density
plasmas, can mix states of different principal quantum
number and give rise to higher-order Stark effects. A
second-order perturbation calculation of the Stark effect
gives energy eigenvalues having quadratic field depen-
dence, '

4

the linear shift [Eq. (15)] with the quadratic shift [Eq.
(16)] for the matrix elements of H, +eez. This will give
the correct quadratic field dependence, but neglects
changes in transition probabilities due to the mixing of
states.

The second method is based upon the idea that states
with principal quantum number n will mix most strongly
with those states which are closest in energy, that is the
states with principal quantum number n +1. The resol-
vent matrix is therefore calculated within the subspace of
states having principal quantum number either n or n +1.
This approximation includes the mixing of states with
principal quantum number n and n+1 but neglects the
effects of mixing with other states such as those with
principal quantum number n+2. Clearly, when Stark
shifts are large enough to cause states with principal
quantum number n + 1 and n +2 to overlap, it no longer
makes sense to neglect this mixing. The condition that
n + 1 and n +2 states not overlap puts an upper bound on
the electron density for which this approximation is valid.
Hence, for Argon plasmas the bound is approximately
2)&10, 2)&10, and 5)&10 cm for Ly-a, Ly-/3, and
Ly-y lines, respectively.

DISCUSSION AND RESULTS

To understand qualitatively the asymmetry due to the
ion-quadrupole interaction, we first consider the perturba-
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FICz. 2. Argon Ly-P profiles, at an electron density of 10 cm 3, with fine-structure splitting (solid curve), quadratic Stark effect
(dashed curve), and ion-quadrupole interaction (dotted curve). Also shown, on a raised scale, is the profile resulting from all three
asymmetry considerations.
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FICx. 3. Same as Fig. 2, but electron density is 10 cm

tion by a single ion located at the coordinates (0,0,—z) on
the n =2 levels of a hydrogenic ion located at the origin.
If we consider initially that the perturbation consists only
of the electric field produced by the ion, the new states
are, to first order, the well-known Stark states with per-
turbing field e=e/z . If we next include the perturbation
due to the field gradients of the ion, the result is as shown
in Fig. 1. The higher energy level (which gives rise to the
blue wing intensity) is brought in closer to line center
while the lower energy level (red wing) is spread further
out. This level behavior will lead to a blue asymmetry, at
least one to the wings. Similar arguments hold for higher
series lines. By considering the smallness parameter,

(n ao/Z)/Rgo-n n,' /Z

it is clear that the blue asymmetry caused by the ion-
quadrupole interaction will increase with principal quan-

turn number and with density, but will decrease with radi-
ator nuclear charge.

Reference 11 discusses the quadratic Stark effect and
fine-structure splitting in more detail. It is shown that the
quadratic Stark effect, like the ion-quadrupole interaction,
gives rise to a blue asymmetry which increases with prin-
cipal quantum number and with density but decrease with
increasing radiator nuclear charge. The fine-structure
splitting has just the opposite effect. It gives rise to a red
asymmetry, the magnitude of which decreases with in-
creasing principal quantum number and density while in-
creasing with radiator nuclear charge.

These trends are summarized in Table I.
Figures 2—6 demonstrate these trends. Figure 2 shows

argon L-P profiles at an electron density of 10 cm and
a temperature of 800 eV. Each asymmetry effect is
shown separately, and the combined effect is displayed on
a raised scale. Density dependence can be seen by com-
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FIG. 5. Argon Ly-a profiles, same conditions as Fig. 2.

paring this with Figs. 3 and 4 which show the correspond-
ing profiles at 10 cm and 3X10 cm . Figures 5
and 6 show argon Ly-a profiles at densities of 10

1024 —3

'
ies o crn

cm . (The peak of one of the profiles in Fig. 6
has been truncated to fit on the figure. ) Comparison with

igs. 2 and 3 show the expected principal-quantum-
number dependence.

Ly-~ hnes are particularly useful for density diagnostics
because they are usually intense enough to be seen when

Al h
the Ly-a line is observable, but are not as optic ll th k'ay ic.

t ough inclusion of all three asymmetry effects will
cause significant changes in the Lyman line profiles, for
most temperature and density regimes, generally the Ly-P
line will still be a two-peaked function. Let us define a
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FIG. 6. Argon Ly-a profiles, same conditions as Fig. 3.
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0.2 (blue) asymmetries which increase with increasing density.
These two effects are shown together in Fig. 7. Also
shown is the asymmetry of lines which are calculated us-
ing all three effects. It is interesting to note that while
each effect, taken alone, would cause significant asym-
metry at 4X 10 cm, their combined effect is to yield a
nearly symmetric line profile.

CONCLUSION

—0.2
10 3x l0

ELECTRON DENSITY
(cm ')

FICs. 7. Density dependence of argon Ly-P line asymmetries
due to the fine-structure splitting, the ion-quadrupole interac-
tion, and quadratic Stark effect, and due to the combination of
these.

measure of asymmetry of the Ly-P line as
2(Is I,)l(Ib+I„—), where Is and I„are the blue and red
peak intensities, respectively. In Fig. 7, we plot this asym-
metry as a function of density for an Ar+' plasma at 800
eV. Lines which include only the fine-structure splitting
have a negative (red) asymmetry which decreases in mag-
nitude with increasing density. Both the quadratic Stark
effect and the ion-quadrupole interaction cause positive

A line-broadening theory has been presented which in-
cludes three sources of asymmetry, the ion-quadrupole in-
teraction, fine-structure splitting, and the quadratic Stark
effect. The behavior of each effect with changes in prin-
cipal quantum number, electron density, and radiator nu-
clear charge has been investigated. Of course, when mak-
ing comparison with experiment, other effects, such as
opacity, continuum radiation, and overlapping spectral
lines, must be accounted for in the analysis. Nevertheless
the asymmetries presented here may be observable in ex-
periments on argon Ly-a and Ly-P lines. ' However, the
noticeable asymmetry of the Ly-y line does not appear to
be in evidence. This may be due to the fact that the Ly-y
lines are emitted under different environmental condi-
tions' (i.e., lower average ion density) than the a and P
lines or there may be something about the theoretical
model that is incorrect for this particular transition. Fur-
ther theoretical and experimental work is required to
resolve these issues.
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