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We have conducted an experiment on the transition from quasiperiodic to weakly turbulent flow
of a fluid contained between concentric cylinders with the inner cylinder rotating and the outer
cylinder at rest. Power spectra, phase-space portraits, and circle maps obtained from velocity time-
series data indicate that the nonperiodic behavior which we have observed is deterministic, that is, it
is described by strange attractors. We discuss various problems that arise in computing the dimen-
sion of strange attractors constructed from experimental data and show that these problems impose
severe requirements on the quantity and accuracy of data necessary for determining dimensions
greater than about 5. In the present experiment the attractor dimension increases from 2 at the on-
set of turbulence to about 4 at a Reynolds number 50% above the onset of turbulence.

I. INTRODUCTION

The determination of the fractal dimension d of strange
attractors has become a standard diagnostic tool in the
analysis of dynamical systems.! ~> The dimension, rough-
ly speaking, measures the number of degrees of freedom
that are relevant to the dynamics. Most work on dimen-
sion has concerned maps, such as the Hénon map, or sys-
tems given by a few coupled ordinary differential equa-
tions, such as the Lorenz and Rossler models. For any
chaotic system described by differential equations, d must
be greater than 2, but d could be much much larger for a
system described by partial differential equations, such as
the Navier-Stokes equations. Indeed, the best rigorous es-
timates of the dimension of attractors for turbulent flow
yi%ld6q1§ite large numbers for the attractor dimension (say
10°).°~

Recent experiments on the transition to chaos in the
Couette-Taylor system,’ convection,'® and a differentially
heated annulus!! have shown that the chaotic (strange) at-
tractors for these systems have surprisingly low dimen-
sion. However, efforts to compute dimension from exper-
imental data have revealed a number of problems that do
not arise in the analysis of model systems where essential-
ly unlimited amounts of data of arbitrary accuracy can
easily be generated.>> Using our Couette-Taylor data as
an example, we will examine in this paper some of the
problems that arise in determining dimension from labo-
ratory data.

After a brief discussion of the experimental methods in
Sec. II, we will show in Sec. III that photographs, velocity
power spectra, phase-space portraits, and circle maps
alone provide evidence that the observed nonperiodic
behavior is deterministic and low dimensional, that is,
chaotic. In Sec. IV we present the dimension calculations,
emphasizing the limitations and possible pitfalls in such
calculations. Section V is a discussion and summary.

II. EXPERIMENTAL METHODS

The Reynolds number for the Couette-Taylor system
can be defined as R =aQ(b —a)/v, where a and b are,
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respectively, the radii of the inner and outer cylinders, Q
is the angular velocity of the inner cylinder, and v is the
kinematic viscosity. In our system we have a=5.205 cm
and b =5.947 cm, which gives a radius ratio of 0.875. At
this radius ratio the critical Reynolds number for the on-
set of Taylor vortex flow in an infinite system is
R.=118.4.12 The upper and lower boundaries of the an-
nulus are Teflon rings that are fastened to the outer
cylinder, and the ratio of the fluid height to the gap be-
tween the cylinders is 20.0. The frequency of rotation of
the inner cylinder is locked to a crystal reference oscilla-
tor.

The working fluid is orange oil (Cargille No. 19604),
chosen because it has the same index of refraction at the
laser wavelength (488 nm) as the borosilicate glass outer
cylinder. The fluid kinematic viscosity is 0.0109 cm?/s at
25°C. In the laser Doppler velocimetry measurements the
fluid is seeded with 0.22-um diam spherical titanium
dioxide particles, and the flow visualization studies are
made using a dilute suspension of small platelet particles
(Kalliroscope AQ1000, Ref. 13). The cylinder system is
immersed in a bath that is controlled in temperature to
0.1°C. The bath has the same refractive index as the glass
cylinder and the working fluid, and the windows of the
bath are parallel glass plates; therefore, the optics are all
planar for the laser Doppler velocimetry measurements.

The radial component of the velocity is measured (at
points midway in the gap between the inner and outer
cylinders) by the laser Doppler crossed-beam technique.
A 256-channel pulse correlator is used to determine the
correlation function of the pulse train from the photomul-
tiplier; each pulse corresponds to the detection of a single
photon. In the Reynolds-number range of interest the sig-
nal is sufficiently strong so that a correlation function (os-
cillating at the Doppler shift frequency) can be obtained
in a time that is short compared to the time required for
the velocity to change significantly—if needed, as many
as 100 velocity points can be obtained per characteristic
oscillation period. Thus the Doppler shifts extracted
from the correlation functions at successive time intervals
yield essentially the instantaneous velocity.!*!> The velo-
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city data files each contain 32 768 points.

The spatial resolution of the laser Doppler measure-
ments is set by the size of the scattering volume. This
sample volume is approximately an ellipsoid of revolution
of length 100 um in the azimuthal direction and 30 um in
the axial and radial directions; for comparison, the gap
between the cylinders is 7.42 mm. The concentration of
the 0.22-um diam spherical seed particles is adjusted so
that the scattering volume contains about one particle on
the average.

III. DETERMINISTIC NONPERIODIC FLOW (CHAOS)

A. Photographs, time series, and spectra

Previous experiments have shown that the Couette-
Taylor system with a radius ratio of 0.875 and aspect ra-
tio around 20 passes through the following sequence of
well-defined states as the Reynolds number is increased:
16—18 the basic (Couette) flow; Taylor vortex flow, which
is time independent; wavy vortex flow, which is periodic
in time; modulated wavy vortex flow, which is quasi-
periodic; and, finally, chaotic (weakly turbulent) flow. In
this paper we are concerned with the transition from
modulated wavy vortex flow to chaos. Figure 1 shows
photographs of the flow for a sequence of Reynolds num-
bers ranging from R /R.=10.6, which is in the modulat-
ed wavy vortex flow regime, to R/R.=26.3, which is
well beyond the onset of chaos (R /R, =11.7+0.2)."°

The photographs show that some small-scale spatial
structure is discernible below the onset of chaos, but the
small-scale structure in successive vortex pairs appears to
be the same. Above the onset of chaos there is an increas-
ing amount of small-scale structure, and it is no longer
the same in different vortex pairs. Nevertheless, a high
degree of spatial order persists above the onset of chaos;
therefore, we prefer to call this flow chaotic rather than
turbulent, but, following current usage, we also sometimes
call this flow “weakly turbulent.” The increase in the
number of degrees of freedom with increasing Reynolds
number, qualitatively clear from the photographs, will be
quantified by the dimension calculations given in Sec. IV.

Velocity time series and power spectra are shown for a
sequence of Reynolds numbers in Figs. 2 and 3, respec-
tively. In Figs. 2, 3(a), and 3(b) the upper two graphs are
for modulated wavy vortex flow, while the lower two
graphs in each figure are for chaotic flow. In modulated
wavy vortex flow there are two traveling azimuthal
on the Taylor vortices, the first with rotation
frequency w;/m;©2=0.34 and the second with rotation
frequency w,/m,Q=0.44; in the present experiment the
azimuthal wave numbers for both waves were the same,
m,;=m,=4. The values 0.34 and 0.44 for the wave fre-
quencies are approximate; actually the ratio w,/w; in-
creases slowly but in a strictly monotone fashion with in-
creasing Reynolds number in the vicinity of the onset of
chaos—no frequency locking is observed.?’

The velocity power spectra for modulated wavy vortex
flow contain two fundamental frequency components and
their combinations, as Fig. 3 illustrates with data at
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R /R.=10.4 and 11.4. The background level in these two
spectra is instrumental noise rather than fluid noise; the
instrumental noise is white and independent of Reynolds
number [see Fig. 3(b)]. The onset of nonperiodic flow is
marked by a rise in the background noise above the in-
strumental noise level, as can be seen in the spectra at
R/R.=12.0 and 15.5. However, even at R/R,=15.5
most of the spectral energy is still in the components at w,;
and w, (and their combinations), and the flow is still high-
ly ordered, as can be seen in the photographs in Fig. 1. At
larger Reynolds numbers the amplitudes of the com-
ponents at w; and w, decrease with increasing Reynolds
number, and these components disappear at R /R, =22.0
and 20.0, respectively.> ¢2!

B. Spectral evidence for deterministic behavior

Broadband noise in power spectra can arise from sto-
chastic or deterministic processes, but the decay in the
spectral power at large o is different for the two cases.?>?3
For a process governed by an nth-order stochastic dif-
ferential equation, Sigeti and Horsthemke?® have shown
that the spectral power at high frequencies follows a
power law, P(w) < ~2". In contrast, the assumption that
the solution of deterministic equations is infinitely dif-
ferentiable leads to the conclusion that the spectrum falls
off exponentially, or at least faster than o ~* for arbitrarily
large s. Greenside et al.??> examined numerically a sto-
chastic differential equation model and a deterministic
model, and they found a power-law decay for the first
case (with n equal to the order of the equation, 2) and an
exponential decay for the second case, which was the
Lorenz model.

Greenside et al. analyzed data obtained by Ahlers and
co-workers?* for weakly turbulent convection and found
power-law behaviors, @ ~* in some cases and &2 in other
cases. Another study of turbulent convection, by Atten
et al.,”® showed exponential decay at high frequencies.

Figure 4 shows two graphs of our velocity power spec-
tra obtained at R/R,=15.2, one on a semilogarithmic
scale and the other on a log-log scale. The exponential de-
cay given by the linear behavior on the semilogarithmic
plot indicates that the noise in our data arises from a
deterministic rather than a stochastic process.

C. Phase space portraits and Poincaré sections

We have constructed multidimensional phase-space
portraits from the velocity time series { V(#;); t, =k At,

k=1,...,32768} by the method of time delays:**?’ tra-
jectories in an m-dimensional space pass through the
points {V(t;), V(tx+7),...,V(tx+(m —1)7)}, where

m is the embedding dimension and 7 is a time delay.

For an infinite amount of noise-free data the choice of
time delay 7 is arbitrary,”’ but for real laboratory data a
good choice of 7 is essential for geometrical as well as nu-
merical analysis of a phase portrait. As 7—0, the trajec-
tory approaches the identity line V(¢)=V (¢t +p7) for all
positive integers p <m. There are other values of 7 for
which the data points are concentrated in a small region
of phase space, so that the local structure of the attractor
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FIG. 1. Photographs of the flow as a function of Reynolds number in the region of transition from modulated wavy vortex flow to
chaotic flow. The values of R /R, are given on the photographs. The first two pictures are of modulated wavy vortex flow, while the
remainder are in the chaotic regime. The flow patterns were rendered visible using a suspension of small platelets (Ref. 13).
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FIG. 2. The time dependence of the radial component of the
velocity, measured at a point in the middle of the gap between
the inner and outer cylinders, for two Reynolds numbers
(R/R.=10.1 and 11.3) corresponding to modulated wavy vortex
flow, and two Reynolds numbers (R /R, =12.0 and 15.2) corre-
sponding to chaotic flow. The corresponding power spectra are
shown in Fig. 3. The time T is the period of rotation of the
inner cylinder; in seconds, T=18.76/(R /R.).

cannot be extracted from the reconstructed phase por-
traits.

Recently Fraser and Swinney?®?° have shown that the
optimum choice of 7 in most systems corresponds to the
first local minimum in the mutual information function,

I=[ [ P(X,Dlog[P(X,Y)/P(X)P(Y)ldX dY ,

where, in the present case, X =V (¢) and Y =V (t +7), so
I=I(t). P(X) and P(X,Y) are, respectively, the proba-
bility density and the joint probability density. The mutu-
al information measures the dependence of two variables
in a more general way than the autocorrelation function,
which measures the linear dependence. The mutual infor-
mation gives the accuracy in the prediction of the value of
V(t +7), given the value of V(t). Now if V(¢) and
V(t +7) are to be used as coordinates in constructing a
phase portrait, these coordinates should be as independent
as possible. Therefore, the optimum choice in 7 corre-
sponds to a minimum in the mutual information function.
The first minimum is preferable over later minima be-
cause as time passes the points on the attractor spread out
over the invariant measure.

Figure 5 shows the mutual information as a function of
7 for the Couette-Taylor flow data obtained at
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FIG. 3. Velocity power spectra showing (a) low-frequency
and (b) high-frequency behavior for quasiperiodic modulated
wavy vortex flow at R/R,=10.4 and 11.4 and chaotic flow at
R/R.=12.0 and 15.5. The frequency scales are in units of the
cylinder frequency Q.
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FIG. 4. (a) A semilogarithmic velocity power spectrum and
(b) a log-log spectrum for data obtained at R/R.=15.5. The
exponential decay (straight-line behavior) down to the instru-
mental noise level (1072) is clear in (a).
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FIG. 5. (a) The mutual information is plotted as a function
of time delay 7 for data obtained at R /R, =10.1. The time de-
lay is given relative to the period T, of the second fundamental
frequency @,. Two-dimensional projections of phase portraits,
V(t 4+7) versus V (1), constructed for three different time delays,
are shown below the graph of the mutual information: (b)
7/T,=0.11, which is too small a delay time; (c) 7/7,=0.24,
corresponding to the first minimum in the mutual information,
this is the optimum choice for 7; (d) 7/ T,=0.48, which is too
large a delay time.
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R/R.=10.1. For these data and for all other data
presented in this paper the first minimum in the mutual
information occurs for a delay time about equal to one-
fourth of the period of the second fundamental frequency,
@,. Delay times near this optimum value were used in our
analysis.

Figure 6(a) shows phase portraits obtained for a se-
quence of Reynolds numbers, and Fig. 6(b) shows the cor-
responding Poincaré sections given by the intersection of
orbits in three-dimensional phase portraits with planes.
At R/R.=10.1 and 11.3 the Poincaré sections clearly
show that the orbits lie on the surface of a torus; the
scatter presumably arises from instrumental noise. Even
at R/R,=12.0, where the photographs, time series, and
power spectra indicate the presence of noise, the torus is
still evident, although it is much noisier and it has
developed prominent wrinkles. With our data files of
about 300 orbits we were unable to quantify the folding at
the wrinkles.

D. Lyapunov exponents

Lyapunov exponents characterize the exponentially fast
divergence or convergence of nearby trajectories in phase
space. The largest Lyapunov exponent is zero for a limit
cycle, a 2-torus, or, more generally, an n-torus, but at the
onset of chaos the largest Lyapunov exponent becomes
positive. Wolf et al.’® have developed a method for com-
puting Lyapunov exponents from experimental data, and
that method has been applied to our data for the Couette-
Taylor system.® The conclusion was that the largest
Lyapunov exponent becomes positive at R/R.
=11.7£0.2, which is in accord with the other evidence
for the onset of chaos.

E. Circle maps and the onset of chaos

One-dimensional maps of circle, 8, , versus 6,, can be
constructed from the Poincaré sections of a 2-torus, as
shown in Fig. 7: 6, is the angle of the nth point measured
with respect to a polar coordinate system whose origin is
inside the closed loop formed by the Poincaré section.
Figure 7 shows that this construction yields smooth
curves for the function 6, ,; = f(6,), even beyond the on-
set of chaos. This is further evidence that the nonperiodic
flow is deterministic—given 6,, the map determines 6, .

Extensive recent studies of circle maps have been
motivated by the interest in characterizing the transition
from quasiperiodic flow on a 2-torus to chaos.>!' 3% Cir-
cle maps with cubic inflection points have been found to
exhibit wuniversal behavior in the vicinity of the control
parameter value at which the map becomes noninvertible.
As the point of noninvertibility of the map is approached,
there is an increasing probability that the winding number
of the map, which corresponds to the ratio of the two fre-
quencies of the quasiperiodic flow, will become locked at
a rational number value. The theory predicts the scaling
behavior of these frequency-locked bands. At the critical
point, where the map becomes noninvertible, only
frequency-locked states occur. Thus frequency locking
plays a crucial role in the large body of theory that has
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FIG. 6. (a) Two-dimensional phase portraits V(¢ +7) versus V(¢) constructed for two Reynolds numbers (R/R.=10.1 and 11.3)
corresponding to modulated wavy vortex flow and two Reynolds numbers (R /R.=12.0 and 15.2) corresponding to chaotic flow. (b)
Poincaré sections given by the intersection of orbits of three-dimensional phase portraits [where the third axis is V(¢ 427)] with
planes normal to the paper through the dashed lines in (a). [The delay times 7 at the four Reynolds numbers are 162, 144, 144, and
108 ms, respectively; about 40 of the 300 orbits observed at each Reynolds number are shown in (a).]

been developed for circle maps.

Unfortunately, the existent circle-map theory does not
apply to the quasiperiodic to chaotic transition in the
Couette-Taylor system, because frequency locking is not
observed. In fact, Rand has shown that frequency locking
cannot occur in systems with circular symmetry.?° Thus
the breakup of the 2-torus in systems such as the
Couette-Taylor system, rotating concentric spheres, and
the differentially heated rotating annulus must occur in a
way that is different from the systems described by maps
with a cubic inflection point.

Considering again the circle maps in Fig. 7, we should
point out that although the loss of invertibility of the cir-
cle map appears to occur approximately at the Reynolds
number corresponding to the onset of chaos, it is difficult
to determine precisely the Reynolds number at which the
map becomes noninvertible. This difficulty arises because
the appearance of the map depends to some degree on the
choice of the delay time and the location of the Poincaré
section and on the origin of the polar coordinate system.

With the delay time chosen to be far from the value corre-
sponding to the first minimum in the mutual information
or with the coordinate system origin purposely located far
off center, we found that we could obtain noninvertible
maps in the quasiperiodic flow regime, below the onset of
chaos. Therefore, we can only say that the association of
the loss of invertibility of the circle map with the onset of
chaos is suggestive rather than conclusive in our experi-
ments. It is certainly clear, however, that further theoreti-
cal and experimental study of circle maps in systems with
rotational symmetry is warranted.

IV. ATTRACTOR DIMENSION

As we have shown, the photographs, power spectra, and
phase portraits indicate that the nonperiodic Couette-
Taylor flow is deterministic. We will now show that the
strange attractor is low dimensional, and in doing this we
will examine several effects that could influence the result
of dimension calculations.’
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FIG. 6. (Continued).

We have computed the pointwise dimension d,, (Farm-
er et al.!) and the correlation dimension v (Grassberger
and Procaccia’®), both of which are based on the idea that
the number of points N (€) in a ball of radius € scales with
the dimension d, N(€)xe®. The pointwise and correla-
tion dimensions are given by

InN (€)),
d,—tim SN (€D )
€—0 Ine
In{N(e)),
y—lim Y (€))x , 2)
€—0 Ine

where the ball of radius € is centered at the reference
points x on the attractor, and the embedding dimension
m satisfies m >2d, +1. The quantities d,, and v are re-
lated by the inequality v <d,; they can be obtained from
the same algorithm simply by interchanging the logarithm
and the average over different reference points x.

We find that the dimension values determined from the
Couette-Taylor data satisfy the inequality v<d,, but the
difference between v and d,, is within the uncertainty in
our dimension values; therefore, we will refer to the calcu-
lated dimension values simply as d.

For an m-dimensional embedding we usually use 2™ +2

reference points because the reference points then fill the
phase space equally densely for each value of the embed-
ding dimension. The number of data points used in calcu-
lating the dimension is discussed in Sec. IV D below.

A. Different regions of scaling

According to Egs. (1) and (2), the dimension should be
given (in the limit e—0, for sufficiently large m) by the
slopes of graphs of log;oNV(€) versus logsc; Fig. 8(a)
shows such a graph. Graphs of the local slope,
d[logoN (€)]/d(log o€), such as shown in Fig. 8(b), are
very helpful in understanding the € dependence of N(e)
for laboratory data, since the limit é—0 obviously cannot
be taken due to experimental noise and the finite amount
of data.

Consider the four distinct regions shown in Fig. 8(b):
In region A, the number of points in a ball and the slope
both approach zero as € approaches zero because of the fi-
nite number of data points. For slightly larger €, region
B, the instrumental or measurement noise is dominant—
the balls are smaller than the smallest temporal and spa-
tial scales that can be resolved in the experiment. Since
random noise fills all dimensions of phase space, the slope
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in this region approaches the value of embedding dimen-
sion m as € is decreased. With a very large number of
points the slope would attain a value equal to embedding
dimension before the data-limited region, region A, would
be reached. However, in the example in Fig. 8(b), the data
file size limitation is reached at a slope of about 3.7, well
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FIG. 7. The Poincaré sections shown on the left were used to
construct maps of the circle shown on the right, 6, ., versus 6,
0€[0,27]. The crosses in the Poincaré sections show the origins
of the polar coordinate systems. At R/R.=10.5 and 10.9 the
maps are invertible; at R /R.=11.7 the map has become fuzzy
and the slope appears to be about zero for two values of 8,; and
at R/R.=12.0 the map has developed a relative maximum and
is no longer invertible.
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before a slope equal to the embedding dimension (m=6)
is attained; with further decrease in €, the slope then be-
gins to decrease. This transition from region B to region
A would occur at smaller € if the number of data points
were increased, but there would always be a transition
from region B to region A for any data file with a finite
number of points.

Region C is the region of primary interest: the constant
non-integer-valued slope reflects the fractal structure of
the strange attractor. The value of the slope is the dimen-
sion of the attractor if the embedding dimension is suffi-
ciently large (see next subsection).

Finally, in region D the ball size € approaches the size
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FIG. 8. (a) The number of points N (¢€) inside a ball of radius
€, averaged over 256 reference points, for a strange attractor
with 16384 points. (The ball radius € is the velocity in cm/s.)
(b) The local slope of (a), d[log,oN (€)]/d(log,e€) as a function of
the ball radius €. Regions A, B, C, and D are discussed in the
text. The slope in the scaling region, region C, yields d =2.4.
(R/R,=12.4; m =6; 7=182 ms)
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of the attractor, and N saturates at a value corresponding
to the total number of data points; hence the slope ap-
proaches zero. Around the transition from region C to D
the slope increases for some systems. The reason for this
is that the ball radius approaches the edge of the attractor
where the curvature of the attractor contributes a larger
amount of data.

A major problem in extracting dimension values from
laboratory data is that the noise level can be so large that
it is difficult to distinguish regions B and C. Reliable
values of d can be obtained only if region C is fairly
broad. Indeed, the idea of a self-similar fractal structure
of an attractor is meaningful only if it occurs for a fairly
wide range in €. Wide scaling regions can be achieved
only with a high signal-to-noise ratio and large numbers
of data points (see Sec. IV D); otherwise, region B will ex-
tend to such large € that no scaling region will be discerni-
ble. In our experiments region C extends over more than
an order of magnitude range in € at small Reynolds num-
bers, but for R /R, > 17 the plateau corresponding to the
self-similar structure is hardly discernible. Longer data
files and more precise data are needed to obtain wider
scaling regions.

Another source of error arises in averaging over several
reference points: different regions on the attractor can
show different scaling behavior at a given length scale.>®
Then averaging N(e) over all reference points with € fixed
yields erroneous values of d. This problem is most serious
when the scaling region (region C) is very narrow. In this
case the scaling about individual reference points should
be examined before averaging. We have done this at
R/R,=19.0, where the averaged data show no well-
defined scaling region, and we have found that about half
of the randomly selected reference points have a scaling
region. Not surprisingly, the scaling regions occur at dif-
ferent € for different reference points. However, it is not
simple to define a reliable procedure for choosing the scal-
ing regions for individual reference points in the case of
experimental data; therefore, our dimension values for
R /R, > 17 (see Sec IV G) have a large uncertainty.

B. Embedding dimension

The effect of varying the embedding dimension m is il-
lustrated in Fig. 9. According to the embedding
theorem,?’ the reconstructed phase space must have a di-
mension m of at most 2d + 1 to ensure an embedding of
the attractor. For m too small, projection effects could
reduce the apparent dimensionality of an attractor. For
each set of data we computed d as a function of m, and
we found that usually we had to increase m to nearly
2d + 1 before the value deduced for d became indepen-
dent of m; see Fig. 9.

C. Delay time

A poor choice of delay time 7 can result in a very nar-
row scaling region, or there can be an apparent scaling re-
gion that does not actually correspond to the dimension of
the attractor, or there may even be no scaling region at all.
For example, if 7 is too small, the attractor can be so flat
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that a ball with a radius equal to the instrumental noise
scale will also span the thickness of the entire attractor.
The effect of varying delay times is illustrated in Fig. 10,
which shows graphs of the slope d[log;oN(€)]/d(log;g€)
computed for delay times corresponding to the attractors
shown in Figs. 5(b), 5(c), and 5(d). For the optimum delay
time, corresponding to the first minimum in the mutual
information, the width of the scaling region [see Fig.
10(b)] is larger than for shorter [Fig. 10(a)] or longer [Fig.
10(c)] delay times.
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FIG. 9. The effect of varying the embedding dimension m is
illustrated with data obtained at R/R,=16.0. (B, m=2; @,
m=3;4, m=4; +, m=5; ‘, m=6; and X, m=7). (a) The
dependence of the average number of points N (€) in a ball on
the radius € of the ball. The data file has 32768 points, and
2m+2 reference points were used in obtaining the average of
logioV (€). (b) The slope of the curves shown in (a) as a function
of €. (c) The slope of the curves in the scaling region as a func-
tion of m. The value of the dimension d is given by the asymp-
totic value of the slope at large m, which is 2.5.
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FIG. 10. The slope d[log;oN (€)]/d(loge€) for the data shown in Fig. 5: (a) 7/T,=0.11, which is smaller than the optimum value
of 7; (b) 7/ T,=0.24, which is the optimum 7; and (c) 7/ T, =0.48, which is larger than the optimum 7. The scaling region where the

slope is constant is wider for the optimum choice of 7.

D. Data requirements

The number of data points necessary to determine the
dimension of an attractor depends on the structure of the
attractor, the dimension of the attractor, and the sampling
rate. To our knowledge there have been no systematic nu-
merical or analytic studies of the data requirements for
determining the dimension of strange attractors, but the
number of points necessary to resolve an attractor down
to a length scale € increases exponentially with increasing
dimension.® Therefore, the analysis of high-dimensional
attractors by the techniques we have used will require ex-
tremely large data files. However, Sornerjai>® has recent-
ly proposed that ““calibrated” algorithms could be used to
obtain reasonable estimates of dimension from fairly
small data sets. This intriguing possibility should be care-
fully examined in a future study.

We have found that the accuracy in the value of d de-
duced for a given number of points depends on the sam-
pling rate. Broomhead and King>” give a lower bound on
the sampling time, but we know of no criterion for choos-
ing the optimum sampling rate. We have tested the influ-
ence of sampling time for model systems such as the
Rossler and Lorenz attractors,’® and have found that the
broadest scaling regions (region C in Fig. 8) are obtained
for about 10—30 points per orbit; the size of the scaling
region shrinks for larger or smaller sampling rates. In our
experiment we have used rates of 10—100 points per orbit.

We have examined the number of data points n neces-
sary to determine the dimension of one of our attractors
for Couette-Taylor flow, and the results are shown in Fig.
11. The sampling rate was held fixed at about 35
points/orbit. It is evident that, as n is increased, the size
of the scaling region extends to lower and lower €. Only
400 data points provide enough resolution to resolve the
attractor at large €. However, n should also be large
enough to resolve scales down to the noise scale, and this
requires several thousand points for this 2.4-dimensional
attractor, as Fig. 11 illustrates.

E. Analysis of random numbers

Guckenheimer has used the order statistics of indepen-
dent random variables to examine problems attendant

with obtaining accurate dimension estimates for randomly
distributed points.>'® Here we illustrate some of these
problems by applying our dimension algorithm to ran-
domly distributed data.

The number of points required to achieve an average
separation € in a d-dimensional space of linear extent L is
(L/€)?. Since the determination of dimension from Eq.
(1) or (2) requires taking the limit €e—0, the average
separation should be small, say 3% or less of the linear
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FIG. 11. The dependence of the slope d[logioN (€)]/ d(loge€)
on the number of data points n for data obtained at
R/R_.=12.0. A file with 32768 points yields d=2.4. (m=7)
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extent. This would require 4X 10* points in a three-
dimensional space and 5% 10'© points in a seven-
dimensional space.

We have determined numerically the approximate
width of the scaling range, Alogo€, for randomly distri-
buted points in hypercubes with dimension m=2, 3, and
4. Independently generated random numbers were used
for each coordinate. The number of points n necessary to
achieve scaling ranges Alog;oe of widths 0.4 and 0.8 was
determined as a function of m, as shown in Fig. 12. Al-
though the determination of the width of the scaling re-
gion is imprecise, the results suggest that the required
number of data points increases slightly faster than 10™.
We should mention that even for the largest number of
points (107), the value of d given by the slopes of the
logoV versus logge graphs was a few percent smaller
than m. :

In the next numerical experiment we investigated the
number of points required to determine the dimension of
randomly distributed points in a ten-dimensional space.
The value of d obtained for 107 points was about 9, but d
was still increasing with increasing n, as Fig. 13 illus-
trates. Both for the present case and for the two-, three-,
and four-dimensional spaces discussed in the previous
paragraph we thought that the difference between the di-
mension deduced from the data and the dimension of the
space could perhaps arise from a deterministic property of

7L
ol Alog, e~0.8
Iog] on
5L
Alog, (e~0.4
41
3 2 3 4

m

FIG. 12. The number of points n required to achieve scaling
ranges (region C in Fig. 8) of width 0.4 and 0.8 for two-, three-,
and four-dimensional hypercubes containing randomly distribut-
ed points. The analysis used 100 randomly chosen reference
points; 1000 reference points were found to yield smoother
curves in the scaling region, but the dimension estimates were
not significantly improved.
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FIG. 13. The value of d determined from the dimension al-
gorithm for a ten-dimensional hypercube containing n randomly
distributed points. The analysis used 100 randomly chosen
reference points.

the random-number generators. However, we tried two
different 64-bit random-number generators (the Cray For-
tran routine RANF and the IMSL routine GGUW) on a
Cray X-MP computer, and no difference was found.

The dimension estimates in Fig. 13 are low primarily
because of edge effects [see Ref. 3(b), p. 361]. That is, the
increase in the number of points within a ball of radius €
is slower for a ball whose center is near an edge of the
space than for a ball located far from any edge.>!® Figure
14 shows that for 300000 points randomly distributed in
a ten-dimensional space, the value ofd increases from 8.4
when the location of the reference points is unrestricted,
to d=9.2 when the reference points are required to be at
least 12% (of the linear extent) from an edge.

These considerations of dimension calculations for ran-
domly distributed points provide at best only a qualitative
guide to the importance of different effects for strange at-
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FIG. 14. The dependence of d on the location of the refer-
ence points for 300000 randomly distributed points in a ten-
dimensional hypercube. The abscissa gives the maximum dis-
tance from the reference points to the edge of the box, expressed
as a fraction of the size of the box; the 100 reference points were
randomly located inside this smaller box.
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tractors, which of course have highly complicated struc-
tures. The effect of the location of the reference points
will vary for different deterministic systems. For exam-
ple, a 2-torus has no edge, while for other systems the in-
fluence of edges increases with the dimension of the at-
tractor.

F. Filtering effect

Experimental data are often low-pass filtered, either in
the process of acquiring the data or later by software.
Low-pass filtering can not only influence the noise scale,
but also, if the filtering is very severe, it can reduce the
number of degrees of freedom that can be detected. The
effect on Couette-Taylor data obtained at R /R, =12.0 is
shown in Fig. 15, where reducing the filter cutoff from
20w/ to Sw/Q reduces the value determined for d. In
our experiment we did not apply any filter other than
those given by the acquisition process.

G. Dimension of the Couette-Taylor attractor

Figure 16 shows the dimension of the Couette-Taylor
attractor as a function of the Reynolds number. The un-
certainty in d, which arises from the various effects we
have discussed, increases from 0.1 for d~2, to 0.4 for
d~=3 (R/R.~=17). The error increases rapidly with fur-
ther increase in Reynolds number because, as discussed in
Sec. IV A, it becomes difficult to discern a scaling region;
the dimension values shown for R /R. > 17 are included
only to indicate the continuing increase in the dimension
with increasing Reynolds number.

3.0 s
¢4, (O)
279,
W CMEF
. - o. ..T“!“!“
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FIG. 15. The effect of low pass filtering of Couette-Taylor
data obtained at R/R.=12.0. (a) The slopes of log;oN (€) vs
logioe graphs are shown for four cutoff frequencies: ®, 5/Q; ’,
10/Q;9q, 15/9Q; and &, 20/Q. (b) Phase portrait for a cut-off
frequency of 20/9Q. (c) Phase portrait for a cut-off frequency of
5/Q.
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FIG. 16. The dimension of the Couette-Taylor attractor as a
function of the Reynolds number.

The results for the dimension show that the onset of
chaotic flow occurs at R/R,=11.7+0.2."° When the
Reynolds number is increased beyond the onset of chaos,
the value of the dimension increases monotonically except
for small dips at R/R,=11.7 and 13.7. These dips are
possibly a consequence of the fact that at these Reynolds
numbers the ratio of the two fundamental frequencies
happens to be near simple rational numbers; therefore, the
torus is not covered well by the data—longer data files
may be needed at these Reynolds numbers.

The reproducibility of the values determined for the di-
mension was quite good. Measurements were made over a
period of six months, during which time the cylinder sys-
tem was disassembled and reassembled several times, and
the dimension values were found to reproduce to a much
better precision than that indicated by the quoted uncer-
tainties.

V. DISCUSSION

We have shown that the dimension of the attractors in
the Couette-Taylor experiment is 2.0 for modulated wavy
vortex flow. When the Reynolds number is increased
beyond R /R, =11.7+0.2, the dimension becomes nonin-
teger, increasing above the value 2.0. At this same Rey-
nolds number broadband noise appears in the power spec-
trum and the largest Lyapunov exponent becomes posi-
tive, thus providing further  evidence  that
R/R.=11.7+0.2 marks the onset of chaos.!° The ex-
ponential decay of the power spectrum provides addition-
al evidence that the observed nonperiodic behavior corre-
sponds to low-dimensional deterministic chaos, not sto-
chastic behavior.

The dimension values should be viewed as characteriz-
ing the flow in the entire annulus: measurements that
were made at different spatial points for the same Rey-
nolds number yielded (within the quoted uncertainties) the
same value for the dimension. The dimension values seem
remarkably small when one examines the photographs of
the flow, particularly at the larger Reynolds numbers, say
R/R.=17 (see Fig. 1). The dimension calculation sug-
gests that, even for this noisy looking flow, only a small
number of degrees of freedom may be relevant to the
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dynamics.

We have emphasized some of the pitfalls in the deter-
mination of dimension. It is not difficult to develop an
algorithm that will yield numbers that can be called di-
mension, but it is far more difficult to be confident that
those numbers truly represent the dynamics of the system
under study. We have examined briefly some of the re-
quirements for data to be used in determining dimension
and have found that the number of data points needed in-
creases dramatically with increasing d, at least for the
techniques for computing dimension [Egs. (1) and (2)]
that we have used. There is clearly a great need for sys-
tematic numerical and analytic studies of the potential
and the limitations of dimension calculations.

Another problem that warrants further study is the
question of the route to chaos in systems with rotational
symmetry. The well-studied routes to chaos—period dou-
bling, intermittency (tangent bifurcations), and the break-
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up of a 2-torus as described by circle maps—apparently
do not occur in this system.’®> As we have shown, circle
maps can be obtained from the data for the Couette-
Taylor system, but the behavior of these maps is ap-
parently quite different from the maps that exhibit fre-
quency locking. Thus there is a need for numerical and
analytic studies of models with rotational symmetry and
for further experiments on the transition to chaos for dif-
ferent conditions in rotationally symmetric systems.
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FIG. 1. Photographs of the flow as a function of Reynolds number in the region of transition from modulated wavy vortex flow to
chaotic flow. The values of R /R, are given on the photographs. The first two pictures are of modulated wavy vortex flow, while the
remainder are in the chaotic regime. The flow patterns were rendered visible using a suspension of small platelets (Ref. 13).




