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Analytical scattering function of a polydisperse Percus-Yevick fiuid
with Schulz- (I -) distributed diameters
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Analytical expressions for the scattering function for a polydisperse Percus-Yevick fluid with
Schulz- (I -) distributed particle diameters have been obtained. Results obtained with the expression
for selected width factors and particle densities are presented. Comparisons have been made with
approximations routinely used to model small-angle scattering curves. The expression derived is
shown to yield the static structure function as a special case.

INTRODUCTION

Structural and thermodynamic properties of many
high-density fluids are mainly determined by excluded
volume contributions. Even for systems whose molecules
are far from being hard or spheres, use of hard-sphere
(HS) models has been successful. Among the liquid-state
approximations used to model macromolecular- and
colloid-system properties, the Percus-Yevick (PY) approx-
imation has been solved for a variety of Hamiltonians cor-
responding to HS models. For a monodisperse HS fluid
of indistinguishable particles, whose properties are depen-
dent upon integrals over discontinuous (6) functions, both
rigorous and approximate thermodynamic and structure
function expressions can be obtained. Real fluid particles
are associated with properties with a non-6 function dis-
tribution. Such systems may be monodisperse for some
properties and polydisperse for others. For example, a
population can be polydisperse in size but not in scatter-
ing length or vice versa.

Vrij' and Blum and Stell derived expressions for the
scattering intensity of polydisperse systems (PHS). Sala-
cuse and Stell generalized the thermodynamic approxi-
mations of Mansoori et al. to cover the statistical ther-
modynamics of polydisperse systems of particles, includ-
ing hard spheres, hard spheres with Kac tails, and hard
spheres polydisperse in size and permeability. Hayter,
and Kotlarchyk and Chen outline a simple procedure us-
ing numerical integration over the size distribution func-
tion, for analyzing small-angle neutron scattering data
from systems of interacting hard moderately polydisperse
spheres with Schulz distributed diameters and no correla-
tion of orientation.

In this paper, we present a fully analytic solution for
the scattering intensity of a PHS fluid applicable to any
degree of size polydispersity which can be represented by
a 1 (Schulz) distribution. We chose the 1 distribution be-
cause of its widespread use to model polydisperse systems
and its mathematical tractability. After considerable alge-
braic manipulations, we were able to cast this equation in
a form particularly suitable to the least-squares applica-
tions characteristic of current computer analyses. Besides
its obvious computational advantage, this analytical solu-

tion allows a rigorous evaluation of the scattered intensity
while avoiding the approximations caused by factoring. '

Additionally, the particular form used in Eq. (1), by its
mathematical simplicity, improves on the method out-
lined by Vrij, ' while providing results identical within our
calculational accuracy.

THEORY
The scattering intensity from a medium containing a

continuous distribution of particles with diameters o.; and
scattering amplitudes P;(k) is given by

I(k)=p f P; (k)f(o;)do;

+p f f P;(k)PJ(k)Hi(k)f (o;)f(oj. )dcr;doj,

f (cr) =(cr/b)' 'e r /[bl (c)]do
=o' 'e /[b'I (c)]do, (2)

where the parameters b and c are given by
b =cr „„/(z+1) and c =z+1, where z is the Schulz
"width factor, " z & —1. This distribution has a mean
equal to bc and variance equal to b c.

For spheres with uniform scattering length density, the
scattering amplitude P;(k) for a particle with diameter o;
is given by

P;(k) =4vr p [sin(kcr; /2) —,
'

kcr; cos(ko; /—2)], (3)

where p is the contrast between the particle and the sur-
rounding medium.

Expressions for the partial structure functions HJ(k)
have been derived by Blum and Stell within the Percus-
Yevick approximation by

(4)

where p is the total particle number density, k is the
modulus of the wave vector (k =4m sin(g)/A, with scatter-
ing angle 28 and wavelength A. ), H,&(k) is the pair struc-
ture function, and f (o; ) and f (oJ ) are the distribution
functions of particles i and j, respectively. For a I
(Schulz) distribution, the probability density function is
given by
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where for o,j ——,—(o;+o; } Here Q'j is defined as

and

Zt ——Ysin(ko;j) —X cos(kcr;J ),
Z2 ——X sin(ko, j )+ Ycos(ko;J ),

Z3 ——Q J
—kT3,

(6)

(7)

Q,"j(cr~j)=(n/4)(o;+oj+ ,' cr—;crg2rrlb,),
where g; is the product of the total particle density and
the ith moment of the I distribution about the origin
which can be written in terms of the density and parame-
ters b and c as

where Q J' is redefined with respect to the definition given
for it in Ref. 2 by

QJ = (2n. /6)(1+ —,g3n. /5),
where b, = 1 —n.g3/6 and

Z4 ——kQJ+kR4 .

g; =pb'(c);,

where (c)„=I(c+n)/I (c).
Expressions for X, Y, R3, and R4 are given in terms of

the x &, x2, y~, and yz, with the sign of y2 different from
that given in Ref. 2 (see footnote 7) by

x 1 (o ) =k [cos(k cr ) —1],
yi (cr }=k [ko —sin(ko )],
x2(cr}=k [kcr —sin(ko )],
yz(cr}= —k [cos(kcr)+ ,' k cr 1—], —

R3=(~/~)'p f, f(ok)(~k —~;)(ok —o, )yi(ok}d~k

R4=('ir/~} p f(crk }(crk cri }(crk crj)xl(crk)dcrk
0

X = 1 —(2'/b )(I+ ,' rrg3/h)—p f f (ok )xp(ok )dok (2n/&—)p f crk f(crk )x i (crk )(1+—,~$2crk/~ }dirk

,'(~—p«—}'f, f(~k)dok f, f(~i}[xt(~k}xi(oi} yi(~k)y—l(ol}](~k ol) d~!

Y= —(2~/~}(1+ l nk/~)p f f (cri}y'~(cri}dot —(2n'/~}p f crkf (cJk }yi(crk )(1+V'~kcrk/~}dcrk

2(~p—/&}' f, f(ok)dok f f(~i}[xt(ok)yi(oi)+yi(ok)xi(oi}](~k oi) d~—i

(10)

(12)

(13)

(14)

(16)

(17)

It turns out that the analytical solution for Eq. (1) for the I distribution is a function of 14 integrals which are well-
known integral transforms of the form

CTOg0 do (18)

with g(o') =1, sin(ko'), sin(ko/2), or corresponding cosine arguments, and f (cr) is the I density function. It is of con-
siderable advantage to adopt the notation for these integrals listed in Table I, where the common term G =b I (c) has

g(o)

1

1

1

1

sin{ko )

sin(ka)
sin(ko )

sin(ko. /2)
sin(ko. /2)
cos(ko. )

cos(ko )

cos(ko. )

cos(k o./2)
cos( k o./2)

'v =[m +(bk) ]

TABLE I. Integral transform notation. '

G ' (o.)o"g (o.)do.

1

bc
b c(c+1)
b 3c (c + 1)(c+2)
u', sin[c tan '(bk)]
bcv~(+" sin[(c + 1)tan '(bk)]
b c (c + 1)u'(+ ' sin[(c +2)tan '(bk)]
2'u 2 sin[c tan '(bk /2) ]
2'+'bcv2'+" sin[(c+1)tan '(bk/2)]
vt cos[c tan '(bk)]
bcv(~+ " ' cos[(c + 1)tan '(bk) ]
b c(c +1)v I

+' cos[(c+2)tan '(bk)]
2'u2 cos[c tan '(bk/2)]
2'+'bcv'2'+" cos[(c +1)tan '(bk/2)]

Notation

Pf t

p
p
x
x'
yrl
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been factored to avoid calculating I (c) for large arguments.
The analytical expression for the first integral I, in Eq. (1) was published by Arag6n and Pecora. In our notation we

have for uniform particles, P;(k) =P/(k) =P(k):

I,(k)=8' pP (k)k [1—X kt/i—'+ —,k (g"+X")] . (19)

The integrated form of the second integral I2 in Eq. (1) using this notation is

I2(k) = —2p[A[A( Y5~ —X56)+A'( Y52 —X54)+M(X5~+ Y56)+M'(X5~+ Y54)]

+A' [A ( Y5~—X54) +A'( Y53 —X5g ) +M (X52+ Y54) +M'(X53+ Y5, ) ]

+M [A(X5)+ Y56) +A'(X52+ Y5g) +M (X56—Y5) ) +M'(X54 —Y5p) ]

+M'[A(X52+ Y54)+A'(X53+ Y5q)+M(X54 —Y52)+M'(X5~ —Y53)] j /[k (X2+ Y~)], (20)

where

A = —', mppk [g——,
' k (g'+X')],

A'= —,mppk [P' ——,
' k (g"+X")],

M = ', vrppk —(1—X——,kg'),
M'= ,

'
mppk —(g'—X' —,

' kP"), —

X =1—(2~/b, )(1+ , re, /b, )pk —'(kg'—g) (2mlh)p—k [(X'—g')+( —,~g'p/b, )(X"—g")]
—(~/b, )'(p/k ')'[(X—1)(X" g" ) (X'—g')'—(k g—' P)—( k g"' —g")+ (k g—" g')'], —

Y =(2'/b)(1+ 2 vr(3/b)pk (X+ 2 k g"—1)—(2'/b)pk [kg"—Q'+( 4 rr/2/b )(kg"' —f")]
(m I&)'(pl—k')'[(kg' g)(X" g"—) 2(kg—" g—')(X' g'—)+(kg"—' g" )(X 1—)], —

(21)

(22)

(23)

(24)

(25)

(26)

and

5~ ——(m/6) [2+(m/h)[g3 —(p/k)(kg"' P")]j, —

52 ——(~/b, ) (p/k)(kg" —p'),

53———(vr/b ) (p/k)(kg' —P),
54 ——(m /b )[k —(m /b. )(plk)(X' —g')],

5g ——(~/&)'[(plk)(X —1)+—,kgb],

(27)

(28)

(29)

(30)

(31) I(k)=Np(P(k)) S(k) . (34)

of the average of the scattering amplitude of the particles
computed by the method described in Refs. 5 and 6. The
H(k)=S(k) —1 was computed for the structure function
S(k) of a system of monodisperse hard spheres in the PY
approximation with size equal to the average size of the
Schulz distribution. In model B, the intensity of the oth-
er approximation' plotted as a dashed line in a given by

(32)

For details of the derivation of the expressions in Eqs.
(20)—(32), the reader is referred to the Appendix.

Values of scattering intensity computed via Eqs. (19)
and (20) are presented as a continuous line in Fig. 1 for a
particle distribution with a mean diameter of 50 A, con-
trast p =0.234&10 A, packing fraction g=0. 1, and
selected degrees of polydispersity: z =10, 101, 12.03,
1.618, 0, and —0.5. A width parameter of z =10 cor-
responds to an essentially monodisperse system. Similar
calculations for samples having a packing fraction of 0.3
are shown in Fig. 2. The intensities given by our equa-
tions were compared in these figures with two approxima-
tions in current use. ' In model A, the intensity plotted
in the figures as a dotted line is given by

I (k) =X~[(P (k) ) + (P(k) ) H (k)], (33)

where (P(k) ) is the average of the square of the scatter-
ing amplitudes of the particles and (P(k)) is the square

Results obtained using Vrij's method are indistinguishable
from our results. At smail values of k, approximate
models 2 and B both deviate from the correct values, giv-
ing a scattering intensity as much as on order of magni-
tude off at zero angle for high packing fractions and
broad size distributions. As k increases, this difference
decreases; however, model B still reproduces the scatter-
ing pattern poorly, even adding spurious features. Model

overestimates the effect of large particles, since the
scattering intensity at zero angle is proportional to the
sixth power of the radius. This effect is overshadowed,
however, at values of ko. &1.2, by the effect of second
and higher moments of the particle size distribution.
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APPENDIX: DERIVATION OF
EQS. (19)—(26)

For a continuous distribution of particle sizes, it is
easier to break up Eq. (16) into parts (X„,n = 1,3) to per-
form the necessary integrations. Let X] be the first two
terms of Eq. (16). Substituting xz(ok) we have

X) ——1 —(2n /b, )(1+ , mj3/—b, )(pk )

& f [kok —sin(kok)]f (crk)dok .

Using our notation in Table I we have

X, = 1 —(2m-/b, )(1+—,
'
m/3/h)(pk )(kg' —f) . (Al)

Let X2 be the third term of Eq. (16). Substituting for
x

& (crk ) we have

Xz ———(2m /h)pk f [cos(kok ) —1](1+4 mf 2crk/6)

+ crkf (crk )d~k

Again using our notation in Table I, we have

X2 = —(2~/h)pk [(X'—g')+ —,n/2/h(X" —g")] . (A2)

Let X3 be the last term of Eq. (16). Substituting for
x ~ (o k ) and y &

(o k ) we have on rearrangement

X3 ————,(~/&) p f f(ar)do((pk ) f (crk 2cr(—ok+or )x )(or)[cos(kcrk ) —1]f(ok )dcrk

(crk 2crl&—k +crl )y i (crI )[ko k
—sin(kcrk)]f(ok)dok0

Carrying out the multiplication and integrating first on o.k, integrals of the form found in Table I are obtained. Thus,

3 ————,(~p/5) k f f (oi)[x)(o))(X" g"—2o—IX'+2o(g'+ore —o))
y&(cr&k—g'" g" 2a—&kg+—2criP'+crrk0' oI'4)ld—oi .

Integrating next on cri by substituting for x
&

and y &, we obtain after collecting like product terms

X3 ———(~/&)'(pk ')'[(X—1)(X"—g")—(X' —g')' —(kg' —g)(kg"' —p")+ (kg" —p')'] . (A3)

Thus for X,
X =X) +X2+X3 . (A4)

In the integrated expression for Eq. (17), Y follows immediately in an analogous manner as for X by breaking Y into
parts and integrating as before. The expressions for X and Y do not depend upon o; or o/; hence, the denominator does
not enter into the integration on o.; or o.j.

The only terms in Eqs. (7) and (8) which must be integrated with respect to ok are R3 and R4. These intermediate re-
sults will be obtained first. Substituting in Eq. (14) as before and expanding we have

R3 (np/b, ) k—— f f (ok)[ok (o;+—crj )ok+o;oj ][kok —sin(kcrk)]dcrk,
then

R3 —(n /b ) pk f f(ok )[kok —k (o; +crj' )ok+kcr;ojak —crk sin(kok ) —(cr; +cr~ )ak sin(kak )+o;crJ sin(kok )]dok

Then substituting as before and simplifying,

R, =(~/6) pk '[(kg"' g") (cr;+—cr, )(k—g" g')+a;cr, (kg'—g)], — (A5)

and R4 follows in a similar manner.
Expressing Z;,i = 1,4 in terms of half angles to separate o; and oJ, the second term of Eq. (1) becomes upon substitu-

tion of Eq. (3) for the scattering amplitudes

I2(k) = 32npp k —f .[sin(kcr;/2) ——,
'

cr;k cos(ko;/2)]f (o;)
X f [sin(ko~. /2) ——,

' ojk cos(kcrj/2)]

)&f (crJ )[IX[sin(k cr; /2)cos(kcrj /2) + cos(ko; /2)sin(ko~ /2) ]
+ Y[cos(ko; /2)cos(koz /2) —sin(ko; /2)sin(kcrj /2)] I

X I (2m /b, )(1+—,/3m/5) —(m /6) (plk)
x [(kg"' —q")—(cr; +cd )(kg" q')+cr;cr (kg' —0—)] I

+ Y[ [sin(ka;/2)cos(koz /2)+ c (oks; o2/) ins( re c2/)]
—X[cos(ko; /2)cos( kcrj. /2) —sin(ko'; /2)sin(ko; /2)] I

X [k (m. /b, )(cr;+ crj. + ,' o;crj./2m/b )+ (n./b, )—(p.lk).
X[(X"—g")—(o;+cr~)(X' —g')+o;cr~(X —1)]]]dcrjdo;/[k (X + Y )] .

(A6)
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Expanding and substituting Eq. (27) into (32) after rearranging by like integral terms in ol, we have after substituting for
M, M', A, and A' defined in Eqs. (21)—(24),

I2(k)= —8' p p k J [sin(koj. /2) —,'cr—;kcos(koj/2)]f (cr;)

&( [A [ [Xsin(kcr; /2}+ Y cos(kcr;/2)](5i+52o; ) + [ Y sin(kcr;/2} —X cos(kcr; /2)](5&cr;+56) I

+A'[ [Xsin(kcr;/2)+ Ycos(kcr;/2)][(trlb, ) g2+5q+53o;]

+[Ysin(kcr;/2) —Xcos(ko;/2)](54+5scr;) I

+M([Xcos(ko.;/2) —Y sin(kcr;/2)] I 2rrlb, (trlb, )—(p/k)(kg'" —tt(")

+ [Ycos(ko;/2)+X sin(kcr;/2)][(tr/4) (p/k)(X" —g")+54tr;] }

+M' [ [Xcos( k o'; /2) —Y sin( k o'; /2 ) ][( m/b, ) ( gq+ 5q+ 53(r ' ) ]

+ [ Ycos(ko;/2)+X sin(kcr;/2)](54+5&cr;) I ]der; /[k (X + Y )] . (A7)

S(k}=pf f(o;)do;
o.; oq H,q

k der) do; (A8)

is a special case of Eq. (1) by letting P;(k)=PJ(k)=1.
For this case the final expression we recently published"
is an almost immediate consequence, since terms in Eqs.

Now rearranging by integrals in o.;, and again substituting
for A, A', M, and M', the final result in Eq. (20) is ob-
tained.

The static structure function,

I

(A6) and (A7) that give M, M', A, and A', as defined in
Eqs. (21)—(24), reduce to terms that give p, , p', A, , and A, ',
respectively, as defined in Table I. The expressions are
also valid for other probability distributions provided the
integral transforms exist, and the solutions given in Table
I and the moments in Eq. (9) are suitably changed.

Finally, we would like to point out two typographic er-
rors in Eq. (2) of Ref. 11. This equation is correctly print-
ed in Eq. (26) above. The results presented in Ref. 11 are
correct since they were computed with the correct equa-
tion. We wish to thank R. McRae for pointing out these
misprints.
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